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ABSTRACT

The derivation of the expressions for the isotropic shift of nmr signals in para-
magnetic molecules is reconsidered. It is shown that the reaction of the elec-
tronic spin system to the thermal motions of the molecules should be taken
into account. This leads to the result that the isotropic shift in liquids is indepen-
dent of the relative magnitudes of the tumbling time and the electronic
relaxation time. Hence, the temperature dependence of the correlation times
cannot be responsible for non-Curie behaviour of the shift. For the case of free
rotating molecules this result is proved in a way analogous to Van Vleck’s
treatment of the Langevin-Debye formula of the electric susceptibility. The
relation with the phenomenon of motional narrowing is discussed.

I. INTRODUCTION

The shift of magnetic resonance lines of nuclei in paramagnetic molecules
can, in most cases, be considered as the sum of two contributions. One is
due to the scalar Fermi contact interaction between the unpaired electrons
and the nucleus. This shift is called the contact shift and according to
McConnell and Robertson! it is given by

_ _BHSS+ 1) 4

where g is the rotationally averaged g value of the paramagnetic ion, f is
the Bohr magneton, y is the gyromagnetic ratio of the resonant nucleus, A
is the hyperfine coupling constant in energy units, and H, is the applied
magnetic field.

The second source for the nmr shift is the anisotropic dipole-dipole
interaction between the paramagnetic ion and the nucleus. This shift is a
function of the orientation of the molecule with respect to the external field.
In this paper we are only concerned with the rotational average of the shift,
the so called isotropic shift. In a powder this is the centre of gravity of the
whole spectral structure. In liquids the molecular tumbling is normally
rapid enough to reduce the spectrum to one narrow line positioned at the
centre of gravity. Only when the electronic g-tensor is anisotropic the dipolar
interaction gives rise to a non-vanishing contribution to the isotropic shift,
which is called the pseudo contact shift.

McConnell and Robertson gave a theoretical treatment of the pseudo
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contact shift'. They considered a paramagnetic ion in which the electronic
system can be completely described by a spin Hamiltonian consisting of a
Zeeman term with an anisotropic g-tensor. The g-tensor was taken to be of
cylindrical symmetry and the point-dipole model was assumed. They showed
that the shift is given by

B?HyS(S + 1)3cos? 0 — 1
3kT r3 ’

H,= -~ f(9)Ag 2)
where Ag = g, — ¢g,; g and g, being the parallel and perpendlcular com-
ponents of the g-tensor, r is the vector connecting the paramagnetic ion and
the nucleus, and @ is the angle between r and H,, f(g) is some function of the
components of the g-tensor. The authors found that f(g) is different for
cases of slow and fast tumbling. They distinguished between a ‘solid’, i.e.
when the correlation time 7 for the tumbling is T > |#/AgBH,|, and a ‘liquid’
when 7 < |h/AgBH,|. It should be noticed that the ‘solid’ case is also
encountered in real liquids. Nevertheless we then still have a sufficiently
short 7 to establish motional narrowing, such that a single sharp resonance
line is observed. A further distinction was made for the ‘liquid’ case with
respect to the order of magnitude of the electron relaxation time T;. The
results are:

‘solid’, f9) =g, +491)/3 (3

‘liquid’, © € T, flg) = (g + 2909, (4)
> T,.,

°> e 1(9) = Ggy + 49,15, (5)

Jesson? has extended these expressions for the case of thermally populated
excited electronic states. He showed that if a state with energy E; gives rise
to a shift AH,, the total shift is given by

= Y AH,exp (~ E/kT)/ Y, exp (— E/JKT), (6)

an expression which is only justified if Zeeman mixing among the levels is
negligible.

The most complete discussion of the isotropic shift, applicable to cases
where one or more of the customarily assumed restrictions cannot be made,
was recently given by Kurland and McGarvey.® However, only the case of
slow tumbling was treated and the problems connected with fast tumbling
still remained untreated. The contact contribution of spin-only paramagnetic
molecules exhibits Curie behaviour, according to equation 1. Equations 2 to
5 show that the pseudo contact shift also behaves proportionally to 1/T as
long as 7 remains in the domain of either the ‘solid’ or the ‘liquid’ case.
Anomalous temperature dependence was observed in several cases. This
behaviour was considered by Golding*, Jesson?, La Mar and Van Hecke?,
and McGarvey®. These authors considered the presence of low lying excited
levels as the origin of deviations from Curie’s law. However, as pointed out
by Reuben and Fiat’, the following possibility should also be considered.
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Since t depends exponentially on T we expect to find many examples of
transitions between the ‘solid” and ‘liquid’ states (equations 3 to 5), and thus
a sharp drop in f(g) when the temperature is increased. It is clear that this
effect should be allowed for in the explanations of anomalous temperature
behaviour.

Another striking consequence of equations 2 to 5 is the nonlinear H,-
dependence : a sample which behaves as a ‘solid’ under normal experimental
conditions, can in principle be changed into a ‘liquid’ by decreasing H,
sufficiently.

Finally we observe that this is an example of an average spectral shift
which is dependent on the correlation times, whereas in most other theories
of the effect of random motions on spectral features, it is just the line shape
which is determined by the nature of the motion.

The work reported in this paper was undertaken in order to study these
properties of the isotropic shift in more detail. In particular it was hoped to
be able to calculate the shift for the intermediate t region. In fact, we came
to the conclusion that there is no T dependence at all, as will be explained in
the following sections.

II. THE STEADY STATE OF THE ELECTRONIC SYSTEM

In nmr experiments on paramagnetic molecules it is the nuclear system
which is directly disturbed by the r.f. field, and since the interaction between
the nuclei and the electrons is only a small perturbation of the electronic
Hamiltonian, the effect of the r.f. field on the behaviour of the electrons is
negligible. Thus, the nuclei feel the influence of the electrons which are in
thermal equilibrium, i.c. the determination of isotropic nmr shifts is
essentially the measurement of a property of the electron system i equili-
brium. This in contradistinction to an esr measurement on the same mole-
cule, where we measure the response of the system to a time dependent force
which removes the system from equilibrium. Thus the first step in the calcula-
tion of isotropic shifts is the determination of the equilibrium density matrix
of the electronic system.

To begin with a powder is considered. We specify the orientation of a
molecule by the Eulerian angles, . The electronic Hamiltonian, 5, is in
general a function of @, and the equilibrium density matrix for all the mole-
cules with the same 2 is

p(Q) = exp [~ #(Q)KT]/ trexp [ - H# (Q)/KT]. (7

The nmr shift is essentially the z-component of the local magnetic field at
the site of the nucleus. This is a physically observable quantity, which is
represented quantum mechanically by an operator P. This operator also
depends on the orientation of the molecule. The shift of the molecules with
orientation Q is now given by tr [ p(Q)P(2)] and the isotropic shift by

AH = 8—17; fdetr [p(@P(Q)]. ®)

For the discussion of rotating molecules in liquids we write 5 .(Q) as the
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sum of an isotropic and an anisotropic part,

H Q) =K, + H(Q), )

F, = - [ #4Q)dQ. (10)
87

It is well known, that in an esr experiment on fast tumbling molecules the
measured spectrum is almost completely determined by .3, whereas 3#.(Q)
acts only as a small time-dependent perturbation. This effect of motional
narrowing is usually explained by saying that the spins are unable to follow
the rapid changes in the Hamiltonian and therefore only its time average is
observed®. If we apply this type of reasoning to the description of the spin
system in equilibrium, this will mean that the density matrix of all molecules
with the same momentary orientation £, is given by equation 7, but with
A, substituted for A (Q).

However, as we already indicated, the isotropic shift and esr experiments
are fundamentally different and we may therefore doubt the validity of this
conclusion. Indeed, there is another approach to this problem which leads
to a different conclusion, as we will clarify in the following simple model.
Consider a set of molecules, each containing a nucleus of spin 1, which jump
randomly between two sites a and b, occupied with equal a priori probability.

——r——— -3

AE
—_— -t
YhHq YhHp
— +1/2
— +1/2
(a) (b)

Figure 1. Energy level scheme of a spin £ jumping between two sites of different magnetic fields.

The magnetic fields H, and H, at the two sites are different. Figure I shows
the energy-level scheme. If the jump rate is slow, the joint probability to
find a molecule in site i and its spin in state m is in the high temperature limit,

Loy _’thim
pli,m) = 3 (1 T )

(11)

It is easily seen that this distribution is established, when the time t between
jumps is much longer than the relaxation time T;. Alexander and Tzalmona®
pointed out that equation 11 also holds for 1 < T; in the slow jump case
{t > AE/h). To understand this we consider a molecule with its spin for a
relatively long time in state m. This molecule as a whole jumps randomly
between two sites with potential energies yhH, m and yhH, m. Hence, the
molecules with spin state m are distributed over a and b with the appropriate
Boltzmann factor. In the high temperature approximation this leads to
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p(i, m) as given by equation 11. Apparently, the reaction of the spin system
to the thermal motion of the molecules prevents the populations from
becoming equal in the two sites. The motion is no longer completely random,
but rather correlated to the actual spin state. The question now arises if there
is any reason why this type of argument would not hold in the fast jump case.
If it were valid under all circumstances, then the populations of the levels in
equilibrium would remain unaffected by the relative magnitudes of t and
T,.
In our case this would mean that p(f) is always prescribed by the full
Q2-dependent Hamiltonian, and that the isotropic shift is independent of
and Ti.. It is clear that both approaches to the problem of the ‘liquid’ case
are not free of uncertainties. Fortunately, as we shall see in Section IV, the
problem can be solved for a set of molecules which undergo free rotations,
as in a gas. This solution is important for the understanding of what occurs in
liquids, because, as Frenkel'® pointed out, the states of slow diffusion and
free rotation are the limits of the molecular motion in liquids.

III. NO ROTATION

Before we treat the free rotation case we derive a few expressions for the
solid state, in order to compare the two.

For molecules with only one thermally populated-energy level, describable
by a single spin Hamiltonian 5 ,, we have for the isotropic nuclear shift

§dQY (MIPQ)A, (2| M)
AH= — M

12
8n2kT (28 + 1) ’ (1
which follows directly from equation 8 and where M runs over the com-
ponents of the (25 + 1)-times degenerate ground level.

In McConnell and Robertson’s example!?,

HA(Q)=pS§-H,. (13)
For the contact shift (equation 1),
P(Q) = (A/hy) S ke, (14)
and for the pseudo contact shift (equations 2 and 3),
PQ)=p8SG:T-h,. (15)

When thermally populated excited states are present, we follow the
procedure of Kurland and McGarvey* and make use of the following theorem
proved by Karplus and Schwinger!':

Let |i) and E; denote the eigenstates of .#,, and let | #,| < kT, then

Clexp [— (4 + #,)KT] = f> = exp (— E/kT) exp (= E/KT)3;, + ...

+Q;<i|#,| f>, where (16)
0, = [exp (—E/kT) —exp (—EkT)J/E; — E))ifE, # E, 17
¥ 71 —exp(—E/kT)kT ifE; = E,. (17)
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In our case 4, is the Hamiltonian of the paramagnetic molecule in the
absence of a field and 5, is the interaction with the field. Thus, from
equation 8,

AH = s% Y dQ0, < #.AQ)] 15 f|IP@)]i, (18)
T if

where Z = X exp (—E/kT) [1 - i|#,|iy/kT] = Z exp (—E,/kT), under
the assumption that 4, is traceless within each degeherate manifold of #,.
Equation 18 reduces to equations 12 and 6 in the cases of spin-only
behaviour and no Zeeman mixing, respectively, for in these cases only the
second line of equation 17 is relevant.
Note also that for |E;, — E,| < kT we can write approximately

Qir ~ —exp(—Ey/kT)/kT. (19)

IV. FREE ROTATION

The difficulty encountered in Section II is closely related to the following
problem raised by Van Vleck in his theory of electric susceptibilities!%. The
polarizability of a gas of N molecules possessing a permanent dipole
moment g is given by the Langevin-Debye formula,

W

The 1/T term in this equation was originally explained by assuming a
Boltzmann distribution over the angles 8 between the dipolar axis and the

electric field E, p(6) < exp (Ep cos 0/kT). 1)

Van Vleck remarked, that this proof cannot be regarded as satisfactory,
since the kinetic energies of rotation and vibration were entirely omitted
from the Hamiltonian in forming the Boltzmann distribution factor. Instead,
he derived equation 20 under fairly general assumptions, taking the kinetic
energy into account'3, We will use the same ideas in order to arrive at an
expression for the isotropic shift in free rotating molecules.

The Hamiltonian in the absence of the field is J#,. It contains both the
rotational kinetic energy and the electronic interactions. The eigenstates
are |a) with energies E,. The interaction with the magnetic field is #,, and
the isotropic shift operator is P. Note that #, and P now operate in the
combined space of rotational and electronic degrees of freedom. Since
| # .| < kT, we have, as in the foregoing section,

AH = 3 0,y <a| #.18> <BIP|a. 22)
aff

If we first confine our discussion to molecules with only one populated
electronic level, then 5, contains only the rotational kinetic energy and
A, is the spin Hamiltonian. Van Vleck’s basic assumption is that!?

(a|#.|B> = O, unless |E, — E;| < kT. (23)
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This assumption expresses the fact that selection rules ensure that only
close lying rotational states are mixed by .. With equation 19 we then
have

1
AH = — == % o] #.Plo) exp (—E/KT). (24)
which can be considered as Van Vleck’s equation 25* in generalized formt.
Now we have to evaluate the right hand side of equation 24. This can
easily be done if the molecules have three equal moments of inertia. The
unperturbed wave functions are then |lkmM), where lkm denote the nor-
malized Wigner matrix elements [(2] + 1)/87*]*D,(€), which are the eigen-
functions of the rotational kinetic energy operator'*' !5, and M runs over
the (25 + 1) components of the degenerate electronic ground level. The
energy of the state |lkmM) depends only on L
The operator product P3#, can be written as a sum of products of functions
F (2) and spin operators A4,

P, =Y F(QA,. (25)
Thus, ! '
1
AH = — T
Y. LY {2 + D/8n Digy Fy Dion dCM | Ag| M) exp (— E/JKT)
% lkm M q (26)

Y 21 + 1)*(2S + ) exp(—E/kT)
1

[dQ Y (M|P@Q)# Q)| M)

- 8n°kT(2S + 1) ’ @D
where use is made of the unitarity of the Wigner matrices
Y. DiAQ) D}, (Q) =21 + 1. (28)
kin

Equation 27 is exactly the same as equation 12 for the solid case. For mole-
cules with unequal moments of inertia the k-degeneracy is lifted'*~'6. But
because of the small energy differences between adjacent levels, only a
negligible error is introduced if we replace E, by E; ', such that equation
26 is valid for aspherical molecules as well.

Finally we consider molecules with low lying excited levels. The unper-
turbed Hamiltonian is now the sum of a rotational part 5 and an electronic
part # ;. We denote the eigenstates and eigenvalues of #; and 'y by
Greek and Latin letters, respectively. Equation 22 becomes

1
zzf:ﬁQia,m<id|9i"z\fﬂ><fﬁ|P|id>, (29)

1 In the case of electric susceptibility, AH stands for the average electric dipole moment per
molecule,#, = u-E, and P = u- e, where e is the unit vector along E.

313

AH =




ALEXANDER J. VEGA AND DANIEL FIAT
where

exp [ —(E; + E)kT] —exp[—(E, + Eg)/kT]
(E, + E) — (E; + E)) ‘

Again we assume that only closely spaced rotational levels are connected
by #,. This allows the simplification

Qia, rp = Qiy €Xp (—E,KT), (31)

for |E, — E;| <kT. Following the same procedure as outlined in equations
25-27 it can be shown that the expression for AH reduces to equation 28 for
the no rotation case.

One remark remains to be made. Throughout this section we assumed
tacitly that the wave functions in the absence of the field were direct products
of rotational and electronic parts, thus excluding the possibility of spin—
rotation interaction. However, since this interaction is both smaller than
kT and obeys the selection rules required for equation 238, we are allowed
to consider it as a part of #,. Since the shift vanishes at Hy = 0, we conclude
that its effect on the isotropic shift is of no importance.

Qia, 8= (30)

V. CONCLUSION AND DISCUSSION

We saw that the expressions for the isotropic shift for the states of no
rotation and free rotation are equal, at least to first order in H,/kT. Since
the tumbling of molecules in liquids can be considered as an intermediate
type of rotational motion between these two extremes, we conclude that the
same expressions also hold for the liquid state. Consequently, the pseudo
contact shift is independent of t and T, such that no contribution to non-
Curie behaviour is expected due to temperature dependence of the correlation
times.

The underlying reason for this result is clearly the fact that p(€2) is unaf-
fected by the nature of the random tumbling. This favours the second type
of approach to the liquid state problem mentioned in Section II, ie. the
reaction of the spin system to the random motions of the molecules is
effective, also in the fast tumbling case.

In a forthcoming paper we will discuss these conclusions in more detail.
In particular it will be shown, that the theory of Brownian motion provides
evidence for the validity of our results in the case of diffusional motion.

Let us return to the subject of motional narrowing. For simplicity we
consider again the example of nuclei which jump between two sites (Figure1).
The general conclusion of this paper suggests that the populations of the
levels in the two sites remain undisturbed, also in the case of very short 7.
That this does not contradict the phenomenon of motional narrowing, can be
understood in the following way.

In thermal equilibrium the number of molecules in a certain state is
constant in time, but the individual molecules jump rapidly back and forth.
In a resonance experiment we measure the Larmor frequency of the nuclei.
This frequency becomes practically equal for all nuclei if the jump rate
becomes faster than the difference in the local Larmor frequencies. If we now
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take the reaction of the spin system into account, there will be small changes
in the lifetimes of the different sites, but the individual spins remain jumping
at a high rate, and hence they still precess at one uniform Larmor frequency.
On the other hand, if we performed an experiment in which we could measure
the magnetizations in the two sites separately, we would find that M, and
M, remain ‘unmixed’ by the rapid jumps. The difference from the resonance
experiment is that here we do not follow the dynamic behaviour of the
individual spins, but rather count the instantaneous number of molecules
which find themselves in a certain state.

Pseudo contact shift is an example of this last type of measurement. It
measures the dipolar field generated by the paramagnetic ion, i.e. a quantity
which is directly related to the magnetization of the ion. Moreover, it is just
the part of the magnetization which depends on the orientation of the
molecule that gives rise to a pseudo contact shift. This is the reason why the
present considerations are of practical importance, primarily in the theory
of isotropic shifts.
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