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ABSTRACT

The statistical thermodynamics of dilute polymer solutions is reviewed from
the point of view of the continuum theory based on molecular distribution
functions. The comparatively rigorous perturbation treatment of the second
and third virial coefficients, and various approximate theories derived from
it to give closed-form expressions useful for good-solvent systems. are outlined.
Indications from theory and representative experimental data are discussed
for linear chains, branched chains, and binary solutes comprising polymers
alike chemically but different in molecular weight and/or branched structure.
It is suggested that apparently anomalous thermodynamic and conformational
behaviour observed with branched chains reveals a basic inadequacy in the so
called 'two-parameter' class of statistical theories.

INTRODUCTION: HISTORICAL
One of the most striking properties of long-chain polymers is the extreme

departure of their solutions from Raoult's law. This behaviour attracted
early attention in physicochemical studies of polymers and conceptual
understanding of the basis for it was one of the important milestones in the
progressive application of physical principles to macromolecular systems.

Two rather distinct formalisms, one based on lattice models and the other
on molecular distribution functions, have been applied in studying the
thermodynamics of polymer solutions. First, the development of lattice
or cell theories for simple liquid mixtures1 and, in particular, efforts to
extend them to mixtures of molecules of disparate size2 inspired application
of similar ideas to polymer solutions. The result was the celebrated theory
presented independently by Huggins3 and by Flory4'5 in 1942. Despite
innumerable variations and extensions of the lattice treatment—and a glance
at the program of this Microsymposium indicates clearly enough that after
thirty years the lattice method is still far from a dead issue—the essence of it
can be expressed very simply. One imagines the solution volume to be
divided into cells in each of which one can place either a segment of a polymer
chain or a solvent molecule. The numbers of distinguishable configurations
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available to the system are counted as the polymer chains are added one by
one to the lattice, and thence the entropy of mixing is derived. With para-
meters for specific interactions between solvent molecules and chain segments
the total free energy of mixing is obtained. Approximations are of course
unavoidable. The most important one from our point of view is that while the
connected nature of each polymer chain is respected in counting the con-
formations available to it when it is placed on the lattice, this chain 'sees'
those previously placed on the lattice only as a random distribution of
unconnected chain segments5. Intuitively this approximation is acceptable
in concentrated solutions where the segment distribution does approach
randomness on a microscopic scale: and despite difficulties that have been
the source of much discussion, the lattice approach has certainly been
successful for such solutions5.

By comparison, the model should be inadequate for dilute solutions, in
which the polymer chains form discrete dilute 'clouds' of polymer segments
(containing say 1 % polymer by volume) separated on the average from one
another by regions containing only solvent. Curiously, this difficulty was
apparently ignored for years, even though it manifests itself by an important
discrepancy between theoretical prediction and experiment. In the simplest
form of the Flory—Huggins theory5 the activity a1 of solvent referred to the
usual standard state of pure solvent is given by

a1 = (I — v2)cxp{(l — V1/JM)v2 + v} (I)

where v2 is the volume fraction of polymer in the solution: M is the molecular
weight of the polymer and t3 its partial specific volume: t/ is the molar

volume of solvent: and Xi is a parameter characterizing the energy of inter-
action between solvent molecules and chain segments. Introducing the
weight concentration c = v2/15 (grams of polymer per ml of solution) and the
relation

RTTIV1 = — ma1 (2)

for the osmotic pressure 11, we can combine equations I and 2 and expand

the function 11/c in powers of concentration to obtain5

TI/RT = M1 + (2/V1)( —Xi )c + ft31'3V1) ,2 + 0(c3) (3)

which is the Flory Huggins expression for the general osmotic virial
expansion

TI/RTc = M + A cl_i (4)

Perhaps the most notable aspect of equation 3 is that the second virial
coefficient A2 exhibits no molecular weight dependence (if Xi as the simple
model demands, is independent of molecular weight). Although some experi-
mental studies appeared to substantiate this invariance, we now know that
A2 is indeed a function of molecular weight. Figure 1, a compilation of data
of Berry on polystyrene in cis-decalin (decahydronaphthalene), serves as an
illustration. The product /12/%'! plotted against a quantity proportional
to 444 obviously does not give a straight line. Virial coefficient data on
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polymers can usually be represented quite well over wide ranges of molecular
weight by the form7

A2 cx: M' (5)

with v about 0.25 for very good solvents, and smaller for poorer solvents.
However, no theoretical basis for equation 5 has been suggested.
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Figure 1. Plot of A2,\it versus (determined by <s>0 and temperature dependence of A2 at
1 0) for polystyrene in cis-decalin (from data of Berry6). The points are marked to differentiate

data for the various samples.

We remark here, anticipating the subsequent discussion, that the particular
separation of entropy and heat effects in the idealized lattice theory is not
essential. The parameter Xi can be regarded more gneral1y as a free-energy
quantity and —RT(- — Xi) V represents, to terms of order v, the partial
molar free energy of dilution (or excess chemical potential of solvent). Then,
it is useful to let

— /i(1 /T) (6)
where /i is Flory's entropy-of-mixing parameter and e is a characteristic
temperature at which polymer-solvent interactions vanish5. In this form,
the second virial coefficient of equation 3 is given by

A2 = (i52/V1)çIj1(l — /T) (7)

The coefficients of terms of order c2 and higher on the right hand side of
equation 3 are notable for their lack of quantities characterizing thermo-
dynamic interactions. In view of the formal identification of virial coefficients
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with such interactions, it appears that these terms are not physically meaning-
ful in the form generated by the Flory—I-Iuggins method.

In the face of the difficulty of accounting for the thermodynamic properties
of dilute solutions by the lattice method, a different approach was called for;
and the statistical mechanical methods of the theory of real gases, focusing
on the evaluation of the configuration integral for a dilute system of inter-
acting particles8, provided an appropriate conceptual framework.t Using
the Montroll—Mayer molecular distribution functions,t° McMillan and
Mayer1 demonstrated the precise formal equivalence between pressure of a
gas and the osmotic pressure of a solution; but it remained for Zimm'2 to
marshal the techniques that made it possible to cope with the enormous
number of internal degrees of freedom possessed by a flexible polymer chain.
Since most of the discussion to follow centres about this theory, we describe
it in some detail.

PERTURBATION THEORY FOR DILUTE POLYMER SOLUTIONS:
THE SECOND VIRIAL COEFFICIENT FOR

HOMOGENEOUS POLYMERS

In the general theory of solutions formulated by McMillan and Mayer,
the second virial coefficient is given by

A2 = —
(8)

g2(l,2) = F2(1.2) — F1(l)F1(2) (9)

in which NA is Avogadro's number.
The distribution functions F1(l), IJ(2), F2(1, 2) are defined by probabilities

F1(1)d(1)/V, F1(2)d(2)/V

that molecule 1 in the macroscopic system of volume Vhas its coordinates in
the differential 'volume' of configuration space symbolized by d(l). that
molecule 2 is similarly in d(2), and

F2(l, 2)d(1)d(2)/V2

that molecules I and 2 are simultaneously in the element d( 1) d(2). Obviously,
if there is no correlation between the two molecules (if they exert no forces on
each other) F1(l, 2) equals F1(1) F1(2), the g2 function vanishes, and A2 must
vanish.

To obtain results from these general relations, Zimm'2 pictures the
polymer molecule as a linear sequence of n identical segments of length
b0 connected by flexible joints (or as beads on a string). The interaction
between any two chain segments not directly connected in a chain contour
is described by a potential of average force u(r112) that depends only on the
scalar distance r between the segments (e.g., rj1j, separating segment i in

t We remark however, that complicated lattice treatments can give a molecular-weight
dependent '2' and that any lattice formalism can he regarded as a special case of the more
general theory described here .
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molecule 1 and segmentj in molecule 2). It is assumed, by an approximation
that is standard but of uncertain effect, that the u(r) are additive. Then F2(1, 2)
can be factored to give

F2(l, 2) = F1(1)F1(2) exp { —E u(r1113/kT} (10)'i 2
where the sums run over all n segments of each of the two chains in any
specified configuration to give the total energy of interaction of molecules
1 and 2. Although the only energies appearing in this formulation are for
interactions between chain segments, it must be understood that these are
averaged quantities containing implicitly the effects of polymer—solvent and
solvent—solvent interactions.

By analogy with the procedure in the theory of a real gas8' 13each Boltzmann
factor for a segment pair is expressed by a function

1 — exp { — u(r1112)/kT} (11)

Substitution of this into equation 10 permits g2 to be expanded in a series
of products of x functions:

—g1, 2) = F1( 1 )F1(2) x(r1112)
— E. x(r112)x(r12)

11. 2+ i... X(r1112)x(rJ1J2)x(rk1k2) +
...]

(12)
(ii. 12,j1,j2,k1,k2)

the parentheses about the indices indicating that the sums are limited to
avoid redundant counting.

At this point, the crucial assumption is made that the x functions, and
hence the potentials u(r), are of such short-range character that a delta-
function formulation'4 is adequate: i.e., the excluded volume integral for
interaction of a pair of segmonts can be written

$11 2 .1 x(r11 12)dr11 2 = .1 fl176(r11 13dr11 2 (13)

where ó(r11 12) is a three-dimensional Dirac delta function peaked when
r111, = 0. This means that the x function vanishes unless the two segments
in question are 'in contact'. Thus, any product of x functions in equation 12
contributes to the integral of g2(1. 2) only for configurations in which all
the segment pairs designated in the product are simultaneously in contact'2.
The short-range nature of the x makes it possible to begin the evaluation
of A2 by integrating successive terms on the right of equation 12 over all 6n
spatial coordinates of two molecules of the same polymer species. Since all
the chain segments are assumed to be identical, the integral of every x
function will be the same and we can eliminate subscripts on the fis.

The result of the integration over coordinates can be expressed formally as
— g2(1,2)d(1)d(2) = IJVIE {1 — 11> P(O1,IO1112)

2 (uk)
+ I2 : E P(Ouiu,, °k1k, l0 + O(fi)} (14)

(il J2. k1. k2)

where the Ps are conditional probability densities: e.g., P(OJIu,, Ok1,O(1(7)
for contacts between pairs j,,j2 and k,, k2, given that segments i,, i2 are in
contact. Zimm assumes that the distribution functions F,(l), F,(2) are given
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by random-flight statistics (as multivariate Gaussian forms). A theorem
due to Wang and Uhlenbeck'5 and Fixman'4, allows the probability
functions to be written down immediately: e.g., for the simplest one:2 . _j

P(OJ1J, 01112) (3/2mb0)2( ii — l + J2 — 12 ) (15)

The remaining task is to perform the summations over the segments. These
can be written as integrals since n is large. For P(Oj1j, Oi,,). the highest-order
term evaluated by Zimm, the quadruple integration is straightforward. But
for the terms of order /32 inside the brackets in equation 14, carrying out the
integrations with the prescribed limits is difficult'6' ' and apparently
cannot be accomplished entirely analytically. Quantitative evaluation of
still higher terms does not so far appear feasible'6, even by machine methods.
The result for the second virial coefficient of a homogeneous polymer can be
written:

A2 = AF(z) (16)

A N4/3n2/2M2 (17)

F(z)= I —Bz+C2z2+... (18)

z fln = (2h) 11n2 (19)

The above forms are not limited to linear chains, but for that case

B = 2.8653, C2 = 9.201 (20)

The factor A, the so-called 'single contact' term is independent of chain
architecture (linear, branched, ring) and of molecular weight, but does
depend on the chemical nature of the polymer—solvent combination and the
temperature. It represents the second virial coefficient for a hypothetical
solution of completely disconnected chain segments. Dependences on
molecular weight and temperature are contained in the random-flight
variable z and thus in F(z).

The coefficient B has been obtained for some nonlinear geometries. For
long-chain flexible rings' , it is irj2 = 4.457. For 'star' branched molecules—
f identical linear chain elements, each attached to a common junction by
one end—Bis given by'9

(15/32)f1Bstar = (f — 1)(17,/2 — 9J3 — 8)

+(f— l)2(9/3—6.J2_7) (21)

Equation 21 shows that Bstar increases monotonically from the linear value
(j 1,2) with increasingf to approach 0.2201f asymptotically. Derivation
of B has also been accomplished for 'regular-comb' branched chains with
J, identical branches spaced uniformly along a main chain20. The results are
expressed in terms of complicated single and double sums running over
branch indices (1 tof). Computer calculation is essential in this case.

The calculations for branched chains were motivated by laboratory
synthesis of approximations to the idealized star and comb molecules by
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anionic polymerization methods. Actually, a better representation of the
real comb-chains is provided by a model with the branches spaced at random
along the main chain (but still with the same number of branches in each
chain). It turns out that this randomization of branch positions materially
simplifies calculations and yields an analytical expression for B, one that
remains cumbersome but is without the troublesome sums21. The behaviour

Figure 2. Double-contact interaction coefficient B as a function ol the ratio ot mean-square
radii of nonlinear and linear chains of the same mass. The curves are for combs with f branches
spaced so as to divide the main chain intof+ I identical elements. As g decreases. withf> 3.
main segments between branches become shorter in relation to branch length and each curve
terminates at the corresponding regular f-functional star. The degenerate case with f =
designates a 3-functional star with two arms ol equal length. Curves forf= 1.2 must be closed.
beginning and ending at the linear-chain limit. The dashed line is the limiting relation forf =

The circle at g = is for the ring model.

of B with comb branching parallels that observed for stars and the ring:
B increases as the structure is made more compact for a given number of
segments per chain. The degree of correlation between B and the ratio g of
mean-square radii of branched and linear chains of the same mass is indicated
in Figure 2.

The derivation of F(z) can be improved in a way that affects only the
quadratic and higher terms. The assumption that F1(1) always pertains to
a random-flight chain ignores the fact that interactions between segments
within a single chain must be governed by the same potential of average
force u(r) as intcractions between segments in different chainst 6.22 As a
consequence of intramolecular interaction, F1(1) must represent a perturbed
distribution. Consistently with the treatment of intermolecular interactions,
F1(1) can be developed by an expansion about the unperturbed state, denoted
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by the distribution function F°(1), in terms of x functions for intramolecular
segment pairs:

F1(1) = QF?(1)[1 — fii(r) + O(fl2)] (22)
('i. ii)

where Q is the normalizing factor.
Using this and the analogous expansion for F,(2), we obtain new terms,

containing Ps for various combinations of intermolecular and intramolecular
interactions, that must be added to equation 14 if it is to be strictly correct
to use random-flight expressions for the Ps. The new contributions are
denoted by C,2 in the relation

Fz) = 1 — Bz + (C2 + C12)z2 + ... (23)

which replaces equation 18. Considerable effort has been put into calculating
C,2 for linear chains23' 24, the only case so far studied. It appears that the best
value'7 of C12 for identical chains is 5.077, which yields

C2 + C,2 = 14.278 (24)
The development described in the preceding paragraphs represents a

perturbation theory with the sum in powers of fi giving orders of correction
to the unperturbed state, in which the second virial coefficient vanishes (as
fi vanishes) and random-flight statistics describes chain configurations—
i.e., at the temperature €1. Formally, the theory is complete; but in fact, the
unavailablity of coefficients for terms beyond the third (at best) in the series
means that any direct quantitative application of the results must be limited
to systems for which the quadratic approximation of F'(z) is adequate. Since
the series for F'(z) converges slowly, the range of z for which this is useful is
very narrow,

So far, the development has been rather abstract. The number of chain
segments n and the segment length b0 refer not to a real chain defined by
chemical bonds and bond angles, but only to an imaginary statistical chain
that does, however, reproduce the gross averaged properties of chain
configurations. To establish a connection with reality, we observe that the
mean-square radius of gyration <s2>0 of the random flight characterized by
parameters n and h0 is nb/6. A direct measurement of this dimension for
the real chain at T= e (by a diffraction measurement) thereby establishes
the value of nh. Then from equations 16 to 19, we find

( dA2'\ — (NA (d(fln2) 25dT')TØ 2M2)kdTt
so that determination of the temperature variation of A2 permits fin2 to be
determined unambiguously at temperatures near 6. Thus, we find that z con-
tains two operationally meaningful parameters, nh and fin2. For this reason,
the general class of statistical mechanical theories that express A2, or some
other property, in terms of these or an equivalent pair of parameters are
commonly termed 'two-parameter' theories25 20 in the sense first suggested
by Stockmayer.25

A thermodynamic argument shows that when T 6, the temperature
dependence of fi is given by5'26

fi = 110(1
— &/T) (26)
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Then the derivative in equation 25 is — NAfi0n2 e/2M2. This can be identified
with —v2i/j,(9/V1 in the symbolism of equation 7. The single-contact contri-
bution to the virial coefficient, equation 17, is therefore the Flory—Huggins
virial coefficient, and z can be expressed in the forms

(y 2>\fi,2 (1 -M
\4ir) \\M) M2\ T)
2(i (<s2>o(i --M (27)

NA \4itJ \ M / V1kJ1,\\ T)

in which the characteristic unperturbed dimension <S2>0j1 for linear
chains is isolated. Values of z for the experimental correlation shown in
Figure 1 were obtained by this method of analysis6.

For typical po1ymer--soIvent binary systems, (9 represents an upper critical
solution temperature (UCST): the critical point or temperature above which
the system is one phase at every composition if the molecular weight of the
polymer is very high5. In practice, positive values of z are of most interest
because the polymer precipitates if T is appreciably smaller than (9. As T
is raised above (9,the solvent becomes progressively better and, with usual
values of i/i,, the region of z for which the quadratic approximation to F(z)
is sufficient is rapidly exceeded. These characteristics are exemplified by the
data for polystyrene and cis-decalin ((9 = 12.2°C) in Figure 1.

While the experimental behaviour of F(z) for z appreciably greater than
zero cannot be obtained from the perturbation theory, the data in Figure 1
do exhibit conformity with one basic requirement of the theory: that A2M+ be
a function of z alone for a series of homogeneous polymers of the same
chemical and topological structure (all linear in the present case) in a given
solvent. The agreement is impressive considering that the data cover wide
ranges both in temperature (10° to 110°C) and in molecular weight (2 x io
to 4.4 x 106).

The mean-square molecular radii of gyration of these polymers measured
directly by light scattering6 for molecular weights above 4 x iO show that
the fractional linear expansion beyond random flight dimensions due to
intramolecular segment—segment repulsions at T> (9 can similarly be
represented by a single function of z. This, again, is in accord with the
appropriate perturbation theory'4'27 28,developed in completely consistent
fashion with the theory for A2. Specifically, the series expression for the mean
square radius is

a = I + az + 0(a2) (28)

where a 134/105 for linear chains. The series for displays the same
kind of slow convergence as does F'(z). However, as Zimm, Stockmayer
and Fixman27 noted, elimination of z among equations 16. 18, and 28 yields
a series for A2M in powers of (2 — 1) that converges more rapidly than
either series alone: and Figure 3 shows that in fact the experimental data
already cited conform very well to a linear dependence between A2M and
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The assertion, implicit in what has been above, that z for T> (9 can be
deduced from parameters measured near (9 requires some qualification.
In the first place, the temperature dependence of <52>0 may be difficult to
assess unambiguously because measured dimensions in a series of solvents
chosen to give the unperturbed state (defined by A2 = 0) at various tempera-
ture are sometimes influenced by specific solvent effects. However, <s2>0

0

0 08

Fiqure 3. Polystyrene in decalin : linear relation between A 2" and

clearly varies only slowly with temperature under ordinary circumstances5,
and there is good reason to believe that the effect is in fact unimportant for
the polystyrene—decalin system29. A more fundamental problem lies in the
assumption that the temperature dependence of fi is always given by equation
26 when z is large. If there is to exist a 'lower' critical solution temperature
(LCST) somewhere between (9 and the critical temperature of the solvent
and if a vanishing 2 can be associated with the LCST, as well as with the
UCST. the formulation of z given here cannot be adequate over an arbitrarily
extended temperature range30. Flory's parameter therefore, has to be
temperature dependent or, what is the same thing, there exists an excess
partial molal heat capacity of dilution. In a recent important contribution
Eichinger3t calls attention to this problem and develops a series expansion
of as a function of I' — 0. The first-order correction is determined
simply by the value of the LCST. From the nonappearance of the LCST
for polystyrene in decalin below 300'C, Eichinger obtains an estimate of the
correction to z in the temperature range of Berry's measurements and con-
cludes that the change in z (which is downward, and considerable at the higher
values of z) does nothing to worsen the correlation exhibited in Figure 1.
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In some treatments of the intrinsic viscosity [q]-—notably in that of Fox
and Flory5-the ratio [q]/[]0, the subscript indicating the unperturbed
state, is a function of z alone. However, Berry32 found that this simple
dependence did not represent adequately his viscosity data on the polystyrene—
decalin system, except at very high molecular weights. He suggested that the
deviations could be attributed to draining effects. Reanalyzing Berry's data,
Eichinger concludes that the corrected values of z show decidedly improved
correlation with []/[tj]0except at quite low molecular weights (ca. 2 x lOs).
Berry's method of obtaining z and the modification by Eichinger are thermo-
dynamically straightforward and seem preferable to other proposals that
have been advanced33 primarily with a view to improving correlations of
intrinsic viscosities with a universal dependence on z.

APPROXIMATE TREATMENTS FOR POLYMERS IN GOOD
SOLVENTS

To account for the variation of the second virial coefficient with z that is
found experimentally in good solvents, we have to calculate F'(z) from a model
with z > 0. Since the manifestly intractable character of the coefficients
of higher orders of z in equation 23 makes it impossible to sum the series,
drastic approximations have to be made. In the various theories that have
been proposed, the chain model described by random-flight statistics is in
effect replaced by one in which the sequential connections of chain segments
are to some degree destroyed. Mathematically, the procedure can be regarded
as one of replacing the complicated simultaneous probabilities in equation
14 by combinations of simpler probabilities. Another approximation,
presumably a relatively minor one, is to uncouple the intermolecular and
intramolecular effects, approximating the latter simply by representing the
real non-Gaussian chain as a random flight with segment length b =
adjusted to give the correct rms radius. The perturbation treatment applied
to intermolecular interactions of two such uniformly expanded chains leads
to a function F() as in equation 18 with z replaced by ( = z/x2. Then the
objective of the major approximation is to attain a useful closed form for
F(41

In one class of approximate theories, the connected chain is replaced by a
cloud of disconnected segments constrained to some specified radial density
distribution. The interaction of two such clouds can then be characterized by a
configuration integral expressed in terms of a potential energy depending only
on the distance between the centres of mass. The simplest model is one with a
uniform segment density". Flory and Krigbaum36 used a single Gaussian
density function and later Isihara and Koyama37 improved on this by using
the correct sum of n Gaussians for the density distribution of a random-
flight chain of n segments about its centre of mass. The characteristic feature
of these theories is the introduction of the approximation

12' °JIJ2' °mlm2' S) dS = .1 P(01112, S)... P(Omim2, S) dS (29)

where P(01112 ..., S) is the probability density for the simultaneous occurrence
of contacts between segments i and J andj2, etc., and of a separation S
between centres of mass of two molecules I and 2. The details of the radial
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segment-density function have been shown to have very little effect on the
result38.

The Flory Krigbaum F(() is expressed by a definite integral that is
unmanageable analytically but can be evaluated numerically or graphically.
A good quantitative approximation has been found by Orofino and Flory39:

F(C) = [ln(1 + 2.300]/2.30 (30)

Markovitz and 14041 proposed a theory based on a different factorization
of intersegmental contact probabilitiest. The assumption

P(O1112, °k1k2 Omln,2101112) = P(O1112lO1j. . . P(0pn1,n2101112), (31)

which can be thought of as an averaging of the segment distributions of both
chains about an 'initial' contact of segments i and i2, makes it possible to do
the summations (integrations) in equation 14 over all indices except i1, i2
and to sum the series within the brackets. The remaining sums over i1. i2
can be east into the form:

F(() JJ
_ cxP[_4w(xY)c]dd (32)

4it4x, y)
with 0 0

—(1—x—y)4--(2—x—y)1 (33)

and the double integral is very well approximated by

F(() = 573t (34)

with the appearance of the coefficient 2B a logical consequence of the
derivation.

In another approach, which is too involved to give in detail here, Kurata,
et a!.24, and Yamakawa43 combine equations 8—10 and equation 13, and
differentiate the result to obtain an expression for

cli (2M2/NAn2)(13A2/öfi) (35)

Then, with approximations similar in part to those leading to equation 34,
they obtain a differential equation For the quantity 4i. The remarkable final
result is

1 — (I + K)28F(t) = —-
(2B—K)

- (36)

which by arbitrary variation of the constant K yields as special eases the form
of equation 30 with the constant altered to 5.73, equation 34, and a semi-
empirical relation proposed by Stockmayer (see Albrecht'6):

F) (1 + 2.8650 ' (37)

t We learned later that Fixman42 had already obtained the same result in a somewhat different
way.
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In the original form of the theory of Kurata, et a!.24, K is 0683: but
Yamakawa43 has

K = (3C2/B) — 2B (38)

which makes the series expansion of F(C) yield exactly the first three co-
efficients of the series in equation 18:

F(C) 1 — BC + C2C2 + 0(C3) (39)

Equation 34 reproduces the linear term of this series but equation 30 fails at the
linear term unless the constant is arbitrarily changed to force agreement26.

Quantitative assessment of the approximate functions for F(C) has been
hampered by uncertainty over the precise nature of the expansion factor cx
relating z and C. Flory and Krigbaum took it to be the value for expansion
of the mean dimensions of an isolated chain; and Markovitz and I did the
same in deriving equation 34. Later I proposed that a better expansion factor
to use would be a somewhat larger one for a cluster of two molecules22.
The idea was prompted by marginal improvement in fitting of experimental
data. But the main justification offered was apparent good agreement
between the expansion calculated for a bimolecular cluster, represented as a
cruciform branched molecule, and an apparent expansion cx obtained by
comparing equation 23 with equation 39 and bringing about agreement for
three terms by requiring

(40)

The inaccurate value of C12 available in 1959 made the coefficient of the
linear term in the expansion of ximuchlarger than a in equation 28. However,
with the correct C12 17. 24, the value 2C12/3B = 1.181 is in much better agree-
ment with a, though slightly smaller. I believe, therefore, that the original
definition of C in terms of the expansion of a single chain was the more
logical choice. Kurata, et a!.24, discuss questions of mutual consistency that
arise when a theory for c4z) is combined with a theory for F(C).

All the relations for F(C) are monotone decreasing functions of C (or of z)
and therefore predict, as experiment requires, that A2 decreases with in-
creasing M. The unmodified theories of the Flory—Krigbaum and Isihara
Koyama type give F(C) decreasing much less rapidly than do the other forms.
The quantity CF(C) is an increasing function of C for all the theories. For
equations 34, 36, and 37, it approaches a constant value at sufficiently large
C. For equation 34 in particular the asymptote is virtually attained when C
is unity. According to equation 30, CF(C) approaches proportionality with
In C at large C.

Unambiguous experimental tests of the approximate expressions for A2
are difficult to achieve owing to at least three factors: (1) experimental data
are sometimes of unknown reliability or may relate to materials of uncertain
character ; (2) quantitative differences among some of the theoretical relations
are not large ; (3) the estimation of zmay be a controversial matter. In addition
to the problems already discussed, use of intrinsic viscosity data and relations
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Figure 5. Plots as in Figure 4, but with z br experimental points corrected according to
Eichinger3t.
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among [ti], , and z to determine z in effect means that in the test of A2 data,
other approximate theories are being simultaneously evaluated.

Despite uncertainties, it seems safe to assert that unmodified treatments of
the Flory—Krigbaum type do not make A2 decrease sufficiently rapidly with
molecular weignt. One or more of the other theories usually provides a
reasonable fit to experimental data depending on what data are being
evaluated and how far one is willing to adjust parameters.

These statements are exemplified by Figures 4 and 5 in which (F(() is
plotted against (for the approximate theories and compared with Berry's
experimental values of (A2M4/x3) ((s2>o/MY/NA4n4 for polystyrene in
decalin. The theoretical functions are the same in both plots, but the abscissas
for the experimental points in Figure 4 are determined by ( from Berry's
calculation of z, and in Figure 5 from Eichinger's modified z(see reference 31,
p. 564). In Figure 4, the radically simple equation 37 (Curve S) is in excellent
agreement with the data. Equation 34 (CM) makes (F(() too small at large
z. However, by using a ( calculated with a fictitious, unrealistically large,
expansion factor x obtained by assuming (cx — ) to be proportional to the
actual (5 — x3), it is possible to bring equation 34 into agreement with the
experimental points6. The expression of Kurata, et a!., equation 36 with
K = 0, (Curve K) falls very close to Curve CM, but Yamakawa's modification
(KY) gives a curve somewhat above the data. The only change in this picture
brought about by use of the modified z in Figure 5 is that Curve KY now
appears to be preferable to Curve S. At large (, where the correction to z be-
comes important, A2M/cz3 is nearly independent of z, and the considerable
leftward translation of the points has only a minor effect on the shape of the
curve delineated by them. With either choice of z, the Flory—Krigbaum--Oro-
fino function, equation 30, makes (F(() increase far too rapidly (Curve FKO).
Changing the constant to 5.73 mitigates this behaviour but not sufficiently.

Application of approximate theories for F(() to nonlinear chain geometry
has not been extensively explored. Models of the Flory—Krigbaum type can
be used without basic change: it is only necessary to have a suitable smoothed
radial density distribution for segments of the nonlinear chain. The mechanics
of the derivation of equation 34 are the same for linear and nonlinear chains:
the same form of F(() is obtained, with 5.730 replaced by the value of 2B for
the model in question.

THE SECOND VIRIAL COEFFICIENT FOR MIXED POLYMERS
In addition to its theoretical interest, the problem of interactions between

dissimilar polymer chains has obvious practical importance because real
polymer samples are to some degree heterodisperse. The measured virial
coefficient (e.g., A2f for the osmotic-pressure equation of state) is a weighted
sum of virial coefficients for interactions of pairs of like and unlike species:

Ar=>J2AJKWJWK (41)

where Wj, Wk are weight fractions of species J and K in the solute. Thus, three
coefficients A11, A12, A22 determine the variations of ATh with composition
of a binary solute. For light scattering (provided species J and K do not
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differ chemically) the weighting factors wt in equation 41 are replaced by
MJwJMKwK/M. M denoting the weight-average molecular weight. Ob-
viously, if a general relation can be obtained for J, K pairs, the virial coefficient
can be calculated for any arbitrary distribution of species.

The perturbation treatment can be carried out for molecular pairs of unlike
species. If they differ only in molecular weight and / or in architecture
(branched chains, rings), there is but one excluded volume integral 13:and any
cross-coefficient '4JK is determined by the same parameters that determine
the virial coefficients and AKK for binary solutions. The following
discussion is limited to such chemically homogeneous species.

It is convenient to generalize equation 18 in the following way44:

= 1 — B1z1 + ... (42)

A22/A = 1 — B22z2 + . .. = I — Bz1 (43)

A12/A 1 Bz + ... (44)

where

z =&)fl
refers to polymer 1 and

-I=

denoting the molecular weight ratio M2/M1 n21n1. For definiteness we
always set > n. For two linear polymers differing only in chain length,
B12 is given by4546

B12 = —(l + c) — [(I + — — 1] (45)
3 I5

and B1 1 = B22 = 2.865. The cross-coefficient B1 2 has been calculated for
other combinations46: two regular stars with different numbers of branches
and/or molecular weights, two rings of different size, a star and a ring, a star
and a linear chain, a ring and a linear chain, a comb and a linear chain.
Certain generalizations are implied by the ensemble of results. (a) The co-
efficient B1 2 always approaches a value characteristic of the smaller member
of an interacting pair as goes to infinity (or to zero). (b) For any two mole-
cules that differ only by the scale factor r (so that B1 = B22), the condition
B1 1 < B1 2 holds. (c) For geometrically different pairs, there can be ranges of
c in which B12 is smaller than both B11 and B22 . It never happens that
(d) B12 is larger than both B11 and B22. Conditions (b), (c) and (d) require
respectively that as the second virial coefficient for a binary solute approaches
zero it changes monotonically with composition w, passes through a maxi-
mum, or passes through a minimum47. The three classes of behaviour of
A2 versus wrellect completely general statements about the AJK: a maximum
fl A means that A 12 is the largest of the three AJK a minimum, that A 12 is
the least: and no extremal point, that A 12 is intermediate between A and
A22. These relations hold both for At!!) and the virial coefficient A1 from
light scattering.
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Turning now to the approximate theories for polymers in good solvents,
we note that the Flory—Krigbaum theory is cast in a form that lends itself
to calculation of A12 The Gaussian-sphere model leads to an averaging rule
defining (12Jor linear chains36:

((12 \ — 2((1/M)4((2/M)4 46
MLM2)

—

((1/M)t + ((2/M)4

Then F((, 2) = 2/A is obtained from the original Flory—Krigbaum
function or from equation 30. A distinctive feature of this theory is the predic-
tion that if a > 4.24, the AJK fall in the order 't2 > A,1 > A22 for any
positive pair ( if none of the parameters of the theory are regarded as
adjustable. It follows that this is a sufficient condition for a maximum in
A2 as a function of w for a binary solute. At first sight this result may seem
peculiar; but it appears more ordinary when it is noted that (2>1/ cc
for a random-flight chain, and that hard spheres of unlike diameter and
specific volume proportional to the square root of their mass can interact
with A 12 > A , > A22 48—if the virial coefficients are expressed in the poly-
mer chemist's units of volumc/(weight)2.

This prediction of the Flory—Krigbaum theory has inspired a small amount
of inconclusive experimentation in search of the maximum. Reference 48
includes a summary of the earlier work of this sort. More recently, Kato,
et al.49, have reported a distinct maximum for mixtures of poly--methyl-
styrene fractions in cyclohexane.

A plot of light-scattering second virial coefficients for mixtures of two
(almost) monodisperse polystyrenes (molecular weights 5 x l0 and 38 x
10) in cis-decalin at 80°C is shown as Figure 6.50 The solid curve represents

240
x

'1

.4

w2

Figure 6. Second virial coeflicient5° (by light scattering) for mixtures of two polystyrenes
(M, = 5.01 x iO, M2 = 38.3 x lOs) in cis-decalin at 80CC versus weight-fraction content w2
of the higher molecular weight component in the solute. Solid curve for hard-sphere relation:

dashed curve derived from Flory—Krigbaum theory.
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the behaviour of hard spheres of dimensions that would yield the measured
values of A11 and A22 for the homogeneous polymers. The prominent
maximum, far outside the bounds of experimental error, is not reproduced in
the data on the mixtures. The Flory—Krigbaum function (the dotted curve)
was constrained to fit the experimental data for the homogeneous solutes:
specifically Berry's values of and e were assumed; F((1) and F((2) were
then chosen to give the experimental A1 1 and A22; ( and (2 thus fixed were
used to get (12 from equation 46; and thence F((12) and A12 were calculated.
This curve is certainly a better representation than the hard-sphere relation
although A12 may be marginally too large. The small maximum predicted
by the Flory-Krigbaum curve, even if real, would obviously be completely
obscured by experimental error. Data5° (not shown) in the same system at
lower temperatures are fitted quite well by this treatment of the Flory—
Krigbaum theory; but it must be remembered that in artificially forcing the
theory to fit at the ends of the curve, we have avoided a complete test of the
theory. A calculation of from the theory without this constraint would
not fit the data and would produce a curve with a more prominent maximum.

The main interest attaching to the perturbation calculations of B12 for
unlike chains perhaps lies in the extension to polymers in good solvents. In
a discussion of this matter, I once proposed44 that equation 34 could be
extended to unlike species by writing

A12/A [1 — exp{—2B12z1,/3}]/(2B12z1/3) (47)

with representing an averaged expansion factor applying to both members
of a binary cluster of unlike species. It can be easily verified that systematic
application of the calculations leading to equation 34 to dissimilar chains
does result in equation 47 if is introduced as the common expansion factor.
The difficulty is that it is not at all obvious how to obtain or even define .
The suggestion offered above, that for a molecule in a cluster can plausibly
be taken as that for the isolated molecule, removes this difficulty (though of
course it is arbitrary to assume that behaviour established for two like
molecules must also hold for two that are very different). But, assuming that
each chain is characterized by its expanded-random-flight parameter

= z1/a, (2
we can carry through the derivation of A12 in a way completely analogous to
that for interaction of identical molecules. For two linear chains of different
length the result is

= [1 exp —2B2(1/w3}]/(2B'12(1/w3) (48)

where w 2/1 and

16 32
B'1 2 = (1 + 120.)) [(1 + w2) — (2) — 1] (49)3 15tw

Thus, B 2 is obtained from B1 2 simply by putting i:w2 in place of :. The same
transformation can be applied to B12 for any combination of structures for
species 1 and 2.

Calculations51 with equation 49 show that this relation will not predict a
discernible maximum in A2 for ordinarily accessible ranges of : and w.
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It seems plausible to correlate the appearance of the maximum in A2 with the
degree of molecular interpenetration characteristic of the models: the rigid
sphere precluding any overlapping, the soft spheres of the Flory—Krigbaum
model allowing more, and the averaging of segment densities leading to
equation 49 representing an extreme of penetration.

THE THIRD VIRIAL COEFFICIENT
The third virial coefficient involves both binary and triple molecular

clusters:

A3 = — 33g3(1,2,3)d(l)d(2)d(3) + 4A (50)

where

g3(1,2,3) = F3(1,2,3) — F1(l)F2(2,3) — F,(2)F2(l,3) — F,(3)F2(1,2)

+ 2F,(1)F1(2)F1(3) (51)

F3(l, 2,3) denoting the triplet distribution function for three molecules. The
perturbation procedure'2 25.52 gives the first term:

A3 -NJn4f32M3(l.664)z + 0(z2) (52)

The important thing about this relation is the indication that the two-
parameter formalism requires A3 and A2 to vanish simultaneously at T =0

Comparatively, the third coefficient has not been much studied either
theoretically or experimentally. On the one hand, the mathematical diffi-
culties are unattractive and on the other, this coefficient can hardly be
extracted from data with any great accuracy. The resolution of A3 from A2
and from effects of still higher terms is a considerable challenge to the capa-
bilities of experiment.

The chief practical interest in A3 has been stimulated by the usefulness of a
relation between A3 and A2-and even a rather crude approximation may
be adequate—to aid in extrapolation of data (say TI/RTc versus c) to infinite
dilution to obtain accurate values of molecular weight and A2.

The simplest reasonable assumption is that A2 and A3 are related as for
hard spheres

A3/AM y = 4 (53)

However, this ratio depends on the 'hardness' of the molecules, with 4 the
upper limit. Long ago, W. H. Stockmayer and I devised an approximation53
based on the Flory—Krigbaum model for intermolecular interactions. Using
a fictitious potential function, for which we could easily calculate both A2
and A3, we made graphical comparisons to adjust the parameters in this
potential until it best approximated the Flory—Krigbaum potential. We
found g to increase from zero with increasing z, as expected, and to approach
4 asymptotically.
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From experience, it appears that plots of H/c versus c are not satisfactorily
linear to as high concentrations as plots of (lTI/c) versus c. Thus, it is
interesting to note that with

(54)

(fI/c) is a linear function of c, provided terms of order c2 can validly be
ignored. It has been suggested5 that this value of y be assumed routinely
with square-root plots in analysis of data to obtain M and A2. In our theory,
y is for 1.5. (The value of y that linearizes the analogous square-root
plot for light scattering is .)

More elegant approximate theories of A3 have been worked out by
Koyama54 and by Yamakawa52. The first gives practically the same result
as our theory and the second overestimates y (at least it overestimates the
upper limit by about twofold).

BRANCHED POLYMERS: UNSOLVED PROBLEMS
The foregoing discussion has revolved almost entirely about the statistical

mechanical 'two-parameter' concept. It has appeared as though a unified
treatment of the virial coefficients, the intramolecular excluded volume ellect,
and (perhaps) the intrinsic viscosity of typical coiling polymers could be
substantially achieved within this framework. The success of this general
approach is no doubt impressive if we consider only linear chains. However, a
confrontation with the extremely limited information so far available on
dilute solution properties of branched chains with precisely known structure
raises basic questions. The problems are illustrated by the data in Table 1:
a compilation of thermodynamic and conformational parameters obtained
in this laboratory55'56 on branched polystyrenes, stars and combs, in two
solvents at temperature e defined by a vanishing second virial coefficient.
The data show that dimensions of the comb molecules are abnormally large
in comparison with those predicted from random-flight statistics and the
known value of <s2>0/M for linear chains. The differences are too large to
be accounted for by uncertainty as to the precise structure and heterogeneity
of the branched samples. The value of e appears to be little affected by
branching but the decrease for star A-Si and the increase for comb A-68;4
seem to be outside errors in measurement. In all cases for which data are
available, but one, iJi is decreased by branching; and in comb A-68; 4 the
change is very large.

One's first impulse is to explain (or explain away) the data by attributing
the anomalies to local effects that arise because every branch point in a
chain is, unavoidably, a chemically foreign entity. These effects would be
specific to the chemical structure of the branch points and could not be
predicted from a general statistical theory. However, even if such local effects
were ever important, they would have to be progressively 'diluted out' as the
molecular weight is increased with the number of branches held constant—
just as end-group effects in linear chains vanish at such high molecular
weights that the anomalous groups become an inappreciable fraction of
the molecule. It is conceivable that such a dilution effect is revealed in the
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data for stars ç/i for star A-48 2 is the same as that for linear chains and this
sample has much longer branches than the other two. It is difficult to see,
however, how the comb data can be reconciled with a specific effect of branch
points it would have to be very large when less than one monomer unit in
1 700 in the entire chain, or less than one in 500in the backbone chain, is the
locus of a branch point.

The seemingly inescapable conclusion is that the data on branched
molecules are evidence of a fundamental inadequacy in the statistical treat-
ment of intramolecular and intermolecular interactions. The primary con-
formational effect of branching is to cause the domain of the branched chain
in solution to be smaller than that of the linear chain of the same mass and
thus to contain a higher average density of segments. If we recall that the
unperturbed state is one in which intersegmental attractions and repulsions
are by no means absent, even though the net effect averaged over all con-
formations vanishes, it is not difficult to imagine that a large change in mean
segment density could upset the balance of forces and result in behaviour
at variance with that of linear chains. Assuming that a branched chain might
have different statistical parameters from a linear one, we can examine
possible correlations. For example. the data in Table I suggest that the
combination /J [<s2>0y/g<s2)0jfl]2, (for branched and linear chains of
the same mass) might be approximately independent of branching. If this
is correct, it may be rationalized by considering the quantities [1 and nb to
be invariant with branching while 112 J1(which is proportional to ') decreases
in proportion as n2b4 increases. The increase in chain dimensions might be
attributed to the increased segment density; and the decrease in which
means a smaller temperature coeffcient for A2, suggests that their greater
segment density makes two branched chains interact as 'harder' molecules
than linear chains.

The data and such intuitive explanations are obviously outside the possi-
bilities for the two parameter theory, in which it is presumed that n, b, and /3
are independent of branching. Thus it is necessary to consider from a basic
point of view how the requirements of the theory can logically be relaxed.
One likely possibility might be to abandon the postulate of pairwise additivity
of segment interactions by introducing an additional temperature-dependent
excluded volume parameter /3' to account for any difference between the
interaction energy for a trio of segments and that for three pairs. A formalism
for this has been worked out by Yamakawa57 for linear chains and can very
readily be extended to branched models. In this version the perturbation
treatment leads to a series in powers of /3and /3'. The first term, corresponding
to the single-contact approximation in equation 17 is58:

A2 = NAn2[fl + (4)(5.224 — 2Cn4)(itb) 1i']/2M2 (55)

where C depends on branching (for linear chains, C = 4). With C < n, as
will usually be the case, equation 55 exhibits no appreciable effect due to
branching. If /3 and 11' vanish at the same temperature e, as Yamakawa
assumes, higher terms in the series have to vanish simultaneously in such
fashion that the temperature dependence of A2 at T = @ cannot be affected
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by branching. Consequently this approach does not account for the thermo-
dynamic behaviour of branched chains; and the fact that only the usual
segment length b0 appears in the theory assures that the anomalies in mole-
cular dimensions remain unexplained.

In a somewhat similar spirit one might introduce concentration-dependent
potentials of average force between segments59. The view attributing the
anomalous effects of chain-branching to the intermolecular segment con-
centration prompts such an approach, but this possibility has not been
explored.

A quite different attack on the problem of branched chains is implicit in a
paper by Vrij6° on the conformation of linear chains. Vrij's argument,
which follows a derivation of Debye61, is based on the idea that the total
free energy of a chain conformation must include contributions from gradients
of segment density in the chain domain. The procedure, slightly modified62,
is as follows. A segment i, at a point denoted by r drawn from the origin of
coordinates, is picked as a reference point; its total potential 4, is taken as the
sum of pairwise interactions with every other segment in the chain. Each
pair interaction is governed by the potential of average force u(s), a function
of the distance s from segment i. The number-density of segments, p(r + s),
is expanded in Taylor's series about the locus of segment i. Multiplication of
the series by u(s) and integration over space gives a series expression of' 4.
Another integration, to sum , over all i, gives the total free energy e of a
conformation defined by the segment density function p(r):

LLT J[P(r)]2dr
+ i_ JP(r)V2P(r)dr + ... (56)

where

/3"kT = 4ms2u(s)ds (57)

and

4irs'u(s)ds (58)

The derivation of equation 56 is quite general, assuming only additivity of
segment pair interactions. It can obviously be extended to an expression for
the free energy of a bimolecular cluster. Equally obviously, equation 56 does
not of itself provide definite results; but it does have important implications.
It contains two 'exclusion' parameters /3" and /3" that will not vanish at the
same temperature, except in the special case that u(s) vanishes for all s; and
both are multiplied by integrals over chain conformation that depend on
molecular weight and branching. Since /3" and /3" can hardly enter in the
same way into expressions for intramolecular and intermolecular interactions,
the temperature at which the unperturbed chain size is attained need not
correspond to that for which the second virial coefficient vanishes; and both
temperatures may depend on molecular weight and branching.

With the Gaussian-sphere model for a linear polymer chain, equation 56
leads to modifications of Flory's well known theory of chain expansion5
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(that which gives — z) and of the Flory-Krigbaum theory of the second
virial coefficient. Using these theories, and making a surmise about the
magnitude of fi", Vrij concludes that in ordinary systems the temperature
at which A2 vanishes is not sensibly affected (so that (9need not be redefined)
but that unperturbed chain dimensions might he attained only at a tempera-
ture measurably below 6, except at very high molecular weight where the
effect of fl" vanishes. Whether such an essentially minor correction to a
treatment already based on a highly simplified molecular model can have any
quantitative significance may be open to question but it is elementary to
show that if it is real for a linear chain, the effect will be greater in a branched
chain of the same molecular weight: at T = 6, the branched molecule will
be more expanded than the linear one62.

We note that fl' is a first-order approximation to the excluded volume
integral fi. obtained by expanding exp —u(s)/kT} (see equation II) and that
the second term in equation 56 denotes an excess interaction energy over
that obtained by assuming that the local energy density is proportional to
the square of the local segment density. The last assumption, common to
the various smoothed-distribution models5' discussed above, is equivalent
to the description of the intersegmental interaction in terms ofa delta function,
as in equation 13. Equation 56, therefore, represents a break with the two-
parameter treatments through a relaxation of the strict requirement of
short-range interaction. The formalism is not in question, but it remains
highly uncertain whether a physically appreciable effect can be accounted
for in this fashion.

Berry56 has studied some of the polymers listed in Table 1 in good solvents
(decalin at T > 9 in toluene). I shall not repeat the analysis here but merely
note that branching is found to increase cx and to decrease A2 in the sense
predicted from random-flight calculations despite the anomalies in the
values of the parameters obtained at (9.For instance, as with an unbranched
chain, A2 remains proportional to cx — 1 as both A2 and cx are varied by
changing the temperature: and to a fair approximation the proportionality
factor depends on branching in the way predicted by eliminating z between
perturbation expansions for A2 and cx2, and retaining only the initial depen-
dence on — I. Further, the magnitudes of A2 in good solvents can be
reasonably correlated, granting some problematical assumptions, by com-
bining /i and <S2>0 obtained at (9with approximate expressions of' the form
of equation 34 but containing the theoretical values of B for the branched
models.

CONCLUSION

I have tried in the foregoing discussion to review succinctly the theoretical
basis of' our present understanding of thermodynamic interactions of flexible-
chain polymers in dilute solution and to give some indication of the results
of' experiment. I have purposely emphasized questions specifically pertinent
to the statistical description of chain conformations and have passed over
matters of' importance less directly related to this. For example, the inter-
segmental excluded-volume integral fi appears throughout: but it is treated
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as a parameter to be obtained by independent means, rather than a quantity
whose absolute magnitude is to be deduced from physical principles as part
of the theory. Conceptually, the last objective can be viewed as belonging
to a general theory of fluids, rather than something specific to polymer
molecules.

That I have intended the comparisons with experiment to be merely
illustrative rather than definitive is my only defence for referring almost
exclusively to studies from my own institution. A useful critical analysis
of all the relevant experimental literature would require a review far beyond
the scope of this one. I think it fair to say, however, that the thermodynamic
and molecular-size data for linear polystyrene are as extensive and as
reliable as any other available for a particlar polymer—solvent system and
that recent work from other laboratories serves to confirm the results as
correctly representative for ordinary, nonpolar, freely coiling, polymer
chains—even though points of interpretation may remain in dispute. As
much cannot be said for the behaviour of branched polystyrene documented
in Table I; for the effects of branching on the thermodynamic parameters as
reported in some other studies63 are in certain respects quite different.
In the present state of knowledge it seems bootless to speculate on
these discrepancies; reasonable explanations will have to awa:t more
extensive and definitive measurements on materials of precisely defined
structure.

The challenging questions prompted by the results on branched polymers
should stimulate such further studies. In principle, if local segment-concentra-
tion efiects within a chain domain cause the two-parameter concept to fail
for branched chains, it cannot logically be maintained for linear chains. If
anomalies are not revealed with linear chains, the reason may just be the
circumstance that in a homologous series of linear molecules at a given
temperature, molecular weight and segment concentration within the chain
domain are not independent variables (and, practically, any change in
segment concentration achievable through variation of chain expansion
with temperature and solvent is quite limited). Admission of branching as
a chain parameter permits radical changes in segment concentration to be
made without changing the overall size of the chain domain or the 'goodness'
of the solvent. Studies of branched chains should thus permit searching tests
of the basic theoretical ideas. Whether elucidation of the behaviour of
branched chains will force revisions in the interpretation of observed properties
of linear chains remains to be seen. It has already been suggested that
measurements of interactions between chains of different length may provide
valuable criteria for evaluating approximate theories for the second virial
coefficient. It is conceivable that data on such binary solutes or on mixtures
of linear and highly branched species might also throw additional light on
the more fundamental question of the two-parameter formalism.

In closing, I think it appropriate to call attention to an important new
book. Professor Yamakawa's Modern Theory of Polymer Solutions, which
came to hand as this text was being completed64. It provides a comprehensive
account of the two-parameter approach to intramolecular and intermolecular
interactions, and thence to thermodynamic, configurational, and frictional
properties in dilute solutions.
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