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ABSTRACT

Principles of coherent radiation are reviewed as they apply to the coherent
interaction between two quantum level atomic oscillators and classical
radiation fields. The equivalence between electric dipole and magnetic dipole
interactions is outlined for macroscopic systems. The power mechanism for
formation of coherent signals is briefly calculated. The self-induced trans-
parency mechanism and area-theorem connected with this mechanism serves
as a means of predicting properties of photon echoes. It is stressed that when
the classical field is a self-consistent solution to both the equations of the

density matrix and Maxwell's equations a reaction field need not be added.

THE SEMI-CLASSICAL PICTURE
When the Bloch and Purcell groups initiated the science of nmr, it was

not anticipated then or for a number of years afterwards that the dynamics
of nmr could be applied to electric dipole resonance transitions. The concepts
of spin states dominated the interests of investigators because of the tradition
of the Rabi atomic beam method and because radio frequency techniques
were ripe for application. Although the gas microwave absorption technique
was flourishing, it was not until Dicke' (1954) introduced the idea of radiation
coherence from an ensemble of phased electric dipole moments that the
classical picture was believed to be applicable to dipole radiation from two-
level systems other than magnetic spins. Dicke pointed out that the coherent
superpositions of atomic two-level states could be prepared, after which
these states would radiate coherently. In 1957 Feynman, Vernon, and Hell-
warth2 showed that electric dipole transitions in a two-level system could be
formulated by equations which are the analogue of the Bloch torque
equations for a spin system. Although the discussion in their paper was
restricted to a particular MASER problem, they utilized the viewpoint
very well known as the semi-classical method. In this particular discussion
the classical electric field is a self-consistent solution of both the 'optical
type' Bloch equations, originating from the density matrix, and Maxwell's
equations. A number of treatments3 and reviews4 have appeared with
the express purpose of clarifying and justifying the assumptions of the
semi-classical approach. The approach has been rather successful from an
experimental point of view in predicting and accounting for a number of
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pulsed laser phenomena seen in recent years, which is the subject of this
brief review, such as photon echoes5, self-induced transparency6, and some
properties of mode-locked lasers7.

The semi-classical method implies that experimental conditions are
restricted to large electric field amplitudes E(, t), and also to large collections
of N dipoles. The effective momenta of field and particle oscillators is
enormous compared to h. The subtle aspects of incoherence due to small
quantum fluctuations and spontaneous emission are not easily included in
the semi-classical method, and at best is done ad hoc under special conditions.
In general, the semi-classical method has not been satisfactorily doctored to
include partial damping due to spontaneous incoherent emission except
in the usual phenomenological way of introducing damping terms as in the
original Bloch equations.

THE TWO-LEVEL SYSTEM
The equivalence of the 2 x 2 transformation Pauli matrices for a two-

level system of spins (each with spin I = to that of electron second-quan-
tization operators makes it possible to draw a one-to-one correspondence
between ground and excited states of spin states to those of electron states.
A torque equation of the form

x Eeff) = ic(P x Eff) (1)

results, where p is the dipole matrix element, P is the macroscopic polariza-
tion, and Eeff is the effective electric field. Equation 1 follows from the density
matrix (p) method, where the Hamiltonian is written in the dipole approxima-
tion as

= )— P.E(z,t);
P = NTr {pP0}; (2)

and the energy of the system is

W=NTrpo} (3)

The ground state energy is

W= W0 = — N--

for N dipoles with resonance transition frequency co0. The correspondence
between nmr and optical dipole resonance superposition states is sketched
as follows:

Ground state Excited state

Spin { )—x +

C1 e"- +
C2 iotI2
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ELectronic
{

+

V =C1 e11 + C2 /i iw ff2

Following a 90° pulse, the superpositkm state is prepared at t = 0 with
C1 = C2, so that a measurement along the X axis will see:

Spin j
ELectronic

For times t > 0 the Larmor phase angle wt develops, and the precessing spin
expectation value appears anywhere in the xy plane. In the electronic case,
the electronic wave packet oscillates back and forth between extreme values
of ± Xmax at frequency w.

For an assumed system of electronic /i and i/it, states, the lack of diagonal
electronic dipole moments for t <0 in no way detracts from an analogy to
the paramagnetic spin case. The magnetization of a spin system is defined as

M = iu + I'0v + 0M (4)

in the frame of reference rotating at frequency co. In the electronic case it is
convenient to define

— WicP = ü0u + vAov — (5)
coo

The quantity WK/w0 appears as a fictitious polarization —P because of the
following correspondence:

P—M— — 14'lc

II U)0 0

Here the energy W = — MH0 of the spin system corresponds to the optical
transition total energy W N Tr {pH0} of the atom where = hco0/2 is
determined by its structure.

Consider a two-level system tuned at frequency co off-resonance with
respect to an existing electric field plane wave

E(z, t) = (z, t) exp {i[wt — kz — 4(z, t)]} + cc (6)

propagating in the Z direction at carrier frequency co. Equation 2 can then
be written as

= Px[ü(z, t) + 2(Aw + )], (7)
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where Aw = co — w. Using 5, 7 may be written out as (with addition of
damping terms involving 7 and 7)

= v(Aw + - u/T2

dv_ . K
— — u(Aw + q) — — v/Ta (8)dt w

dW W—W=vco-
The Bloch type equations 8 include a possible frequency modulation term
(z, t), which together with (z, t) (the slowly varying envelope), are terms
to be se1fconsistent with equation 7 and Maxwell's equation:

2E(z, t) — [n2 a2E(z, t) 4m 32P(z. t) 9—[ +

In the slowly varying wave approximation,

- 4 g
is assumed. Combining equations 8 with 9 gives, therefore,

t) —2mw (= I vg(Aw) dAw (10)nc J-
and

2irwl— (z,t) = I ug(Aw) dAco. (11)dz

A retarded time frame of reference is used, where the retarded time is given
by t' = t — jz/c. Equations 10 and 11 together with 8 are useful for the
analysis of pulse propagation at or near resonance in a two level system.
These equations can be generalized to cases where the two-level system is
degenerate6' 7, and not necessarily characterized by one dipole matrix
element. In this case v and u are replaced by sums v, >u corresponding
to sums over i matrix elements.

If the slowly varying wave approximation is not made, and equation 9
is applied with no approximations, then terms of the type wt3, wü, 1', Q are
included also in equations 10 and 11 (along with w2t5 and w2u which domin-
ate). It is easily seen8, however, that the size of these higher order terms is of
the same order of magnitude as the off-resonance response contribution by
dipole matrix elements in the atom involving transitions to quantum levels
other than the two-level system at or on resonance. There is no such thing
as a pure two-level optically responsive atom. Other levels must contribute,

174



MACROSCOPIC OPTICAL COHERENCE PHENOMENA

as is dictated by the sum rule for optical response. Unless other optical levels
are taken into account, it is quite possible to arrive at unrealistic conclusions
concerning optical pulse propagation effects if equation 9 is coupled exactly
to equation 8, which pertains strictly only to a two-level system.

RADIATION DAMPING

The self-consistent field in the previous discussion is connected with a
source term P such that stimulated emission and absorption will be naturally
accounted for during propagation in the medium, depending upon the
initial conditions with regard to P and . If is initially thought of as an
applied field, then a reaction field originating from P will add or subtract
to The total however naturally includes any reaction fields, and no
extra ones need be added to account for effects due to P. The self-consistent
relationship between P and will automatically include the effects of
coherent radiation damping. This is strictly the case for a plane wave
propagating through an infinite medium of resonant dipoles. Interference
and loss, because of diffraction edge effects due to sample size and finite
beam profile, will of course enter the picture if P is confined to a finite
volume.

If radiation energy is lost from a finite volume element of dipoles, and not
recovered by the resonance capture and re-emission of energy in another
volume element, it is convenient to introduce what appear to be loss or
'coherent radiating damping' terms'. Such terms are convenient in cases
where the dipole system is first prepared by strong field pulses (considered
hardly affected by the medium) in coherent superposition states. After the
system is prepared it radiates a coherent field by itself, namely, a spon-
taneous but coherent field. The photon echo is a clear cut example of
this5.

DAMPING OF SPINS IN A CAVITY

In an external magnetic field H0, the spin energy of a magnetic moment
M0 tipped from the field 1 direction by an angle ço is given by

— VM0H cos p. (12)

The z component of magnetization is M = M0 cos p, is the sample filling
factor, and V is the cavity volume. With the voltage of nuclear induction
given by

— 4irNAwM0 sin q, (13)

and v = M0 sin çô the energy conservation condition equation 9 requires
that

dl4'avity = — dl4'1 = (14)dt dt 2R

in an LCR circuit tuned to nuclear resonance at yH0 = w. After a super-
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position state has been established by a 0 pulse at t = t0 it follows from
equations 12, 13 and 14 that the free procession rf field generated by the
spins is

H1(t) = --- sech [(t + t)/r]. (15)

The radiation damping rate is exprssed by

= 2MyQ
with Q = wL/R, assuming Q/w yH1, and no inhomogeneous broadening
is present. For 0 = 90° the free nuclear precession signal power is

P = 8it2QMoV (16)

where = V/T/, and T' is the sample volume.

1. Effect of inhomogeneous broadening on the radiation damping
The equation for an LCR cavity coupled at resonance with the spins is

+ = _wnVsJv(t)g(w)dAw (17)

where w1 = yH1, and a homogeneous field distribution is given by g(zw),

normalized so that j g(Aw) dAw = 1. For

dw/dt,
equation 17 is written as

= — j_J'(w) v(Aw, t) dw. (18)

Ifp = 00 at t = t0,equation 17 yields, after some manipulation10,

= (cc) —00 = — —--—v(0,t c/D)ltg(0)
M0t

or
AO = — g(0)sin (9 + 0k), (19)

where O = 4(cc) is the final tipping angle at t = + co. Suppose 0 = ic/2.
Then

T* T*
— cos AU — AU, for AU 1 and T/tr 1.

tR TR

The free precession signal lasts for a time T, during which time the energy
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iW = — M0(cos 0 — cos 0) H0 — MØHØOQAO is given up to the cavity
as signal energy. The free precession signal power is therefore

dW —M0H000A0 M0H0
(20)dt max' 7 'C

near t = 0, just after a ir/2 pulse (for 00 = 2t/2), the same power of free
precession as given by equation 16, where inhomogeneous broadening is
absent. The results of equations 16 and 20 show as an example that the signal
power extracted by the cavity from the coherent system is the same whether
or not inhomogeneous broadening is present. At any time t, M0 is reduced
by inhomogeneous broadening, but also by damping time constants T2, T1
which may be shorter or longer than t.It is this power expressed by equation
20 which makes possible the observation of various types of echo and free
precession signals.

2. Coupling to the cavity with no resistive losses
For R/L-÷ 0 in equation 17, and T = cc, then

d2(p . —1= — Npiryw0 sin q= —i-sin (p.

A number of pendulum solutions are assigned to this equation. The finite
single pulse solution expresses the spontaneously developed rf field as

2 2
H1(t) = — sin(p/2 = sech

if M0 is initially inverted at t = — cc and then tipped infinitesimally to get
it to radiate into the cavity. The maximum spin energy is AW,nax = VSMOHO
(cos (p — 1); and the maximum cavity energy is (2H1)2 V,/8rt = J4. It is seen
from above that l4'/Al4',ax = 1. The time constant r is a characteristic
coherence or cooperation time serving to define a coherence volume relevant
to discussions concerning coherent propagation and radiation11.

RESONANCE INTERACTION OF PROPAGATING PULSES
The self consistent solution of equations 8 and 9 yields the distance

dependence for the pulse area

0(z) = ic S(z, t) dt

to be

dO cc.= ±sin0. (21)

For an absorber the minus sign applies, and for an amplifier the plus sign
applies. Equation 21 is valid in the slow wave approximation, where frequency
modulation is neglected (4 = 0), and the applied frequency w is set at the
centre of a symmetric g(&o) distribution. The pulse width 'r may be greater
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or less than g(O) T. For an absorber all input areas evolve toward zero,
2ir, or multiples thereof; and for an amplifier, the areas evolve unstably
toward z or odd multiples thereof. The angle 0 measures the quantum
mechanical superposition of states at exact resonance (Aw= 0) imposed
by the pulse (after t = + cc). Thesuperposition is given by

i/i = cos 0/2 + it/i2 sin 0/2.

Equation 21 can be interpreted as expressing the evolution of the Fourier
amplitude of pulse at exact resonance in the interaction representation (or
rotating frame). Thus, if we define the Fourier transform as

I(z) = 0/K = (z, t) exp (iat — w0t) dtwith w — = 0.

a spectrograph will measure the spectral power density function

I = I(O)n4ir K

where 1(0) = (c/4ir) axt2, and 0 = n2m (for an absorber). For any inhomo-
geneously broadened two-level system, with degeneracies, one may generally
write

(z) = S(O, z) — a/2 0;
dz 2

and (22)

d/(z) = /(z)F(0,z) -
The pulse energy is defined by / = i/4ic t) dt; a is a scattering loss,

and S and F are non-linear functions. For a non-degenerate two-level
system, S = sin 0. For a Gaussian pulse with r ' T it is reasonably (but
empirically) accurate to write F 2(1 — cos O)/02. The minus sign applies for
an absorber, and the plus sign for an amplifier.

In the classical regime S 0, and F = 1. In the regime of self-induced
transparency, S = sin 0, 0 —p n2ic, the electric field 6= 2/icr x
sech [(t — z/V)/'r], and F — 0.

In general (for an absorber)

0(z) = 2 tan1 {exp (—z/z')tan 0/2 }
and (23)

/(z) /(0) exp [— Sdz'F(O, z')]

The self-induced transparency condition is determined by a process in
which energy absorbed from the pulse by the two-level system during the
first half of the pulse is returned to the pulse by stimulated coherent emission
during the second half of the pulse. The number of photons brought into
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the volume element of dipoles, in pulse time t, is equal to the number of
dipoles excited.

r4

___ I
The number of photons is

T*

4ithw t
where T/t is the fraction of atoms excited by the Fourier components of the
pulse (l/t) out of a much broader spectrum (1/T) of inhomogeneously
broadened two-level absorbers. The active dipoles occur over a volume =
length oc 1 x unitareaA(= 1). Therefore

22P 22 = 1, or 0 = constant

Careful use of the equations gives the constant area condition 0 = 2ir.
Another useful condition which signifies the existence of a stable 2ir

hyperbolf secant propagating pulse is the fact that it is slowed down to an
inverse pulse velocity

= /c + -, and it is possible to have V 4 C,

so that the medium stores much of the original pulse energy6. The expression

d/ AW/_1Ct
dz Az 4-1'

leads to the ratio12 of the field energy to the dipole energy in the same
volume to be

______ — 1 V
AW cctr c'

where self-induced transparency theory gives 1/V oct. For no absorbers
present we note that V = cc

SELF-INDUCED TRANSPARENCY AND THE PHOTON ECHO
The photon echo5 was first obtained and conceived in terms of the

response of a small slab of dipole radiators (Cr3 in A1203) following
excitation by a pair of field pulses separated by a time T The superposition
of two-level optical states results in a spontaneous echo at t = 2 T

The spontaneous emission rate in erg s for a single dipole p0 is given by

64ir42
Wrad =

323h
(hw) (24)
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If out of N dipoles per cm3, an effective macroscopic moment (NPO)eff'S
radiating, then (NPO)eff replaces p0 in equation 24, and ad cc N2. In carry-
ing out the problem this way, special pains must be taken to introduce a
coherence volume Al) over which the dipoles cooperate while radiating
in the forward direction. The result5 for the number of photons in the echo is

c g2 1 W N2T*212 2
— — rad 2 Po

(25)4ir hw hco

for a sample of unit area cross-section and small thickness 1 < cx
The area theorem equation 21 of self-induced transparency yields the

expression for iV directly. For two pulses which do not overlap, it has been
shown6 for small sample lengths 1 = z that the echo area is given by

= cxl sin O(O)[1 — cos 92(0)], (26)

an expression similar to that for magnetic spin-echoes, where O,(0) and 2(°)
are the input pulse areas at z = 0, with pulse width r T, and Tis the pulse
separation. The energy in the echo is proportional to O/t, so that

g2 = H'andO cxl.
4ir 4irkr

The number of photons in the echà is therefore

W — 7C 1
(l)2 N2T2l2p

(27)'hw41rK2r hkr

which is the same result obtained in equation 25. The self-consistent applica-
tion of Maxwell's equations yields the photon echo in a natural way by
taking into account the cooperation volume automatically in the plane wave
problem.

Campaan and Abella13 observe that the intensity I of photon echoes
from ruby samples with various concentrations N of Cr3 + does not obey
the expected coherent radiation dependence IcN2 as N is increased beyond
N 2 x 102 per cent by weight. They attribute the anomaly to radiation
damping corrections, yet to be worked out. However, application of the
area theorem as it stands is capable of accounting'4 for their results. As
stated before, the photon echo is a natural consequence of the area theorem
for an absorber

= —sinO, (28)

where 0 = O,(z) + 02(z) + OE(z), and is the Beer absorption coefficient
proportional to N. Ifiwo pulses with areas O,(0) and 02(0) are applied to the
sample at z = 0,a third and possibly more pulses with area

KEiTE1

will appear subsequently, in order that the total 0 can evolve either toward
a multiple of 2ir or 0. This results because multiple echoes which make up
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011 have phases which add and subtract to 01(z) and 02(z) in such a way as to
impose this final condition, 0 = n2ir at z = cc.

One must be careful to correct equation 26, applicable only for cii < 1,
as N increases for a given sample length 1 to account for the z-dependence
of the echo. As the effective sample length is increased, because the number of
Beer's lengths cii increases, the echo area is modified as a function of pulse
propagation distance in the sample, because of the area theorem expressed
by equation 28. Computer piots show for log100 plotted versus log1 0ciz that
0 reaches a peak and turns over, showing deviation from the 0 N2
dependence law. The equations d01(z)/dz = —(ci/2) sin 01(z) and d02/dz = —

(ci/2 cos 01(z) sin 02(z) are coupled7 to equation 28. The effective at for the
second pulse 02 becomes at cos 0 because29 of the partial saturation imposed
by pulse 0, which does not overlap with 02. For small echo areas a
reasonably good evaluation of the photon echo is obtained from the equation

dO11 It=
sin01[1

— cosO2]

(30)
— Sfl 0 cos 01 cos 02, where S1flOE

Therefore for small input areas and small output echo, equation 30 yields

OE = 01(0)022(0) O_2sinhq

where q =, atz/2. Note in equation 30 that the echo pulse sees an effective
at given by at cos 0 cos 02. For small areas 0 in general, it is known from
previous observations and computer plots that the pulse width t varies
little with z and retains the same order of size as the input . Therefore it is
acceptable to consider 0 as proportional to the echo intensity. Also for
small 0(0), 62(0), only a single photon echo appears which has a measurable
intensity, and subsequent echoes are negligible.

It is significant that the peaking of echo intensity 0, occurring at ciz in 3,
shows that the at-value at which the turnover occurs (d011/dz = 0) is rather
insensitive to various initial values of 0(0), 82(0), for 0(0), 02(0) < ir. Under
these conditions it can be shown that echo T'2 damping does not affect this
conclusion.
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