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ABSTRACT
7Li and 23Na relaxation times in aqueous solution of Li and Na in the
presence of an increasing amount of Mn2 are reported. From these measure-
ments the cation—cation pair distribution function has been calculated. A
distance of approach between Li + (orNa ) and Mn2 + of 4.5 A has been found.

The intermolecular proton relaxation rates of the acids CH3COOD,
CH3CD2COOD, and CD3 CH2COOD dissolved in water (D20) are presented
and from these data simple acid—acid pair distribution functions are constructed.
Association has been detected from excess intermolecular proton—proton
interactions. In the solution of propionic acid the association is stronger as
seen from the methylene group than from the methyl group.

In the pure alcohols CD3OH and C2D5OH and their mixtures with inert
solvents intermolecular proton relaxation is entirely of rotational character and
permits conclusions concerning the depth of the potential characterizing the
pair distribution function.

1. INTRODUCTION
Usually the total relaxation rate 1/T1 of a nucleus is separated into two

contributions

()intra + () (1)

The intramolecular relaxation rate, (l/Ti)intra is caused by the interaction
of the relaxing nucleus with the nuclei and the electrons of the same molecule
in which the nucleus resides. The intermolecular relaxation rate, (uT1)inter'
is due to the interaction of the nucleus considered with all other nuclei and
electrons of the system. In this paper the 'system' will be a liquid in all cases.
Equation 1 is not without problems: rigorously, equation 1 in itself implies
a definition of the concept 'molecule' which may be different from the usual
concept 'molecule' as used by the chemist. Indeed, the distinction between the
first and second term of equation 1 is the existence and nonexistence of
correlated motion of the various sources of relaxation producing interactions
around the reference nucleus for relatively short times—down to 10_b s.
We shall however not adopt this refined point of view, rather we shall follow
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the usual way and define the borderline between intra- and intermolecular
contribution as given by the geometry of ordinary chemical molecules. Only
magnetic dipole—dipole interactiOn will be considered in the present article
as the relaxation producing mechanism. Quadrupole interaction and scalar
interaction may also be of importance but details cannot be described here
due to the limited space. Relaxation by spin-rotation interaction and aniso-
tropic chemical shift are typical intramolecular processes.

The other quantity we are interested in is the molecular pair distribution
function which we denote as p(r0). We understand this function in the sense,
that dp is the probability of finding a specified molecule (or nucleus) in dr0
at r0 relative to the reference nucleus selected at random, i.e. dp =p(r0) dr0.
The normalization of p(r0) is chosen to be

1 = J p(r0) dr0
where the integral is extended over the entire system, i.e. the liquid. Then the
intermolecular relaxation rate caused by magnetic dipole—dipole interaction
and the pair distribution function are interrelated in the following way1:
the intermolecular relaxation rate is a linear combination of a number of
spectral intensities J(c01), J(c02), J(co3)

() = yh2{aJ(co1) + bJ(co2) + cJ(Co3)} (2)
1 inter

a, b, and c being constants given by the theory and

(01 = — (LOs

(02 = COJ

0)3 +
where w and w are the nuclear magnetic resonance frequencies of the
relaxing nucleus and that of the interaction partner, respectively (in the case
of like spins w1 = w, a = 0). J(co) is the Fourier transform of the time
correlation function

g(t) = .iV'32' (3)

J(co) = g(t) e — i)t dt. (4)

For g(t) we write:

g(t) =
J

) Y(O0,
p(r0) P(r0, r, t) dr0 dr. (5)

yrn*(9 q5) is the spherical harmonic of order 2. On the left hand side of equa-
tions 3 and 5 the superscript m is dropped which indicates that for the isotropic
system to be treated here g(t) does not depend on m. 9 and sr/i are the polar and
azimuthal angles of the vector r relative to the laboratory system, the z
direction being given by the magnetic field. r = { 0,, r), r connects the
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reference nucleus with another particle which is the interaction partner.
Both particles undergo diffusion relative to one another, thus r = {0(t), 1(t),
r(t)}. 0, 4 and r0 stand for r = {0(O), 4(O), r(O)}. P(r0, r, t), the propagator,
determines

dP = P(r0, r, t) dr,

the probability that a particle is in dr at r relative to the reference nucleus at
time t if we know that it was at r0 at time 0. The number A"which appears in
equations 3 and 5 is the number of magnetic dipoles present in the system,
e.g. for 1 mole water iV = 2.6 x 1023. The fact that g(t) is written as a sum
of jV"self-correlation' terms implies that all cross-correlation terms between
different particles are neglected.

The function P(r0, r, t) generally is not known precisely. Very often
P(r0, r, t) is approximated by the solution of the translational diffusion
equation. Use of jump-models for the derivation of P(r0, r, t) is another
possibility2.

Equation 5 contains the quantity we are interested in, namely the pair
distribution function p(r0). In principle one has to introduce any given
functional form of p(r0), to solve the integral equation 5 and then to see
whether the calculated intermolecular relaxation rate is in agreement with
the observed one. Usually for pure liquids the efficiency of such a method is
not great for several reasons: (a) the intermolecular relaxation rate is not
very sensitive to relatively weak maxima and minima in p(r0)3'4; (b) the
molecule which carries the relaxing spin in most cases is not of spherical
symmetry with respect to the nucleus considered whereas equation 5 is
derived only for spherical particles with the spin in their centre—Hubbard's
recalculation of the intermolecular relaxation rate has taken account of this
complication5; (c) P(r0, r, t) is not known precisely; (d) correlation effects
among the motions of different particles are neglected, no theoretical treat-
ment has as yet been given to investigate this question.

So the usefulness of a direct evaluation of equation 5 seems to be confined
to mixtures where a priori very little is known about p(r0) and where even a
rough knowledge of p(r0) is of value.

We shall give two examples for a 'direct' evaluation of p(r0) from equation 5,
firstly the ion—ion pair distribution function between two cations in an
aqueous electrolyte solution, and secondly the pair distribution function
between two carboxylic acid molecules at relatively low concentration in
aqueous solution. In both these cases the concentration of the particles, the
distribution of which is desired, is comparatively small, i.e. small as compared
with the particle concentration in the liquid. Furthermore—at least in the
first type of system—-the distances between the interacting particles are
large; both these facts justify the use of a propagator P(r0, r, t), which is
derived from the diffusion equation, in first approximation.

It is clear that the propagator P(r0, r, t) and the distribution function
occuring in equation 5 are in some way interrelated. So in a second approach
to the determination of the cation—cation distribution function we shall
correct the propagator in a simple and intuitive way.

The third example which we wish to discuss concerns methanol and
ethanol as pure liquids and in their mixtures with inert solvents. Whereas in
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the two former examples we shall consider P(r0, r, t) and p(r0)to be essentially
independent of one another, now with the alcohols, we shall have the other
limiting case and shall use the fact that the propagator P(r0, r, t) corresponds
to very tight binding of two alcohol molecules. Having established this tight
binding—by study of the experimental results—and the corresponding form
of the propagator, it will then be possible to draw certain conclusions
regarding p(r0), namely the depth of the potential well implied in p(r0).

2. THE CATION-CATION RADIAL DISTRIBUTION FUNCTION
FOR Li—Mn2 AND Na-Mn2

Here we make use of the magnetic dipole—dipole interaction between the
nuclei 7Li or 23Na and the unpaired electrons of the ion Mn2 The 7Li
relaxation in Li + solutions have been studied in the presence of Mn2 • In all
these systems the nuclear magnetic resonance frequencies (of 7Li and '3Na)
are very much less than the reciprocal of the time constants characterizing
molecular motions.

It may be shown that in this situation equation 2 reads'

(-i--)
= yyhS(S + 1) 12J(O) + 28J(co)} (6)

1 inter

= gyromagnetic ratio for the nucleus the relaxation of which is studied,
here 7Li or 23Na.

= gyromagnetic ratio for the unpaired electrons of the paramagnetic ions.
S = spin of the paramagnetic ion (S = - for Mn2 ).

= electron spin resonance frequency.
It is also useful to write the analogous expression for l/T2 1

(_L)
= yyh2S(S + 1) - {14J(O) + 26J(w)}. (7)

2 inter

One sees:

= --- if J(O) = J(w), and

7/6 = 1.17 if J(O) J(w).

As already mentioned we take the propagator P(r0, r, t) to be the solution
of the diffusion equation

P(r0, r, t)
(8irDt) exp {

— (r
_ro)2}

(8)

where D = mean translational self-diffusion coefficient of the two interacting
ions e.g.

D = {DL+ + DMfl2+).

Since both ions move relative to one another, the diffusion coefficient has

152



INTERMOLECULAR RELAXATION AND PAIR DISTRIBUTION

been multiplied by a factor of 2 in equation 8'. Usually one takes a step
function for p(r0) in equation 5

p(r0) = 0 for r0 <d ()
p(r0) = const. 1/V for r0 d.

V is the volume of the system, d is the closest distance of approach between the
ions.

For this distribution function g(t), equation 5 can be calculated in a closed
form:

g(t) =
NJ

p e_2DtP2 {J dr} dp (10)

N = A'7V

Bessel function of order and the Fourier transform is

N ('(J(u))2 du
J(co) = ;3 1 + (9co4t2/u4)

(11)

u=p.d,
It may be shown that the combination of equations 6, 7 and 11 yields

(ç)inter = yyh2S(S + 1) 1 + f(cor)} (12)

()inter = + 1) icN {1 + Wo} (13)

which is valid if the electron spin relaxation time 'r t. This is indeed true
for our solutions, r 10h1 s (see below) and ; = 3•10— s10, J(co,r) is
a bell shaped function with the properties8' 9

f(cot) = 1 for o — 0

J(cor) = 0 for (i)5t ± cc.

So far the cation—cation distribution function is only characterized by the
distance of the step in this function from the reference ion. This distance is d,
the closest distance of approach. Since r may be obtained from the frequency
dependence of the experimental (l/Ti)inter d can be calculated from the
absolute value of the relaxation rates according to equations 12 and 13.

Since the step function is certainly only a rough approximation to reality
we improved the form of p(r0) by writing

— 1 {(ro — a)/(d — a)}m 1
p(r0) = fmfr —

1 + {(r — a)/(d — a)}mV
or a r0

(14)
p(r0)=—0 for a>r0
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J(pr)
g(t) = NJ p e- 2Drp2 {J

fm(r) r dr} dp
0 a

Nr ____J(w) = j {J fmfr)
J(pr)

dr} + (9o)2t2/d4)
dp,

0 a

J(O) =
I{J

fmfr)
J5(pr)

dr}2
(17)

which can no longer be evaluated in a closed form.
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The parameter m determines the steepness of the function p(r0); for m —÷
we obtain the step function, see Figure 1. For all m we have fm(a) = 0 and
fm(') =

1.0

0.5

0(a)
x

1(d)

1.0

2II.0

r0
Figure 1. Upper part: Graphical representation of the function f,(x). Lower part: f1(r0) for the

pair distribution Li (or Nat) ion—Mn2 ion at 25CC.

Furthermore, we corrected the propagator

P(r0, r, t) fmfr)(8irDt) exp {
— (r

in an intuitive way in order to take account of the repulsive force which
hinders the two cations to approach towards one another. With these two
modifications equations 10 and 11 take on the form

(15)

(16)

and in particular, for the extreme narrowing case: 9w2r2/d4 < p4
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In Figure 2 the longitudinal and transversal relaxation rates of 7Li at 25°C
are shown. 7Li is present as Li in aqueous solution at a constant concentra-
tion 1 M (M = molarity, moles 1 ').The relaxation rates are given as a function

Figure 2. Transversal and longitudinal relaxation rates of 7Li in solutions of 1 M LiCL with
increasing concentation of MnC12 (cr, in moles 1', M), at 25°C.

of ci,, the concentration of Mn2 + (c in moles l ). Both salts are chlorides.
The data are presented for two frequencies: 18 MHz and 6 MHz. l/T1 is seen
to be independent of the frequency within the experimental error, whereas
1/T2 increases slightly as the frequency increases by a factor 3. The ratio
T1/T2 is also given in Figure 2 and will be discussed below. From the in-
dependence of frequency of l/T1 we conclude that either tw I or ta >' 1.

This question can easily be answered: in the former case frequency
independence should be preserved when the temperature is raised, in the
latter case frequency dependence should appear at higher temperature.
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Figure 3 shows that tco > 1 is indeed correct at room temperature. At 86°C
we find

l/T1 (6MHz) 13
l/T1 (18 MHz)

—

(At low temperatures, 9 < 25°, we find 1/T1 (6 MHz) slightly less than

E

80

60

40

20

0

Figure 3. T1 of 'Li as a function of the temperature in two solutions: 1 M LiCl + 0.2 M MnC1,
and 1 M LiC1 + 0.6 M MnC12.

1/T1 (18 MHz). This finding must be ascribed to a systematic experimental
error). Thus from equation 6

1+f(co'r) =13
1 + f(3cot)

(cog = 6.38. 1010 s_i is the electron spin resonance frequency corresponding
to a 7Li nmr frequency 6 MHz). Graphical evaluation yields r = 1.57. 10
s at 9 = 86°C.

The activation energy for translational diffusion in H20 is about
4 kcal mole , thus r = 5.10 ' s at 9 = 25°C. This gives J(wr) < 0.1 which
explains our finding that the frequency dependence is beyond detectability
at room temperature. As a consequence we shall neglect the second term in
the brackets of equation 12. Then we are left with the 'extreme narrowing'
formula which only contains J(O) according to equations 17. The self diffusion
coefficient D depends on the concentration. We put

1 1
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This is one reason for the deviation from linearity of (1/Ti)inter as shown
in Figure 2. We may write equation 17 as

2N
J(O) = g.J(O)step function = g.1--

where the factor g takes account of the effect of the real smooth distribution
function. Further: N = N0c, N0 = 6.02 1020 cm3. Taking all these
results together we obtain for equation 12

8rr.gNc (1—' — 2 2h2S(S + 1) 0 ' — +
'\Tji1

—
1 S 75d D0

and
(d(1/Ti)inter"\ 2 2h2SS + 8ivgN

dci,
— '

75dD0

where we have set d = const., i.e. we have neglected a possible concentration
dependence of d, the parameter of approach. D0 we take from conductivity
data. Since the ionic conductivity of Mn2 + is not available, we use the value
for Mg2 Mg2 + and Mn2 + have the same ionic radius. At infinite dilution

= (DMg2+ + DL+) = 0.87 iO cm2 s'. This has to be divided by
1.17, since we have a constant concentration of 1 M LiC111; i.e. D0 =
0.75 iO cm2 s1. Our experimental slope of (1/)inter at —+0 is, see
Table 1,

{d(1/Ti)inter/dCp}cp=o = 180 s' M'

for both frequencies. Then with the step function (g = 1) our result is:
d = 4.9.10_8 cm.

Table 1. 7Li relaxation times in the system LiC1 + MnC12 at lower
concentrations, 9 = 25 ± 0.5 °C.

c,
mol 1

T
ms 1/'1s T

ms 1/7s
(a) at 6 MHz

0-05 121 827
0.1 61 16.4 55 18.2
0.2 31 32.2 27.5 36.4
0.3 17.3 57.8 16.7 60
0.4 13.7 73 11.8 85
0.6 8.0 125 7.0 143
1.25 3.25 317 2.75 364

(b)at 18 MHz
0.05 120 8.33 107 9.35
0.1 57.8 17.3 52.5 19.0
0.15 36.3 27.5 32.5 30.7
0.2 28.0 35.7 22.9 43.7
0.3 17.2 58.1 14.0 71.4
0.4 13.0 77 11.0 91
0.6 7.99 125 6.08 165
0.8 5.55 180 3.90 256
1.25 2.97 336 2.13 470
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Next we performed the numerical calculation of the more general form of
the integral in equation 17,f,(r) not being a step function. According to equa-
tion 14 we have to choose a distance a where p(r0) =fm(ro) = 0. We assumed
a = 2.6 A, the distance from the Li + ion to the midpoint between two water
molecules which are members of the tetrahedral first hydration sphere of
Li We performed the calculation of the integral equation 17 at d = 4.5 A.
First we checked the reliability of the numerical calculation through com-
parison of its result with the exact mathematical solution using the step
function for fmfr)' namely 2/15 d. The number of computational operations
needed for the evaluation of the double integral is of the order iO, so one
necessarily obtains an appreciable amount of computational and rounding
errors. The computation was carried out until the result was within 4.3 per
cent of the theoretical value of 2/15 d. Then we chose a number of parameters
m and calculated the results listed in Table 2.

Table 2. Double integral in equation 17 in per cent of 2/15d.

m aA dA

stp. fct. — 4.5 95.69
33 2.6 4.5 94.09
3 2.6 4.5 88.21
4 2.6 4.5 90.27
5 2.6 4.5 92.10
3 2.0 3.0 90.10
3 2.5 3.0 93.39

We see from this table that the influence of the smoothed distribution is
small. The double integral with m = 3 is by a factor 0.93 smaller than the
one with m — cc (step function) for the same parameter d. Conversely,
accepting m = 3 to be a reasonable approximation of the truth we have to
reduce our parameter d previously found for the step function by 0.93. So
our final result is (see Figure 1)

{(r — 2.6)/(4.5 — 2.6)} 1
p(ro) 1+{(r—26)/(4.5 — 2.6)} V

Had we used only the corrected pair distribution function and the uncorrected
propagator, then the result would be d = 4.7 A. With our d as obtained with
the step function, d = 4.9 A, we can calculate t = d/6D = 5.3 10 " s
which confirms our previous finding.

We add a brief comment regarding the transversal relaxation rate. For a
correlation time t = 510 ' s we expect T1/T2 = 1.17 (see equations 12
and 13). Our experimental error for T1 and T2 is several per cent. We see
that at 6 MHz, T1/T2 is close to the expected value, but at 18 MHz, T1/T2
seems to be larger than 1.17, the effect being outside the experimental error.
The easiest way to explain this effect is to assume that there is some contribu-
tion from scalar interaction to 1/T2. In this event the correlation time for this
mechanism should be rather long: it should be equal to the electron spin
relaxation time -r, = 3 iO s. Then (l/Ti)scaiar and t increases as the
frequency increases. Assume that at 6 MHz the scalar contribution to 1/T2
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is 10 per cent, then at 6 MHz, T1/T2 = 1.28 and one estimates from the frequency
dependence of t'2 that T1/T2 = 1.35 at 18 MHz. The physical model under-
lying this estimate is the following. A very small fraction of Li ions is close
to the Mn2 t_probably to a MnCP or MnC12-complex-----for a rather long
time. Thus 'ç acts as the correlation time for scalar coupling.

In Figure 4 results for LiNO3 in solutions with Mn(N03)2 are presented.
The initial slope is again 180 s 1/M, and the approach parameter one

1.0 2.0 3.0 4.0

Figure 4. Transversal and longitudinal relaxation rates of 7Li in solutions of 1 M LiNO3 with
increasing concentration (cr) of Mn(N03)2 at 25°C.

calculates is the same as that for LiC1 + MnC12. Thus the cation—cation
distribution does not depend markedly on the nature of the anion. The ratio
T1/T2 however does not show an anomalous increase which we have
ascribed to scalar interaction in the case of the chloride. Thus, in nitrate
solutions scalar interactions is less as will again be seen shortly.

Figures 5 and 6 show the 23Na relaxation rate in Na + Mn2 solutions.
Again CNa+ = I M, being kept constant in all experiments. It is seen that the
general relaxation behaviour of Na is very similar to that of Lit Within
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(n

Figure 5. Transversal and longitudinal relaxation rates of 23Na in solutions of I M NaG with
increasing concentration (cr) of MnCl2 at 25°C.

the experimental error there is no frequency dependence of 1/T1. However at
high concentration we find 1/T1 (18 MHz)> 1/T1 (6 MHz) which cannot be
physically correct and must be due to a systematic error in our experiments.
We get a consistent description if we assume that 1/T1 (6 MHz) = lIT1
(18 MHz) at c, 4 M, then 1/T1 (6 MHz) is 10 per cent larger than lIT1
(18 MHz) at low concentrations and

1 + J(at) = 1101 + J(3ot)
yields t 4.5 10 s. The quadrupole relaxation rate of Na is greater than
that of Lit. At Cp —+ 0,1/T1 Na = 17 s' 13, 14, at c, = 1 M we estimate a
quadrupole contribution l/T1 Na 25 s' (viscosity and water reorientation
time in MgC12 solutions increase by 40 per cent at c = 1 M). From these
numbers and our experimental data given in Figure 5 and 6 we find the
magnetic dipole—dipole contribution to the increase of 1/T1:
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Figure 6. Transversal and longitudinal relaxation rates of 23Na in solutions of 1 M NaNO3 with
increasing concentration (cr) of Mn(N03)2 at 25°C.

{d(1/Tj)jnter/dCp}c = = 80 s . The mean self diffusion coefficient in 1 M
NaCl is 0.93 iô cm2 s , then with 1 + f(wt) = 1.185 we calculate
from equation 12, d = 4.7 A. With this d, t = d2/6D = 4.0 10" s which
we consider to be in satisfactory agreement with our as previously estimated.
Thus we obtain the result that the approach between Na and Mn2 is
described by substantially the same p(r0) as that obtained for Li + and Mn2

Again the effects caused by scalar interaction between the spins of Na
and Mn2 which should be observable through the T1/T2 ratio, are stronger
for the chloride than for nitrate (see Figures 6 and 5). The correlation time
seems to be shorter here than for Lit However the experimental results
which are relevant for this question are just at the limit of experimental error.
In Figure 7 the chemical shift of the 23Na resonance in solutions of Mn2
salts is depicted' . The shift is caused by scalar interaction16 and it will be
seen that the scalar interaction is most effective for chlorides. The Li

P.A.C.—32—4—G
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chemical shift is much smaller'5, the coupling constant is smaller but other
factors are also important17' l 8,

M C
Figure 7. Chemical shift of the 23Na resonance in solutions containing 1 M NaX and an increasing
concentration (cr) of MnX2. X = Cl, Br, NO3, as indicated in the Figure; X = SO4: +;

X = ClO4:K( 25°C).

3. MOLECULAR DISTRIBUTION FOR CARBOXYLIC ACIDS
IN AQUEOUS SOLUTION

Next we consider aqueous solutions of carboxylic acids. The two examples,
with which we shall deal at present, are acetic acid and propionic acid. The
pair distribution functions of these acids in aqueous solution are of great
interest because they might reveal what is called hydrophobic association,
i.e. association which is due to the presence of the hydrophobic alkyl groups.

In these diamagnetic liquids we always have the situation of 'extreme
narrowing', i.e. w1r 1, which has the consequence that spectral intensities
at Co = 0 are the only ones which occur in equation 2, equation 17 being again
the correct expression for J(O). For fm(r) we use the step function and, as
may be shown', the result to be used is:

(i)inter
= 'yh2I(I + (18)

Since we apply this formula to carboxylic acids dissolved in D20 the meaning
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of the symbols is as follows: (i/T1) inter = intermolecular relaxation rate of a
given proton in the acid (see below), y1 = gyromagnetic ratio of the proton,
I = = spin of the proton, N1 is the number of protons per cm3 in the
solution (water is always D20 !), d = closest intermolecular distance of
approach between the acid protons considered, D = selfdiffusion coefficient
of the acid. From equation 18 we see that

(i\ D A = const. (19)
1/inter I

should hold. If however we find

c(' D) D)
KT1)inter NI small inter 1IiN large

then, since d is considered to be constant and given by the geometry of the
molecules, equation 18 must have the form

(i)inter = yh2I(I + 1) (18a)

where K > 1 at small concentrations and K = 1 at high concentrations,
i.e. the local concentration of spins around the reference molecule is greater
than the average concentration in the whole solution. In other words, we
have a nonuniform molecular distribution which may also be called associa-
tion.

In Figure 8a the intermolecular relaxation rate of CH3COOD in D20 is
shown as a function of the concentration: number of acid molecules/cm3.
These data are obtained from the total proton relaxation rate of CH3COOD in
D20 and from the deuteron relaxation rate ofCD3COOH in H20. Details will
be published elsewhere19. The experimental uncertainty of the intermolecular
relaxation rate is ± 15 per cent. The self-diffusion coefficient of CH3COOD
in D20 has also been measured2° and the product (l/Ti)interD/N may be
calculated. The result is shown in Figure 8c. It is clearly seen that this product
is larger at small acid content than for the pure acid. Thus we have a crowding
of acid molecules around one acid molecule selected at random. In principle
one could assume an appropriate p(r0), which is not a step function but which
has a distinct maximum at small interparticle distances, and calculate the
integral equation 17 numerically as we did for the electrolyte solutions. But
as we have not yet performed these calculations, here we shall present an-
other, simpler procedure.

From equation 18 we calculate the distance d for the neat acetic acid
(D = 0.97 iO cm2 s' at 25°C). The result is d = 3.17 A. This d is an
effective distance of approach taking account of the nonspherical shape of
the molecule and of internal rotation of the CH3 group. Then we calculate
(1/T1) inter according to equation 18 for the mixture, D being given. The
result is the dashed line in Figure 8a. A(1/Ti)inter the difference between the
observed and calculated intermolecular relaxation rate, is due to the inter-
action with acid protons which are closer to the reference molecule than
they should be, were the uniform random distribution valid. We consider the
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(a)

10cm
11. -

(b)

2 4 lO21crrf3 6 8

2.8 4.7 6.2 7.4 8.2 8.9 9.1. 9.9 10.2 10.4
I I 1 I

2.6 4.2 5.3 6.1 6.6 7.1 7.1. 7.6 7.9 8.1

: ,CH2
(CH3)prop

(c)

1 _____________
I I i

(CHI)A1
I

0.2 0.1. 0.6 0.8 1.0

x2

Figure 8. Intermolecular relaxation rates of protons in (a) CH3COOD + D20,
(b) CD3CH2COOD + D20, CH3CD2COOD + D20 as a function of the acid concentration
N, given as acid molecu1e per cm3. Dashed curves: calculated intermolecular relaxation rates.
(c) (l/Ti)inter DIN as a function of the mole fraction of acid, x2. In the top of (c) the two concen-

trations in units of 1021 molecules per cm3 corresponding to the mole fraction are given.

'half-space' defined by the solid angle 2ir around the C—C bond direction
of the acid molecule and containing only the methyl group. Thus the carb-
oxylic oxygens and the OD hydrogen are not contained in this half of the
space surrounding a molecule. We estimate the mean distance between the
reference proton in the methyl group and the methyl protons of the associated
acid molecule—which of course are in the 'half-space' indicated above—to
be b 2 A. The vector connecting one of these associated protons with the
reference proton is considered to be of almost constant length for a time

10_li s. After this time the associated partner molecule has lost its local
correlation with the reference molecule. This time is also the reorientational
correlation time of the vector. Then the rotational intermolecular relaxation
rate is

()rot
= 3

y4h2 (19)
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Figure 9. Schematic representation of acid—acid pair distribution function for acetic acid dissolved
in D20. The association probability Pass is obtained by multiplying the peak height by

2irrAr = 5 A3. Numbers indicate mole fraction of acetic acid.

A 1/T1 Pass ()rot' (20)

where Pass is the probability for an acid molecule to be somewhere in the
'half-space' described above with an intermolecular proton—proton distance
b. With b = 2 A and r = 1oL s one calculates (1/Ti)rot = 0.4 s_i. This
is about the relaxation rate one finds for the intramolecular contribution in
fluid organic liquids where a proton interacts with 2—3 other protons21.
We calculate Pass according to equation 20 from our A lIT1 results, transform
to the probability density p'(r0) = p555/2irrAr0 and obtain the estimate of
one possible type of pair distribution function as depicted in Figure 9.
Ar0 was assumed to be Ar0 = 0.2 A, the probability density p'(r0) is given in
A3 and is understood in the sense to give the probability density to find any
acid molecule in dr0 at r0 (in the 'half space'). Thus the 'primed' probability
density p' is connected with the one previously used by p'(r0) = .h"p(r0)where
A'is the number of (acid) molecules in the system.

Of course the schematic molecular distribution function shown in Figure 9
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is only one simple type which is possible; a broader distribution may as well
lead to the intermolecular relaxation rate observed.

In Figure 8b we present the proton intermolecular relaxation rates for the
two propionic acids CD3CH2COOD and CH3CD2COOD, both in D20.
The self-diffusion coefficient for the neat acid at 25°C is D =O.91 iO— cm2
s'. For the effective d we find d = 1.15 A. Then the same procedure as
described for acetic acid yields radial distribution functions (probability
densities) as given in Figure 10. (1/Ti)rot for the methylene group is 0.27 s'.

o
C

0

0.

Figure 10. Schematic representation of acid—acid pair distribution function for propionic acid
dissolved in D20. Left-hand part of the figure: methylene—methylene group distribution;
right-hand part: methyl—methyl group distribution. For other details see legend of Figure 9.

Again these distribution functions are only defined in the half-space contain-
ing the alkyl group as described above. It is seen that the probability to find
a methylene group close to a methylene group is greater than the correspond-
ing probability for a pair of methyl groups.
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4. HYDROXYLIC INTERMOLECULAR RELAXATION RATE
IN METHANOL AND ETHANOL

The proton relaxation rate of CD3OH at 25°C is l/T1 = 9.3.10_2 s 22
and the proton relaxation rate of C2D5OH at 25°C is 1/T1 = 16.9 102
s' 22,23 On the other hand, the total proton relaxation rate of CH3OD at
25°C is 1/lI = 9.8 10_2 s1 and that of C2H5OD is 1/T1 = 17.5 10_2

22,23 The two former relaxation processes must be intermolecular
because the intramolecular contribution is negligible. Thus we see that these
intermolecular relaxation rates are almost as large as the total relaxation
rates of the methyl and ethyl protons, which ontain intramolecular and
intermolecular contributions. We conclude that OH relaxation in the alcohols
CD3OH and C2D5OH must be predominantly of rotational character
which implies that the propagator P(r0, r, t) in equation 5 for the hydroxylic
proton is of such a kind that the proton—proton distance does not vary over
times of the order of the reorientational correlation time. Each OH proton
has two nearest neighbour protons due to the two H-bonds coupled to a given
molecule. The 0—0 distance in the liquid alcohols is 2.7 A24 with the
C—-OH angle fi = 110° and the C—O . . . HO angle = 135°. This gives
a proton—proton distance b = 2.3 A.

Then the expected rotational relaxation rate is

(1 _(1 _ 21— — 21 b
Insertion of the numerical values yields t = 7.8 1O_12 s for methanol and

= 1.43 10_li s for ethanol. From the OD deuteron relaxation rate in
these alcohols the correlation times z = 3.7i0 12 sandt 8i0 12 s for
methanol and ethanol, respectively, have been reported25. The agreement is
satisfactory and, by taking account of the influence of next nearest neighbours,
could be improved. If the hydrogen bond had a life-time > 10_b s, then the
correlation time should be longer than obtained, due to chain association.
Very long and extended polymers should have very long rotational correla-
tion times. Since we do not find such long times, we conclude that th the
life time of attachment, is about equal to t, then

th exp (E/RT)

gives us, with th 10— ' s, 10— 14 s, E 4 kcal mole' for the depth
of the potential describing the pair distribution function between two
alcoholic hydroxyl groups. Thus,

/4000
p'(r0) = const. exp

with const. given by the requirement

1 j' p'(r0) dr0

where the integration is extended over the volume occupied by one hydrogen-
bonded OH group.

It should be noted that equation 18 depends linearly on N, the concentra-
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tion of interacting molecules in the liquid, whereas equation 21 does not
depend on N. Experiments have shown22 that (1/Ti)jnter for the OH protons
of methanol and ethanol does not depend on the degree of dilution of the
alcohols with inert solvents down to a mole fraction 03 of alcohol. More-
over (l/Ti)inter even increases strongly as a solvent of higher viscosity is added.
Thus one sees that the OH—OH system behaves like a firmly coupled
aggregate where the relative proton—proton motion in the time range 10h1
s is only of rotational character.

We conclude this section by the comment that the method just outlined,
namely the demonstration that the propagator is of total or partial rotational
form, has a wide field of application. One typical example is again the study
of paramagnetic electrolyte solutions6' 12, 18 where the propagator of the
vector connecting the water in the first hydration sphere with the central ion
may be entirely of rotational character from which stable hydration can be
inferred and this in turn may be reformulated in terms of pair distribution
functions.

5. INTERMOLECULAR RELAXATION RATES CAUSED BY
QUADRUPOLE INTERACTION

Nuclei with 1 > which reside in spherical ions usually relax by quadrupole
interaction with electrical field gradients which are produced by other particles
in the electrolyte solution. These particles are water (or solvent) molecules
and other ions. Thus the relaxation process is of an intermolecular nature and
should allow the determination of at least certain properties of the pair
distribution functions. An attempt in this direction has previously been
undertaken in this laboratory26'27 The result, however, must be considered
as not being satisfactory as yet. The reason for this failure is now obvious
and may be sketched as follows. If one considers the quadrupolar relaxation
by point charges which represent the ions present in the solution, then the
'self-correlation' terms occuring in the time correlation function are formally
the same as those for the magnetic dipole—dipole interaction (equation 5).
In the dipole—dipole case the total correlation function is iV times the
'self-correlation' function. But for the quadrupole relaxation the cross-
correlation terms between different particles become very important and
must be included in the treatment. They cause the screening of a given ionic
charge sufficiently far apart from the reference ion, which is the well known
charge cloud effect in electrolyte solutions. Thus the contribution to the
relaxation from the majority of the ions is quenched. The ion—ion part of the
quadrupolar relaxation rate may be expressed in an approximate form in
terms of the closest distance of approach between the ions and of the radius
of the ionic cloud. So the relaxation rate depends on two parameters character-
izing the ion distribution and it has been shown that the experimental results
for the relaxation of the ions C1, Br, and 1 in aqueous solution of alkali
metal halides may be interpreted satisfactorily in terms of these two para-
meters. The reader is referred to three forthcoming papers for further
details2 830 The quadrupole interaction vanishes if the surroundings of the
nucleus in question is of cubic symmetry. A pair of particles cannot be of
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cubic symmetry, but an arrangement of four or six particles around the
reference particle can be so. As a consequence, any experimental demonstra-
tion that the quadrupole interaction vanishes at a given ionic nucleus implies
symmetry in higher (not pair) molecular distribution functions. Corresponding
effects have been found for the ion—water dipole distribution and for the
ion—ion distribution in aqueous electrolyte solutions28' 30, see also11. We
quote here two other references which describe quadrupolar effects in ionic
solutions from another point of view31' 32

6. EXPERIMENTAL
The Li and Na relaxation times have been measured with a Bruker

B-KR 304 s pulse spectrometer. For longer T times the 900_900 pulse
sequence method was applied; for shorter relaxation times it was necessary
to employ the 1800_900 technique. For weak signals, in particular at 6 MHz,
measurements were performed by the aid of signal accumulation. T2 measure-
ments were done with the Carr—Purcell method and Gill—Meiboom modifica-
tion. Care was necessary to prevent heating of the electrolyte solution during
the Carr—Purcell procedure. Due to diode detection, base line shift had to
be corrected. Equality of short proton T1 and T2 was checked with a CuC12
solution where both relaxation times are known to be equal33.

Proton and deuteron relaxation time measurements of the carboxylic acids
have been performed with spin—echo apparatus of conventional construction
at 20 MI-k and 12 MHz, respectively, the 90°—90° pulse sequence being
applied in all cases. The composition of the solutions was determined by
weighing, the samples were freed from oxygen by the usual freezing—thawing
technique. D20 for the higher acid concentration was of deuteron content
99.7 per cent, the measurements at low acid concentration were made with
D20 of D content better than 99.8 per cent. We were unable to detect any
proton signal in this D20. The acids were purchased from Roth, AG.,
Karlsruhe, and used withour further purification.
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