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ABSTRACT

NMR was used to study the effect of melting on the electronic structure of
copper and aluminium. The Knight shift and spin-lattice relaxation time were
measured as a function of temperature in the solid and in the liquid state. From
these measurements the temperature dependence of K(a). the reciprocal
enhancement factor of the Korringa relation, is obtained.

In the case of copper it is shown that the main temperature effect is indirectly
through thermal expansion. It is shown that the conduction electrons density
of states and spin density at the nucleus are strongly influenced by sd hybridiza-
tion. Their temperature dependence is explained as due to the volume
dependence of the hybridization.

In aluminium. in contrast to copper. the results of K(x) as a function of
temperature cannot be explained as due to volume change, but rather a direct
temperature effect.

The explanation is based on the strong mixing of states near the Brillouin
zone. This mechanism should prevail only in polyvalent metals such as
aluminium, in contrast to monovalent metals such as copper, where this effect
can be neglected. The behaviour of other metals upon melting is discussed.

About twenty years ago, W. D. Knight discovered that the nmr line of a
nucleus in a metal is shifted relative to its line in a nonmetal. This is the well-
known Knight shift. This discovery made the nmr technique an important
research tool in the study of the electronic structure of metals. The study of
nmr in metals has become a very broad and active field.

We would like to discuss one problem in this field: the effect of melting
on the electronic structure of metals. This is a problem to which nmr has
made a significant contribution.

When a metal is heated, two major processes occur. The first is an increase
in the lattice volume, which is gradual in the solid state and changes abruptly
on reaching the melting point. The second is an increase in the amplitude of
atomic vibrations, which can be looked upon as a gradual deviation from the
order typical of the crystalline state, till a completely disordered state is
reached at the melting point. We will discuss the effect of each of these two
processes. In fact, a good test for any theory of electronic structure is its
ability to explain the effect of a change of atomic volume and of order on
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electronic properties. It seems that while the effect of volume can be calculated,
the effect of order is less clear.

How can nmr contribute to this problem? As is well known, it is preferable
to study electronic properties at the lowest possible temperatures. The reason
is that at higher temperatures, phonons or any kind of atomic motion can
mask the electronic properties. All the powerful techniques for the study of
electronic structure, such as de-Hass van Alphen’s, cyclotron resonance and
so on, are typically low temperature techniques. These techniques obviously
cannot be used to study our present problem. Melting, by its very nature, is
a high temperature phenomenon, in the sense of its having many phonons
and much atomic motion.

Now, instead of avoiding these perturbing phonons, one can use their
interaction with the electrons to obtain information on the electrons. This
is the basis of the techniques exploiting transport properties, such as electrical
and thermal conductivity, which were the first and most common methods
used in the study of liquid metals. However, transport properties are not
sufficiently sensitive to probe changes in electronic properties such as density
of states or wave function behaviour of the conduction electrons.

In contrast, in nmr the Knight shift and the spin-lattice relaxation
depend explicitly on these electronic properties, and as regards the effect
of phonons and atomic motion on the nmr properties, there are cases where
these may either be neglected or readily eliminated.

We wish to discuss two specific metals which we have studied, namely
copper and aluminium, which behave differently under change of tempera-
ture. We will discuss copper in greater detail and then compare it with
aluminium and also with alkali metals.

The nmr technique exploits the interaction between the conduction
electrons and the nuclei. One common feature of the metals just mentioned
is that almost all the hyperfine interaction of the nucleus with the conduction
electrons is due to contact hyperfine interaction. This interaction gives rise
to the Knight shift

K = (8n/3)Q2Pgy, (1)

where the Pauli susceptibility is xp, = $(#y,)* N(Eg) and Pg = {|¥(O)|?) is
the spin density at the nucleus, averaged over all the Fermi surface. This
interaction also determinés the spin—lattice relaxation time

2
<%) = 7K Tﬁ3(vev..)2[ QPg- N (EF)] )

1

Here s stands for the s electrons, as only they contribute to the observed
K and T;.

The density of states N(Eg) and the quantity Py are two electronic proper-
ties that characterize the metal band structure. As K and T, depend directly
on these quantities, we expect nmr measurements in metals to be sensitive
to changes in electronic structure.

Optical and transport properties change cons1derably upon meltmg and
also show free-electron like characteristics in the liquid, whereas in the solid

340



NMR OF SOLID AND LIQUID METALS

they seem to be influenced strongly by band structure effects. Thus we expect
nmr properties to change considerably too upon melting. Surprisingly
however, the Knight shift in most of the metals changes only slightly. This
apparent contradiction between nmr and transport properties has been
challenged for a long time.

Several explanations have been suggested for the fact that Knight shift
in many metals changes little on melting. One is that short range order is
preserved in the liquid; however there is no convincing evidence for such an
assumption. Another explanation is that the N(Eg) in the solid and the liquid
are both free-electron like—this also seems unlikely, at least in some metals
such as lithium where the solid is not free-electron like, and nevertheless
there is no change in K upon melting. We hope that our study of copper and
aluminium throws some light on this problem.

We measured the Knight shift and spin-lattice relaxation of copper
from room temperature up to the melting point, and in the liquid state up
to 1250°C!. Special attention was paid to achieving high accuracy in the
measurements, a matter of great importance, as will be seen later on.

We have confirmed that the effects measured come only from the conduction
electrons. This is one of the difficulties mentioned earlier of working at high
temperatures. As regards the Knight shift, which results from the static part
of the hyperfine interaction, there can be no ambiguity, but 7; can be very
sensitive to atomic motion such as lattice vibration or diffusion. Especially
in copper, which has a quadrupole moment, the effect of atomic motion on
T, might be significant. Fortunately, copper has two isotopes with different
quadrupole moments. Comparing the T; of the two isotopes, it can easily
be shown that the effect of atomic motion is negligible, and therefore the
measured spin-lattice relaxation in copper may be taken to result from
magnetic hyperfine interaction with the conduction electrons’.

The dependence of any phenomenon on temperature originates from two
effects—the direct and the indirect. For example, the dependence of the Knight
shift on temperature will be:

0K\ (0K oK av )
(a_T P“(ET)V+ v T*(E’f ,

The best way to separate these two effects is to measure, in addition to the
temperature dependence of K, also its pressure dependence (keeping the
temperature constant). From the latter, we obtain only the effect of volume,
which can be subtracted from the overall temperature dependence to give
the direct effect of temperature.

Some years ago, Benedek and Kushida measured the Knight shift of
copper as a function of pressure®. Although the range of volume change was
quite small, due to the small compressibility of copper, one can show, by
comparing their results with our measurements, that the explicit temperature
dependence of K in copper can be neglected. Therefore, from now on we
shall present our data for copper as a function of volume.

What is the mechanism which causes the Knight shift to change with
volume? Let us look at the Knight shift formula again: it contains two
quantities N(Eg) and Pp.
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Assuming free electron behaviour, that is, no band structure effect, it can
be easily shown that K is proportional to Q™ %, and therefore should decrease
with increasing volume, which is obviously not the behaviour we obtain
experimentally. In order to understand what happens, we would like to
obtain the behaviour of N(Eg) and Pg separately as a function of volume.

The way to differentiate between them, is to use the relation between the
two measured quantities K and T, known as the Korringa relation.>
Assuming no electron—electron interaction it relates 7; and K as follows:

K*T,T = (hfdnk) (yo/1,)* = 1 (4)

However, this relation, in the above form, is almost never obeyed. This
is due to electron—electron interaction, which is not taken into account in the
derivation of the relation. The electron—electron interaction enhances the
independent electron susceptibility, so that the Pauli susceptibility becomes

Ao = X/l — a) (5)

and the Knight shift, which is proportional to yp, is enhanced similarly.

When electron—electron interaction can be represented by an effective
potential V(g), where g is the momentum transter between the interacting
electrons, then the enhancement paramater is & = V(O) N(Eg). The spin—
lattice relaxation rate is also expected to be enhanced, but, as shown by
Moriya? its enhancement is weaker than that of the Knight shift

1 0

1= (7) @ - @ vavor> ©
1 1

where F(q) is the static response function of noninteracting electrons,

and the outer brackets indicate averaging over all the pairs of states on the

Fermi surface having a momentum difference g. As K and T, are enhanced

to different extents, the Korringa relation will have a new form

K*T,T = n/K(x) (7

where K(o) is a complicated function of «.

There are several calculations of the dependence of K(a) on «. We cannot
enter into the details of these calculations, but we can show through them
that the results of our present study are not sensitive to the choice of the
model for the electron-electron interaction.

We chose to use the recent calculations of Shaw and Warren3, represented
by graph B in Figure 1. It has been shown that the enhancement of the
Korringa relation in the alkali metals is accounted for by this K(x)’. The .
main difference between the various calculations of K(«) is the assumption
about the range of the electron—electron interaction. For a long-range
interaction, for instance, it can be shown that the relaxation rate is not
enhanced and as a result K(x) = (1 — «)?. Graph C represents this behaviour.
Graph A on the other hand, represents the other extreme assumption of a
very short-range interaction, namely a J-function®. The need for a relation
K(o) will be seen later, when we use it to get important information on the
electronic density of states.
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Figure 1. The reciprocal enhancement factor of the Korringa relation K(«), as against the
enhancement parameter. The different calculations were made assuming for the interaction
(A) 5-like behaviour®, (B) short but finite range,* (C) long range.

As to terminology, we use the term ‘independent electron gas’, in the sense
of electrons without electron—electron interaction, and we use the word ‘free’
for electrons free of the atomic potential, that is free of what is called the
band structure effect.

So far we have included only the effect of electron—electron interaction
on the Knight shift and T}, and we got the enhanced Korringa constant K(c).
So our electrons are not ‘independent’ any more, but still ‘free’, (a quite
familiar situation!).

But of course we do have to include the effect of the lattice, or the band
structure.

The band-structure effect can be included using the method of Silverstein”’,

which gives
*
2= af("i) (®)
m

Here f stands for free electron model, and (m*/m) = N(Eg)/N((Eg) is the band
effective mass ratio. The expression for the spin susceptibility, taking into
account both the electron—electron interaction and the band-structure effect
is

m*/m 0 ©)

Yo =1 o(m*/m) X

Let us see now how, by using the above relation, we can get the separate
dependence of m* and Py on volume. From the dependence of K and T; on
volume, we obtain, using the modified Korringa relation, the dependence
of K(x) on volume. This dependence, in the case of copper metal, is given
in Figure 2 which actually summarizes the measurements of both the K and
T, It is seen that K(x) changes considerably over the present volume and
temperature ranges. The next step is to use the dependence of K(x) on =,
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Figure 2. The reciprocal enhancement factor of the Korringa relation, K(«), in copper metal,
as function of volume.?

as calculated by Shaw and Warren, and to obtain the volume dependence of
o. This volume dependence of « may be brought about by both « and m*.
It can be shown that the volume dependence of o, is very small, relative to
that of o8 Thus we assume that the whole volume dependence of a is caused
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Figure 3. m*/m and Q Py as against volume, derived from the experimental data of K and T;.
Both quantities are presented as relative to their room temperature values.
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by m*/m. Using this dependence and the Knight shift dependence on volume,
we get the second dependence, namely that of Pg, on volume.

Both these dependences are plotted in Figure 3. The upper and lower
graphs in each case are obtained by assuming the two extreme cases of
interaction, a J-function and a long-range electron—electron interaction.
The main features of these graphs are

1. A strong volume dependence of Pg.

2. P changes smoothly through melting; in fact, its behaviour in the
liquid is almost an extrapolation from the solid.

3. A weaker volume dependence of m*, with a discontinuity of about
2 per cent in the transition from the solid to the liquid.

This is an interesting result, as it shows that the main effect of melting is
due to the change in volume.

The destruction of order seems to have no effect on Py, and only a slight
effect on the density of states. In order to understand the reason for this, we
have to enter briefly into the details of the electronic structure of copper.

The features of the band structure of copper are well-known, being a metal
widely studied, both theoretically and experimentally. Copper has an atomic
configuration 3d!°4s. The electronic band structure in the solid state is
governed by the 3d states. These states do not behave like unperturbed
atomic core states; on the contrary, they are quite strongly perturbed by the
lattice potential. Thus, the d states form a narrow band, the energy of which
falls just about in the middle of the broad s band. The interaction between the
d and s electrons causes the phenomenon of hybridization, which is described
schematically in Figure 4. The broken lines depict the broad s band and the
narrow d band, with no interaction between the two. As a result of the inter-
action the bands take the form given by the full line, as can be shown by a
simple calculation.

The system of a broad free electron band and a narrow d band can be

Figure 4. Hybridization between a free-electron band and a d-level, (the dashed lines), for the
case V,y = + E,.
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described in the following manner. Both the free electron band #2k?/2m and
the d level E, are described by a 2 x 2 model Hamiltonian

h* k?
2m s
H-— (10)
|2

where V4 is the hybridization matrix element. To get the energy as a function
of K, we solve the secular equation and get

K2 k2 2 12\2 E
E=%{Ed+—~hi[(Ed—h )+4V§‘J}
2m 2m

(which is described by the solid line in Figure 4 for the special case of V,; =
E4/4).

As a result of the hybridization there is a splitting of the two low mixed
bands. The splitting is given by 2V, at the intersection point. The other
effect is that far from the intersection point, namely when #*K?/2m — E; >
Vs there is a second order shift of the free electron energy

S8E ~ VZL/[Hk22m — E,]

Such a shift will influence the density of states at the Fermi level. Let us
recall that the density of states at the Fermi level is defined as

1 d’K
NED = G J @E/d(0)s, (a1

where the integration is over the whole Fermi surface. Then, using an approxi-
mation of a Fermi sphere, and the energy shift due to hybridization, one
gets?!

m* £ 1
m Sl — [Vsd/(EF - Ed)]z

where S is the actual area of the Fermi surface and S; is its free-electron
equivalent.

In order to obtain the volume dependence of m* we have to know S,
E; — E; and V4 as a function of volume. The dependence of Ex — E,; on
volume is obtained from optical measurements as a function of temperature®
and pressure.'® What about the dependence of V,; on volume? Fortunately,
there are self-consistent calculations performed by Jacobs!! and the volume
dependence obtained in this way has been confirmed by an independent
estimate based on the measurement of a direct optical transition as a function
of temperature.

The dependence of hybridization parameter V., on volume is the result
of special features of the d wave function; these wave functions are distorted
in the solid relative to their shape in the free atom. The amount of distortion
is sensitive to the distances between the atoms, or in other words, to the
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volume. The amount of distortion affects the s—d interaction and thus the
hybridization is sensitive to volume.

In Figure 5 the dashed line represents the volume dependence of m*/m in
the solid and liquid state, as derived using the procedure described. We assume
that upon melting order is completely destroyed. As a result, the structure
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100 1.25 1.10 115
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Figure 5. m*/m as against volume (relative to room temperature value). The solid line is the
experimentally derived value, whereas the dashed line is theoretical.

of the Fermi surface, which is a reflection of the order, is smeared out. In the
case of copper the eight necks that touch the Brillouin zone disappear and
the Fermi surface becomes a sphere. In the solid, the states on the eight faces
of these necks do not contribute to the S appearing in the calculation of the
density of states; but in the liquid we have to add the area of these necks to
our calculation, and by doing so we obtain an increase in the calculated
density of states. The solid line in Figure 5, on the other hand, represents
m*/m as derived from our measurements. One can see that in the solid state
the agreement of calculations with experiment is very good, but in the liquid
there is a considerable difference. We think that the reason for this discrepancy
is that in calculating m*/m for the solid phase, we neglected the contributions
to the density of states coming from singularities in the energy. These
singularities arise from the actual contact of the Fermi surface with the
Brillouin zone boundaries. The contributions are positive and equal to a
few per cent of the total density of states' 2. Upon melting, order is destroyed
and the singularities disappear together with the Brillouin zone and necks.
So the loss of order has two effects that seem almost to cancel each other.

To sum up, in the solid and the liquid we can explain the behaviour of
the density of states as mainly a volume effect, through the effect of hybridiza-
tion. On melting, in addition to the volume effect, there is a small change in
m* resulting from loss of order.

We would like now to discuss the behaviour of Pg. Two things characterize
this behaviour—strong volume dependence, and smooth extrapolation of Py
vs volume curve from the solid into the liquid state. Just from a simple
qualitative consideration we can explain this behaviour as follows: in copper
the only contribution to Py is from electrons which are on the Fermi level
and have s-type wave functions. The hybridization V4 causes a large amount
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of the Fermi level wave function to be of the d type, which does not contribute
to Pr. The amount of d or non-s character is proportional to V., As the
volume increases, V,; decreases, the amount of non-s character decreases
and hence Pg increases with volume.

To calculate Pr we have to know the wave function on the Fermi level.
A few attempts at such a calculation have been made for copper, but none of
them aimed at obtaining the volume dependence of Pr. The simplest
approximation for Py is made by assuming a single OPW behaviour of the
Fermi electrons. However, though this method is quite successful for
calculating Py of many metals, it gives for copper a value of Pr much larger
than that derived from experiment’3. Moreover, the OPW method does not
give a volume dependence of Pr. While incorporating the hybridization
effect by way of renormalizing the OPW-wave function (taking into account
the d-character mixed into it) the volume dependence achieved is only one
fifth from that derived from experiment!.

Using a KKR method of calculation, Davis et al.'* got a value of Pr much
closer to the experimental value. In this method the many-electron effects,
namely exchange and correlation, are taken into account. These effects seem
to modify strongly the wave functions and Py in copper, due to hybridization
causing mixture of 3d-character into the conduction wave function. These
correlation effects might also.be the reason for large dependence of P on
volume. In Figure 6 we draw our experimental values of Pp versus the

;L"g;g’:!ig"i"m”t OPW-renormal
e
g
av b
N
05| ]
1 L
0 10 20 30

Per cent of d-character

Figure 6. Py as against d character of the Fermi electrons: [V,,/(Eg — Eg)]% The shaded area

is experimentally derived, whereas the dashed line is calculated by the OPW method. The

uncertainty in the absolute value of Py is due to large inaccuracy in estimating core-polarization
contribution.

percentage of d wave function in the total wave function on the Fermi level.
This percentage is calculated using the effect of volume on V,,, Eg, E,.
Extrapolation of the curve to zero per cent d shows that Py reaches its value
calculated by the simple OPW method, without hybridization. It is reasonable
to conclude then that hybridization not only reduces the value of P but
also brings about its strong volume dependence.
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As to the effect of melting, the dependence of P on volume in the liquid
is an extrapolation of that in the solid. The only effect of melting on Pg is that
of the accompanying volume change. This picture agrees well with the con-
clusion that the copper band structure is dominated by hybridization,
which is very weakly influenced by order.

We have performed the same kind of K and 7; measurements on aluminium
up to the melting point and in the liquid state’’. We analyzed the results in
the same manner, first eliminating all the effects on T, that are not of an
electronic nature. Then we attempted to determine the relative contributions
of the two kinds of temperature effects—the direct and the indirect—through
thermal expansion. Fortunately, Kushida and Murphy'® have measured
quite recently the effect of pressure on aluminium Knight shift; using their
results and our own, we could determine both these quantities.

Contrary to the results in copper, in aluminium we found a large explicit
temperature dependence of the Knight shift. (K/0T)y has a large positive
value, whereas (0K/0V ) is negative. Thus, in aluminium the effect of raising
the temperature is entirely different from that in copper. It not only changes
the Knight shift by expanding the lattice but also, and quite significantly,
influences K by destroying the order.

What are the individual behaviours of m* and Pg in aluminium? Using
the modified Korringa relation, we get from our measurements the tempera-
ture dependence of K(). It is given in _Figure 7 versus atomic value, keeping
the temperature an implicit parameter. K(«) has a considerable temperature
dependence in the solid, whereas it is almost independent of temperature
in the liquid state. We can see that this behaviour is different from that of
copper. Following the same procedure as in copper, we get a strong depen-
dence on volume of both m* and P in the solid, while in the liquid they are
almost volume independent. This is a surprising result for aluminium. Being
almost a free metal, with m* close to unity, we do not expect to get such volume
dependence of these quantities, or not the twenty per cent rise in m* we
obtained. There is no mechanism related to band structure, like the hybridiza-
ation in copper, that we can invoke in the case of aluminium.

There must be something wrong in the method of deriving m* and Pg
from K(o) in the case of aluminium. It seems that the existing calculations

T v T T | T T T T T T T
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Figure 7. K(«) in aluminium metal, as function of volume'®. Temperature is an implicit parameter.
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of K(a) which are correct for monovalent metals, like copper, are not valid
for aluminium, which is a trivalent metal.

How can this feature of being a trivalent metal affect the above calculations?
Deriving the K(o) we assume a spherical Fermi surface, which is a good
assumption in the case of most of the monovalent metals. One result of this
assumption is that the electron—electron interaction is not dependent on the
momentum of each electron taking part in the interaction, but rather on the
momentum transfer. However, aluminium, being a trivalent metal, occupies
three Brillouin zones and its Fermi surface cuts the boundary between the
second and third Brillouin zones. As a result there is a strong mixing between
states whose momenta differ by a reciprocal lattice vector. It can be shown
that because of this mixing the formula for K(«) as given for a spherical
Fermi surface is not correct, but rather the effective K(«) has a higher value
than in the monovalent case.

In the liquid, as a result of destroying order, there is no Brillouin zone to
speak of; the above effect which is of structural character disappears and one
gets a reduction of K(x) to a value close to the free-electronic case. We can
see in Figure 7 that this is really the behaviour of K(x) in aluminium.

The effect of the rising temperature in the solid is to smear off the structural

0.90
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0.60
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Figure 8. K(x) as against volume for copper!, aluminium?® and sodium.'” The uncertainty in
K(e) of sodium is due to inaccuracies in the data for K and T;.
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effects and thus reduce K(a«) gradually. This is qualitatively in accordance
with the behaviour in aluminium.

In the last figure, Figure 8, we compare the behaviour of three metals—
copper, aluminium and sodium. We chose to compare between K(x) as
against the volume, because this quantity is in some way representative of
the different effects of temperature on the electronic structure of the metal.
In copper it was shown that the change in K(a) is due to the effect of volume
change on the band structure parameters. In aluminium it seems that it is
the direct temperature effect which induces the change in K(«) in the solid.
In sodium, being a monovalent free-electron metal we expect weak dependence
of K(x) on both volume and temperature. Unfortunately, the accuracy in
the available results!” are not good enough to exemplify this point.

One can conclude that sufficiently accurate data of T; and K as functions
of temperature can be used to learn about the effects of temperature on the
density of states and the spin density P,. We hope that our discussion has
thrown some light on the problem of the effect of melting on the Knight shilt,
and also on the electronic structure of metals.
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