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ABSTRACT
The concepts underlying the writer's new theory of solutions are briefly

described and related to concepts previously used by him and others. Equa-
tions are given for the concentration dependence of the enthalpy and entropy
contributions to the interaction parameter x for the special case of a mono-
tonic solvent. The entropy contributions are of two kinds: (1) an orientational
and vibrational randomness contribution and (2) a contribution correcting the
combinatorial entropy for nonrandomness of mixing. Solutions of polyiso-
hutylene in cyclohexane and in benzene are considered as examples. The
parameters obtained for these solutions and for rubber benzene and poly-
(propylene oxide}-carbon tetrachloride are compared and interpreted in

terms of molecular and intermolecular properties.

INTRODUCTION
For several years the writer has been working on a new theoretical treat-

ment of liquids, including solutions1 8 based largely on concepts he has
previously used in dealing with polymer solutions9 18, Some of these con-
cepts have also been used by others; references will be given as each such
concept is introduced.

Since the theory is still in the process of development and refinement, this
paper should be considered merely a progress report. It deals specifically
with solutions of polymers in solvents of low molecular weight.

The thermodynamic properties of polymer solutions have customarily
been treated with the aid of the Flory—Huggins equation" 12, 19, which
may be written:

= lna, = ln4i, + (1 — V1/V2)Ø2+ xø (1)
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Here.

is the partial molal Gibbs free energy of the solvent
a1 is the activity of the low-molecular solvent

and 2 are volume fractions of the components
V fr2 is the ratio of their partial molal volumes, practically equal to the

ratio of the molal volumes of the pure components
y is an interaction parameter, approaching constancy as the concen-

tration approaches infinite dilution.

Throughout this paper, components 1 and 2 are solvent and polymer,
respectively.

Theoretically, x would be expected to be concentration-dependent in
general, except for very dilute solutions, and there is ample experimental
evidence to show that actually it is often far from constant. One of the aims
of the new theory is to provide a reliable basis for estimating the concen-
tration dependence.

Another aim of the new treatment is to provide a better understanding
of the compositional and structural factors determining the magnitude of
y and its concentration and temperature dependence. Although the writer
has dealt with this problem previously in a qualitative and semiquantitative
way'3'8, most researchers measuring or using xhave treated it as an empiri-
cal parameter, to be determined experimentally for each system of interest.

A third aim of the theory is to provide equations and procedures for
deducing the parameters needed to describe the thermodynamic properties
of polymer solutions from measurements on substances of low molecular
weight and their mixtures. Moreover, since the parameters can reasonably
be expected to be functions of the properties of the chemical groups in the
polymer and solvent molecules and of the interactions between these groups,
the theory aims to relate the polymer solution parameters to parameters
characterizing the properties of the groups and their interactions.

The thermodynamic properties of interest (solubilities, vapour pressures,
etc.) all depend in known ways on the Gibbs free energy, G. Because of the
fundamental thermodynamic relation

G=H—TS (2)

these properties thus depend on the enthalpy (H) and the entropy (S). Of
greatest interest are the changes in G, H and S as two or more components
are mixed to form a solution.
Since

AH=AE+PAV (3)

and PAy is negligible relative to AE, we may write, with little error,

AG = AH — TAS = — TAS (4)

To arrive at a theory for AG it is convenient to develop theoretical expres-
sions for AE and AS separately and then to combine them according to this
eq uat ion.
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THEORY OF THE ENTHALPY OF MIXING AND x'5'7
A liquid is assumed to behave thermodynamically as if its molecules

were each composed of one or more chemically uniform groups or seg-
ments, with these segments having 'surfaces' in mutual contact. For each
type of segment (, fi) the average contacting segment surface area (cr, o-)
is assumed to be constant at a given temperature. The relative total contact
areas for the different types are assumed to be governed by equilibrium
constants. This minimizes the free energy. If there are only two types of
segment, hence three types of contact,

K= (5)
4a app

The treatment of molecules composed of groups (segments) that are
chemically different in terms of group properties and interactions is an
obvious improvement over treatments in terms of the properties and inter-
actions of whole molecules. Probably Langmuir2° was the first to use the
group approach, but many others have followed2 t30 Deal and Derr3°
have given a good summary of most of the earlier work.

Langmuir20, l3utler21'22, Staverman31, and others have dealt with
molecular and segment surfaces and the energies associated with surface
contacts, in calculating cohesive energies and related properties. This would
appear to be an improvement over the Scatchard32 Hildebrand33 use of
energies per unit volume. Since, for steric reasons, some of the segment
surfaces cannot be in contact with others, it is better to use only the (average)
segment surface of each type that makes contact with other surfaces. Lang-
muir, Butler, and Staverman, in effect, did this, Actually, only the ratios of
pairs of contacting segment surface areas are involved in properties such
as the enthalpy of mixing, as will be shown, and these ratios are readily
deduced from the experimental data. It is unnecessary to estimate surface
areas from molecular volumes or molecular models. The writer has found
that in some cases the experimental contacting surface area ratios are quite
different from the estimated total surface area ratios.

The assumption that the average contacting segment surface area is
constant seems to be reasonable as an approximation, except when the
contact energy per unit area for one or more of the contact types is very
small. For such a case, one would expect some concentration dependence
of the average fraction of segment surface area that makes contact with
other segment surfaces.

The commonly used, but often far from accurate, geometric mean assump-
tion for the interaction energy for contacts between unlike molecules or
segments is avoided in this theory. The relative energy values for different
contact types are simply deduced (at least for simple systems) from experi-
mental enthalpy of mixing data.

The use of equilibrium constants to relate the contact areas of the different
types is logically reasonable and certainly much better than the assumption
of random mixing of molecular or segment contacts, whenever the contact
energies for the different types differ much. In this respect the present
theory resembles the quasi-chemical treatments of Guggenheim34 and
Barker24.
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It will be noted that the assumptions mitioned do not directly involve
pressure, temperature, or volume. Unlike the theory of Prigogine35 and
the recent theory of Flory36, this is not an 'equation-of-state' theory. The
dependence of volume and of the fundamental parameters mentioned
above on temperature and pressure is now being studied. If further com-
parisons with experimental data show sufficiently good agreement, the new
theory developed for these relationships will be reported. For the present,
it need only be said that an equation-of-state treatment for solutions, that
treats the volume changes on mixing (which result largely from the changes
in types of intermolecular or intersegment contact) like the volume changes
of the pure liquids on raising the temperature, seems to the writer very
unrealistic.

From the assumptions stated at the start of this section, one can readily
deduce equations for the excess energy (or enthalpy) of a solution in terms
of segment and intersegment parameters and an equilibrium constant or
constants. Xh' the enthalpy cart of the interaction parameter, is related to the
excess enthalpy per mole (HE) by the equation:

1 /E\Xh = 1)N2 (6)

where N1 and N2 are numbers of solvent and solute molecules, respectively.
Applying this relationship, one obtains, for a ditonic solution, containing
only two kinds of segments:

__p_(.Iii____\ (7)ih — RT l + zzflK'gK/2)
where

(8)

z and z are contacting surface fractions, related to volume fractions by
the equations

= — (r/r1.) 4 -- (9)1 + (ra/rr — 1) 2
and

=
-___ [1

— (1 + K'zzfl)1] (10)

In these equations CA measures the change in energy when contacts
between like segment surfaces are exchanged for contacts between unlike
segment surfaces; ra is the ratio of the contacting surface area of a segment
of the fi type to that of a segment of the cx type; r,, is the ratio of the segment
volumes of the two types; and K is the equilibrium constant, determining
the relative areas of contact of the three types (see equation 5).

The three parameters (, r, K) can be determined from good heat of
mixing data for a polymer-solvent system or from data on other solutions
(not necessarily polymer solutions) containing the same segment types.
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THEORY OF THE ENTROPY OF MIXiNG6 AND x
The molal entropy change on perfectly random mixing of two types of

equal sized molecules is

AS% = — R(x1lnx1 + x2lnx2) (11)

a result which, if the heat of mixing is zero, leads to Raoult's law. If the
molecules are of unequal size,

ASM = — R(x1 in 4 + x2 In 42) (12)

For perfectly random mixing, the excess entropy of mixing resulting from
the size difference is

SASM_AS= —R[x1ln(41/x1)+x2ln(42/x2)] (13)

If the equilibrium constant K is not 1, the mixing is not perfectly random.
The probability that a segment of one type contacts another segment of the
same type is not equal to the probability that it eontacts a segment of the
other type, even when the numbers of the two types are equal. The writer
has deduced an equation for the departure of the combinatorial entropy
from what it would be for perfectly random mixing and from this he has
obtained the combinatorial entropy correction to X:

—c[1 (i-_zflgKXS,CC = 42

+ ( Zp — 2z — ln (t + 1 — (14)
+ KzzflgK/2 / \, ;z,gjj

The parameters involved are r and K, which can be obtained from the
heat of mixing or the excess volume of mixing, and cr, which is a measure
of the average segment surface, area that acts independently in contacting
other segment surfaces. It does not now appear possible to deduce the
magnitude of the last parameter theoretically, but perhaps after it has been
determined empirically for a sufficient number of solutions it will become
possible to estimate it for others.

Part of the entropy of a liquid is related to the vibrations and oscillations
of the molecules and of their parts. Also, for nonrigid molecules (such as
most polymers), there is an entropy contribution related to the randomness
of orientation of the rigid segments relative to their neighbours. These
contributions to the total entropy must change as the environments of
the molecules and segments change, hence as the concentration of a solution
changes. Making the simplest approximation—that there is a straight-line
relation between the randomness and the average fraction of the contacting
surface area of a segment that makes contact with a surface of the same
kind—equations have been derived for the excess 'orientational randomness'
entropy, , and the corresponding contribution to the interaction para-
meter, Xsor• It seems reasonable to assume that these equations apply,
not only to the segment orientational randomness entropy, but also to
other vibrational and orientational entropy contributions that depend on
close-neighbour environment.
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The equation for Xs,or iS

—kzfl [ ZpZ
Xs,or 2 —j ( )

rff 2 (1 + k;g) L1 + K ZZfl)

In addition to the K' (or K) and r0 parameters, there is a new one, k, related
to the total randomness change when the neighbours contacting an average
segment change from all solvent to all polymer. This parameter can at
present only be determined empirically. Later, however, it may become
possible to estimate it from the molecular compositions and structures.
Alternatively, it may become possible to deduce k from measurements
on solutions containing appropriately related low-molecular chain com-
pounds.

If there are no other contributions to the excess entropy,

+ S +. (16)

Xs X.c.cc + Xs.or (17)

X=Xh+Xs (18)

APPLICATIONS TO SPECIFIC SYSTEMS

It is desirable to test both (1) the degree of agreement between the theo-
retical equations and experimentally derived values of and its components,
and (2) the applicability to polymer solutions of parameters deduced from
solutions containing only molecules of low molecular weight. The second
kind of test cannot yet be made, since the necessary parameters from low-
molecular systems have not yet been evaluated. There are suitable data for
a few polymer solutions, however, to permit appropriate tests of the first
class to be made. Results for the rubber—benzene4 and poly(ethylene
oxide)—carbon tetrachloride6 systems have already been reported. Two
more systems will now be discussed. As before, each will be treated as a
ditonic system, each solvent molecule being considered a segment of one
kind (cx) and each polymer mer (base unit) being considered a segment of
another kind (fi).

Polyisobutylene-cyclohexane

Data have been published for the heat of mixing at low polymer concen-
trations and for activities over the whole range of concentrations. From these
data, Xh and x can be calculated.

The heat of mixing is negative and very small. Two measurements by
Watlers, Daoust and Rinfret37 lead to values of of —0.017 and — 0.028.
Measurements by Delmas, Patterson and Somcynsky38 lead to =
— 0.024. All are for 25°C.

Figure 1 shows points for these results and for x values calculated from
vapour sorption data at 25° by Eichinger and Flory39, vapour pressure data
at 25° by Bawn and Patel40, and osmotic pressure data at 30° by Flory and
Daoust4t.

Der Minassian and Magat42 have also made vapour pressure measure-
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ments, at 15° and 500, from which they have deduced average values of x
of0.48 and 0.42, respectively. Their individual data points, presented graphi-
cally only, show a gradual trend, with x decreasing, at 15, from about 0.51
at 42 0.3 to about 0.45 at 42 = 08.

The data by Flory and coworkers39' 41,plotted in Figure 1, seem the most
reliable. For comparison with their vapour sorption data at 25°, perhaps
the osmotic pressure values (at 30°) should all be increased by about 0.01,
but for the present this will be neglected.

05 +
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Oo..__....... • + o,or

X 04 +
. -. —'+Uj - x

03-
E

02

01- -

-
X/,

-0.1 -

-02
0 02 0.4 06 08 1.0
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Figure 1. The interaction parameter and its components for polyisobutylene—cyclohexane
solutions. The curves are theoretical, for r, = 0.505, K' = 0, e,5 = — 18.4 cal mol 1, k = — 0.222.

Data points for Xh Data points for x:
• Delmas, Patterson, Somcynsky38 (250) 0 Flory and Daoust4' (300)
o Watters, Daoust, Rinfret37 (25°) • Eichinger and FIory39 (25°)

+ Bawn and Pate!4° (25°)

The very low heats of mixing indicate random mixing of the contacts,
hence K = 1, K' = 0 and x = 0.

There are three parameters to be determined from these data: e., k and
ra. They can be computed, using the equations given, from three data
points. Assuming Xh = —0.025 at 'P2 = 0, x = 0.429 at 'P2 0, and x =
0.414 at 42 = 0.70, one obtains e. = — 18.4, k, = —0.222, and r = 0.505.
The curves in Figure 1 (practically straight lines) for Xh' Xs Xs,or' and their
sum, , were drawn to conform to these parameters.

The results for this system illustrate the important contribution made to
x (and hence to the Gibbs free energy of mixing) by the entropy of orienta-
tional and vibrational randomness, which has often been neglected in
solution theories.

A rough check on the r, parameter can be obtained from measurements,
by Eichinger and Flory39, of the excess volumes of mixing at 250, for three
concentrations. The writer has shown43 that, if the distribution of the three
types of intersegment contact is determined by the equilibrium constant K,
the excess volume should depend on concentration according to an equation
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like that deduced for the excess enthalpy, except for replacement of the
parameter by v. This equation may be put in the form

which, if K' 0, reduces to

0
F

E
0

D

= vx1zpgK (19)

7rx1x2\
(20)

+ rx2J
The i'. values calculated from Eichinger and Flory's three data points,

using this relation with r, = 0.505, are —0.92, —0.86 and —0.89 cm3 mol 1
Figure 2 shows that the curve for the average parameter, —0.89, fits the

reported data fairly well.

—005

-010

-015
0 02 0 06 08 in

x-

Figure 2. Excess volume of mixing for polyisobutylene—cyclohexane solutions. The curve is
theoretical, for r = 0505, K' = 0, iA = —0.(9 cm3 mol '. Data points from Eichinger and
Flory39 (25). The straight line (dashed) shows the limiting slope, as deduced from data by

Cuniberti and Bianchi44 at 30".

A further approximate check is obtained from the value of the limiting
slope of the V' vs. x2 curve, for which Cuniberti and Bianchi44 give the
value —0.46 at 30°. The dashed curve in Figure 2 has this slope. Differen-
tiating equation 19 gives

(——- )
= (21)

\UX2 ,'x,O
From this, if r = 0.505, VA = —0.91. The V' curve for these parameters is
just slightly below that shown in the figure, the difference being less than
0.003 at all concentrations.

Polyisobutylene—benzene
Heats of mixing for this system are much larger than for the polytso-

butylene—cyclohexane system; it is not justifiable to assume K = 1, requiring
random mixing of the contacts. There are no or W data adequate to
determine the shapes of the curves showing their dependence on concen-
tration, from which r, and K' could be derived. The first of these parameters,
however, can be deduced from r for the polyisobutylene--cyclohexane and
benzene—cyclohexane systems, since

aPIB aIBaH
r,PIHIB = _ = = r,,Jfl/(JJ r7CH/B (22)

aB GCH 7B
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r0,1 has been previously determined3, from W data by Diaz Pefla and
Martin45, as 1.112; rg,PIBICII has been estimated (see above) as 0.505; hence
r0P!B/B 0.562.

Eichinger and Flory46 give x2 (designated K1 by them) as 0.28, from
measurements by Krigbaum and Flory47. Watters, Daoust and Rinfret37
give heat of mixing data at low polymer concentrations. Plotting these
against mole fraction yields a straight line, having a slope of 260 cal (Figure 3).

Figure 3. Excess enthalpy of mixing for polyisobutylene—benzene solutions at 25°. Data by
Watters, Daoust and Rinfret37. The slope corresponds to r, = 0.562, s = 463 cal mo!

According to the present theory, this slope is given by the equation

(dW

Hence, c = 260/0.562 = 463 cal.
From equation 7, the enthalpy contribution to the interaction parameter,

atØ2 = 0, isdeducedto be
2re=

KRTr2
where r is the ratio of the mer volumes, in this case equal to 0.685. With all
the other quantities known, K is computed to be 1.88, from which, by equa-
tion 8, K' = — 1.87.

All the needed parameters have now been evaluated. Using them, equations
7, 9 and 10 give the concentration dependence of Xh The curve obtained
(Figure 4) agrees with the measurements of Eichinger and Flory46 within the
large error limits given by them, as represented by the vertical lines through
the data points in the figure.

x values from high pressure osmometry by Flory and Daoust41 (24.5°)
and by Eichinger and Flory46 (25°), and from vapour pressure data by
Eichinger and Flory (25°), by Bawn and PateI4° (25°), and by Jessup48
(26.9°) are also shown in Figure 4. From the Flory and Daoust measurements,

= 0.50, and from the Jessup and Eichinger and Flory measurements
253
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= 0.694. From these x values one can calculate the two remaining
parameters: = 8.99. needed for and k = —0.03, needed for Xs,or

The curves for x and its components, calculated from these parameters,
are shown in Figure 4. They are in reasonable agreement with the experi-
mental data points, except for some departures at high polymer concentra-
tions. Similar departures were found for the poly(propylene oxide)- carbon
tetrachloride system. Eichinger and Flory state: 'The values of x for concen-
trations tfr2 > 0.5 are subject to greater uncertainties than those at lower
concentrations.' On the other hand, the differences between the theoretical
curves and the experimental data points may be due to departures from the
assumptions of the theory or to inaccuracy of the parameter estimates.

Figure 4. y and its components for
O Krigbaum and Flory47

Eichinger and Flory'"'
Data points for y:

•Flory and Daoust41 (24.Sr)
o Eichinger and Flory46 (25)
o Jessu p48 (26.9)
+ Bawn and Patel4° (25r)

C)

F

0

02
x

x

A

or

Xs,c r

0 02 04 06 0.8

polyisobutylene henzene solutions. Data points for Xh:
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Eichinger and Flory46 have reported three measurements of the excess
volume of mixing. Assuming r0 = 0.562 and K' = — 1.87, the average of
the three VA values, calculated by equation 19, is 1.407. The dependence of
yE on concentration, using these parameters, is shown by the upper curve
in Figure 5. The experimental points fall reasonably close to the curve.

0
E

E
C,

1.0

Figure 5. Excess volume of mixing for polyisobutylene—benzene solutions. Data points from
Eichinger and Flory46 (24.5°).

Theoretical curve for r,, 0.56, K' = — 1,87, VA = 1.407
Theoretical curve for r,, = 0.56, K' = — 1.87, tA = 0.96

The lower (dashed) curve in this figure is drawn for the same r0 and K'
values, but with VA = 0.96, required to give agreement with Cuniberti and
Bianchi's44 value of 0.54 for (drE/dx2),.,o at 30°. The disagreement between
this curve and Eichinger and Flory's 24.5° data points may be due to in-
accuracy of the assumed r and K' parameters or of the experimental data
or to temperature dependence of the parameters or the measured properties.

DISCUSSION OF THE PARAMETERS
Table 1 compares the parameters (rounded) for the two systems dealt

with in this paper, together with those previously reported for two other
polymer—solvent systems.

For a close-packed arrangement of contacting spherical molecules, the
molecular surface area is proportional to the two-thirds power of the
molecular volume. For close-packing of rodlike molecules, the molecular
surface area is approximately proportional to the first power of the mole-
cular volume. For other shapes and other arrangements and especially
for mixtures, the relationships are more complicated. Comparing the ratios,
r, of the contacting mer surface areas, for the four polymer—solvent systems
here considered, with the ratios, r, of their mer volumes, it is seen (Figure 6)
that r is roughly proportional both' to r,, and to r. It appears likely that it
will be possible to estimate approximate r0 values from r values (hence from
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Table 1. Parameters (rounded)

Temp. A3
Components r, r, K K cal cm

molt mol'

Rubber—benzene4'5 25 0.74 0.908 — 1.40 J•54* 268* 5.0 —0.05 0.32

Poly(propylene 5.5 0.54 0.609 0 1 —500 —0.36 1.12

Polyisobutylene 25 0.51 0.563 0 1 — 18 —0.22 —0.9
-cyclohexane

Polyisobutylene 25 0.56 0.685 - 1.87 1.88 463 9.0 —0.03 1,41
benzene

* As a result ol copying errors. K and ; or rubber beniene were incorrectly given as 074 and 2.68 in reis. 4 and 5.

the densities of the pure components), at least when these ratios are known
for systems having components of similar (mer) shapes.

As can be seen from equation 5, K measures the relative tendencies to
form unlike and like contacts between the components. For the poly(propy-
lene oxide)—carbon tetrachloride and the polyisobutylene—cyclohexane
systems the two types of contact are approximately equally likely: the
relative numbers of unit contacts of the three types are as they would be for
perfect randomness. For the other two systems, however, there is some
preference for polymer—solvent contacts, rather than polymer—polymer
and solvent—solvent contacts.

The parameter r is defined4 by the equation
— — ) (25)

where , and represent energies per unit contact area. (The 's are
all negative, since the energies are attractions.) The positive A values found

or213 or
Fiqure 6. r plotted against rv(•) and against r(O) for four polymer solvent systems. Data

from Table' 1.
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for the rubber—benzene and polyisobutylene—benzene systems thus mean
that the attraction energy per unit contact area is greater for like contacts
than for unlike contacts. For the other systems the opposite relation holds.
Obviously there is no parallelism, in these systems, between the relative
attraction energies and the relative probabilities of contact. This is because
of the large difference between the entropies of mixing in the different
systems.

The cr values are determined from the corrections to the entropy of mixing
measuring the randomness of placing the molecules in the total volume, for
systems in which K is not equal to unity. cr = 5 (or 9) means that the ran-
domness of making intersegment contacts is the same as it would be for a
hypothetical system in which, on the average, each segment makes 5 (or 9)
contacts, these contacts all being made independently, without mutually
influencing each other. The numbers, 5 and 9, appear reasonable. (They
need not be integers.) The maximum number of contacts for a regular
assemblage of spheres of uniform size is 12. The type of contact at each site
would be expected to be influenced somewhat by the types of contact at
neighbouring sites (see ref. 18, p. 3536), thus decreasing the number of
contacts in the equivalent hypothetical system containing only independent
contacts. a can be considered to be determined in part by the segment
geometries and in part by the degree to which contact types are affected by
the types of neighbouring contacts.

The parameter k is related to the average changes in orientational and
vibrational randomness (v) for the component segments (here, solvent
molecules and polymer mers) as the concentration changes. Mathematically
expressed,

= l,x2*O 1 + 2x7O —
(26)

v1x2_+1 v2x7_,1

k is thus minus (the fractional change in orientational and vibrational
randomness per segment of type 1 plus the same per segment of type 2, as
x2 changes from 1 to 0). For solutions of flexible polymers, the randomness
to be considered is probably chiefly that of the orientation of the rigid
segment in the polymer molecules relative to neighbouring segments. Note
that it is not the magnitude of this randomness related to the flexibility, but
the change in its magnitude as the segment environment changes. It should
also be noted that the theoretical equations were derived on the assumption
of a straight-line relationship between this change and the average composi-
tion of the shell of contacting neighbours around each segment. Departures
from the assumed straight Aine relationship might well cause disagreement,
especially at high polymer concentration, between the experimental Gibbs
free energies (or the x values) and those predicted from the theoretical equa-
tions.

It seems premature to discuss further the relative magnitudes of the k
values deduced for these systems.

The parameter vs is defined by the equation

= -aAv = fc(2v — v —
vM) (27)
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(compare equation 25). The positive i' values found for the rubber heni.ene
and polyisohutvlene henzene systems mean that a contact between like
segments contributes more to the total volume than the average contribu-
tions of contacts between like segments. For the other two systems. having
negative i' values, the reverse relationship holds. The magnitudes of these
contributions, and so of i's, must he related in a complicated way to the
geometries of the molecules. Further discussion does not seem warranted
at this time.

SUMMARY AND CONCLUSION
For the two polymersolvent systems discussed in detail here, the theoreti-

cal equations appear to he applicable, giving good agreement with the
available experimental data, except for some departures at high polymer
concentrations for the polyisobutylene heniene system. Similar results
have been previously reported for two other systems.

The parameters obtained for these four systems have been interpreted
in terms of molecular and intermolecular properties. It is to be expected
that, as parameters for more systenis become available, more precise inter-
pretations can be made and, hopefully, predictions of parameters for new
systems will become possible.
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