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ABSTRACT
The present status of understanding of the vibrational spectra (infra-red,
Raman and neutron scattering) of organic polymers considered as structurally
disordered systems is reviewed and discussed. The limitations of the results
obtained from the study of polymers as translationally symmetrical systems
are pointed out and one of the possible theoretical techniques for the analysis
of disordered polymers is presented. It is pointed out that numerical methods
are suitable for handling these rather complicated organic molecules and
do not require the assumption of structural simplifications which may obscure
the real physics of the phenomenon and the corresponding interpretation of
the experimental results which are already available. The results obtained so
far on polyethylene, polytetrafluoroethylene and hydrogen-bonded systems

are discussed.

1. INTRODUCTION
In the past decade the main interest of vibrational spectroscopy of poly-

meric materials has been focused on the understanding of the finger-print
region of the spectrum in terms of their molecular structure1± The largest
source of experimental data has been the infra-red spectrum because of the
high technological development of the commercial instruments and because
of the relative ease in obtaining an infra-red spectrum. The recent availability
of laser—Raman spectrometers has provided a sudden burst of experimental
data on the Raman spectrum of polymers5. While all these data refer to the
optical properties, the study of the inelastic coherent or incoherent scattering
of neutrons (ICNS, IINS) from these materials has provided additional
information on their lattice dynamics and bulk properties4' 6- 8 The inter-
pretation of these experimental data has been mainly carried out on the basis
of an idealized molecular and crystalline model for which it has been assumed
that: (i) the polymerization reaction has occurred in an ideal way, (ii) the
polymer chain has taken up the most stable conformation as resulting from
a balance of intra and inter-molecular forces, (iii) the consequent crystal
lattice is perfectly organized. In addition to all these assumptions it has also
been considered that the chain has infinite length.

The analysis of the experimental data has been carried out by a large
number of authors who have followed three main approaches:

(a) Chemical analysis from group—frequency correlations. This study has
proved to be very useful to the chemist in fundamental and practical applica-
tions in order chemically to characterize a polymer sample1' 9h1

(b) Vibrational analysis using group theoretical methods. This approach
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has provided valuable information on the structure (stereospeeifieity and
conformation) of the molecular chain2' 12, 13, These types of studies have been
complementary to x-ray diffraction studies even if sometimes some still
unsettled disagreement has been found'4.

(e) Theoretical treatment of the lattice dynamics.

No other class of organic crystals has been the subject of so thorough a
treatment as have organic polymers. One of the peculiar reasons is that intra-
chain forces of covalent type are at least one order of magnitude larger than
inter-molecular (inter-chain) forces of Van der Waals type. In a first approxi-
mation the dynamics of one single polymer chain can then be considered
neglecting the influence of the neighbouring chains4. Only in a second order
approximation can inter-chain forces be taken into account from the few
observed Davydov's splittings'5-'7 or from the (so far unobserved for
polymers'8) static field splittings. Polymer chains can then be considered
as 'one dimensional crystals'. This definition implies that we consider a
translational symmetry only along the axis of the polymer chain even allowing
all the degrees of freedom on three dimensions.

The lattice dynamical treatment is then restricted to the study of phonon
waves propagating along the chain axis. Since at the beginning only the
optical spectrum was available calculations were restricted to k = 0

922 The more recent availability of phonon dispersion curves
from inelastic coherent neutron scattering experiments' 8, 2 324 and of
vibrational density of states25 from inelastic incoherent neutron scattering
experiments has pushed various workers to predict or to verify the dispersion
of phonons by a complete lattice dynamical calculation throughout the
whole one-dimensional Brillouin zone4' 2631W Theories were proposed and
translated into suitable computer programmes which allowed workers to
carry out several calculations on the simplest and basically most important
polymers. Calculations were also extended to three-dimensional lattices in
order to account for Davydov's splitting, for vibrational density of states
and dispersion curves for phonons propagating along and across the chain
axis8' 18,32

The main contribution given by the studies described in section e is to be
able to give a comprehensive interpretation of a large set of experimental
data and to derive dynamical properties for the understanding of thermo-
dynamical or mechanical properties of these materials. No relevant structural
information was derived from these theoretical treatments. However, the
availability of theoretical methods has opened new fields in polymer dynam-
ics which we are going to discuss in this paper.

2. PERFECT POLYMERS

The basic starting point of the theoretical treatment is the existence of a
translational periodicity or translational symmetry of the lattice which allows
us to write the dynamical matrix of the lattice in terms of the properties of
the atoms of the unit cell only, thus reducing the complexity of the treatment.

Since we are going to adopt in our discussion mainly the Wilson's type

36



VIBRATIONAL SPECTRA OF POLYMERS

internal displacement coordinates3, well known to the chemist, let us write
the few basic equations to which we shall refer throughout this paper.

We repeat here, for the sake of clarity, the basic theory we have developed
and already presented elsewhere30 for the case of three-dimensional crystals.
The reduction to one-dimensional crystals is obvious.

Let us briefly introduce the internal coordinates in the case of the perfect
lattice. Let n1, n2 and n3 label each unit cell and let n indicate any given triplet.
The nth unit cell contains N atoms whose vibrations can be described by
3M Cartesian coordinates collected in the vector x or by 3N independent
internal coordinates collected in a vector r,. Let t be the vector which locates
the nth unit cell from a suitably chosen origin. The internal phonon co-
ordinates R(k) can be defined as

14(k) = (1/12m) >x exp [—it. t) (1)

where k is the wave vector in reciprocal space.
The potential energy of the crystal can be expressed as

2 V = Jk(k)FR(k) 14(k) dk (2)

where the integration is extended over the entire first Brillouin zone. It can
be shown that in equation 2 FR(k) takes the form

FR(k) = F +L5tkexp(—ik.t8) + flexp(ik.t) (3)

where F is the matrix of the force constants relating coordinates within
the same cell; F is the matrix of the force constants relating the coordinates
of two cells s units apart.

Even if the dynamical matrix of the perfect crystal can be written in terms
of the 14(k) using equation 3 and a proper metrical tensor GR(k), we prefer
in this case to express it in terms of the usual Cartesian phonon coordinates

X(k) = (l/\/2n) xexp(—ik.t) (4)

We must then look for the transformation matrix 11(k) relating the Cartesian
phonon coordinates to the internal ones. Using Wilson's technique the
internal coordinate vector r can be expressed as

B_pc_1 + ... + B1x,,_1 + B0x + B1x÷1 + ... + B,x,÷, (5)

= B0x + E(B_,x_, + B1x,) (6)

where x,, + indicates the Cartesian coordinate vector of a unit cell, 1 units
distant from the nth cell. B is the corresponding transformation matrix
between r,, and x÷,. Substitution of equation 6 into equation 1 and taking
account of equation 4 gives

14(k) = L, B exp { —ikt(l)}X(k) (7)
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from which the desired transformation matrix B(k) can be derived:

B(k) = Y B1 exp { —ikt(l)} (8)

We can now express the potential energy in Cartesian coordinates in terms
of the potential energy in internal coordinates as:

F(k) = (k)FR(k)B(k) (9)

from which the dynamical matrix is derived

D(k) = MF(k)M (10)

M being the diagonal matrix of the masses.
The 3N dispersion curves for a given crystal can be obtained numerically

from the solution of the eigenvalue equation

[D(k) — w2(k)I]L(k) = 0 (11)

once the force field FR is numerically known. The eigenvectors L(k) can also
be obtained from the solution of equation 11. Throughout this paper it will
be assumed that the force field in internal coordinates is well knownt.

The previous theory has been applied by us or by other authors to several
polymeric materials. The reader is referred to the corresponding literature
for a detailed discussion of the results and of the problems still left unsolved
for each particular polymer molecule.

With the availability of large and fast computers calculations have been
extended to more and more complicated cases. While the lattice dynamics
of perfect polyethylene and polyoxymethylene can at present be considered
satisfactorily known4 8, isotactic polypropylene, polyvinyl chloride and
several other basic polymers still require further studies. Recently calcula-
tions have been extended to models of polypeptides in order to tackle in a
more quantitative and detailed way the extremely difficult problem of
biopolymers3436. We now consider it useful to make a few general com-
ments:

(1) Because of the large number of atoms per chemical repeating unit the
number of phonon dispersion branches becomes extremely large. In practice
a continuous set of phonon waves can be transmitted by the polymer through-
out the whole frequency range from 0 to approximately 1 800 cm' with
very little or no energy gaps.

(2) Several attempts have been made to reduce the difficulty of the
problem by reducing the complex polymer chain to a model of the most
meaningful point masses3435. The results of these types of studies should
be treated with great caution since the reduction to a point mass model in
general forcefully neglects dynamically important variables thus altering
the validity of the derived conclusions. The discrepancy of the results of the
studies of solid hydrogen-bonded polymers like methanol3739 and ice404
can be taken as typical examples.

(3) Several phonon branches are calculated to be independent of k for

For a critical discussion on force fields for polymers, see ref. 4.
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the following main reasons: (i) strong covalent forces do not allow strong
couplings between neighbouring oscillators, (ii) groups of atoms in side-
chains are dynamically uncoupled (either through potential or kinetic energy)
between each other.

(4) When forces become weaker (this generally occurs for bending and
torsional motions) a large dispersion takes place and phonons belonging
to the same symmetry species for a given k couple giving rise to non-crossing
between phonon branches with the consequent mixing of the various
oscillators. An overall description of the modes derived from potential
energy distribution45 becomes then impracticable. It has to be pointed out,
however, that the symmetry of polymer chains is high only for very simple
systems (e.g. polyethylene, tellurium, selenium, polyoxymethylene, poly-
tetrafluoroethylene) when considered at the F' point. The symmetry of
phonons for k 0 is much lowered for most of the eases.

3. IMPURE AND DISORDERED POLYMERS

We wish to treat here in more detail the problem of the lattice dynamics
of polymeric materials when some sort of defect or disorder is introduced
into the chain.

It is now of common knowledge that the idealized model of a polymer
chain is only a very rough approximation of the real polymer. Through
several independent physieoehemieal techniques the presence of amorphous
or irregular or disordered material in a solid sample of a given polymer has
been proved4649. The various types of defects which can possibly occur
in a polymer have already been discussed50; they can then generally be
collected into four main classes: chemical defects (isotopic substitution,
switching of the direction of insertion of the monomer unit into the chain,
chain branching, crosslinking); conformational defects (chain folding, kinks,
jogs); stereochemical defects (different tacticity) and packing defects (amor-
phous phase, lack of three-dimensional order).

The vibrational spectrum (infra-red, Raman and neutron scattering)
shows several non-negligible and sometimes very prominent features which
should be interpreted as arising from the imperfect part of the chain. The
analysis of these extra features can be carried out in two ways, namely on
qualitative grounds using empirical spectral correlations5' or by a quantita-
tive approach based on lattice dynamical calculations. While the former
approach has been widely adopted in industrial laboratories for a quick and
qualitative characterization of a polymeric material1 1, we have recently
carried out some studies based on a detailed quantitative approaeh5256.

The dynamical quantities from experiments or calculation on the perfect
lattice which we consider of basic importance for a quantitative study of
the problem of real polymers are the following:

phonon dispersion curves, u4k);
optical phonon frequencies, w(k = 0);
optical phonon intensities, 1(w), w(k = 0);
one phonon density of states, g(w);
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amplitude weighted one-phonon density of states, g(w)A;
dipole or polarizability weighted density of states, g(w)'1.

As will be discussed in this paper some of the dynamical quantities just
mentioned can be obtained readily from a standard lattice dynamical cal-
culation on perfect one-dimensional or three-dimensional polymeric materials
using equations 1 to 11. A few require more careful consideration and are
now the subject of extensive studies in our laboratory. The 1(w) determine
the appearance of the optical spectrum and are influenced by the symmetry
of the system. The higher the symmetry the more strict are the operative
optical selection rules and thus substantially simplify the optical spectrum
(e.g. polyethylene28). w(k), g(w), g(w)" mainly determine the experimental
results from neutron scattering experiments on single crystals, on stretch-
oriented or on polycrystalline materials.

The introduction of some sort of defect into the model modifies the dyna-
mics of the system to an extent depending on the concentration of defects
and on their coupling with the host lattice or with neighbouring defects.
Several efforts have been variously made by many authors for the analytical
treatment of the effect of a defect on the dynamics of a defect-containing
lattice. The basic concept is to treat the perturbation to the dynamics of the
perfect lattice by the defects using the Green's function method57-59. The
basic limitation of this method is that the lattice should be quite simple, the
defect perturbation be small (e.g. isolated mass and force constant defects)
and their concentration small such that the defects cannot interact. The
results of these analytical treatments have been mainly applied and verified
in the case of simple inorganic crystals60 61

One of the peculiar features of polymeric systems is that the concentration
of defects is generally high and the defects entail changes of geometry and
force constants throughout several atoms along the chain. One thus moves
from an impure system to a disordered one. it then becomes impossible to
apply the Green's function method to real polymeric systems and numerical
methods must he developed for this purpose62'63

The main reason why a numerical method becomes useful is that a quantity
of direct physical meaning required from such dynamical systems is the
density of vibrational states g(w). While the knowledge of a single eigenvalue
may be of no use or only very rarely required, the knowledge of the whole
vibrational spectrum is compulsory for the understanding of the physical
quantities related to vibrations. On the same grounds it is not essential to
derive the complete set of eigenvectors but one may need only a few which
may be essential in the analysis of the experimental data such as infra-red,
Raman and neutron scattering spectra.

The numerical method based on the Negative Eigenvalue Theorem (NET)
we are going to discuss allows the direct calculation of g(w) at any desired
accuracy thus reaching, if necessary, that of a single isolated eigenvalue.
Approximate or exact eigenvectors can also be obtained by the so-called
'inverse iteration method'. The NET was introduced first by Dean et a!.83
who treated the vibrations of several disordered systems in this way.

Let us describe briefly the main lines of the procedure. We wish to compute
the number n(w2 — w1) of eigenvalues of the 3Np x 3Np dynamical matrix
D which lie in the interval (w1, w2) where w1 and w2 are positive real numbers
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such that @2 > to1. The number nfro2 — w) is given by

n(w2 — cot) = — (021) — (D —
co1I) (12)

where 1 is the 3Np x 3Np unit matrix and i7(D —w 1) is the number of
negative eigenvalues of the matrix

D1=D—co1I (13)

The computation of the negative eigenvalues of D1 is performed by
a particular partitioning of D1, which applies to any symmetrical matrix.
This is particularly convenient since D has a codiagonal form.

Thc NET states that, given a symmetrical matrix M of dimensions r x r,
partitioned as follows

A1

2 A2 B3
(14)0

Ak

where A1 has dimensions r. x r.
B has dimensions r_ x

k
and Er.=ri+1 1

then the number (M — xl) of negative eigenvalucs of the matrix M — xl
is given by

— xl) = i1 i7(U1) (15)

where

U = A1
— xI —

U1 = A1
—

x11 (16)

The particular partitioning we perform on D1 is the following. Let
dcnote the matrix D1 partitioned as

= (17)

where X1 is a 1 x 1 matrix
Y1 isa I x (3Np — 1)matrix
Z1 is a (3Np — 1) x (3Np — 1) matrix

Then from equation 15, one has
= i7(X1) + n(12) (18)

D21 = — (19)
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One can continue the process as indicated in equation 19 for 3Np — 1 times
until one reaches the result that

3Np

7(D) j1 (X) (20)

This particular partitioning avoids inversion of matrices because each
X1 is a 1 x 1 matrix. The time for computing each D is lowered by the
fact that the row matrix entering in its definition has only C — 1 non-
zero elements where C is the number of codiagonals of D; thus the elements
of Z which are modified by equation 19 are only those lying in its first
(C — 1) rows and columnsl.

The intervals (wi, w2) can be restricted to any desired accuracy. For
comparison of the calculated g(w) with the spectra it is enough to use

w = (02 — 0 = 5 cm 1

but for the computation of eigenvectors a more precise knowledge of the
approximate eigenvalues is required. For this purpose the interval do =

— w in the region of the spectrum where we wish to know the eigen-
vectors is restricted more and more until dw contains only one eigenvalue.
Let us call oi the value -(w2 — w) and (01 the (unknown) exact eigenvalue
of D occurring in dw. The procedure applied to compute wensures that

(O — < k
where Wk is any other exact eigenvalue of D. For computing the eigenvector
L associated with wi we now proceed with the 'Inverse Iteration Method'".
We choose an arbitrary trial 3Np vector u0 and construct

v1 = (P — w.I) 1u0 (22)

u1 = v1/max.(v1)

where max. (v1) denotes the element of largest modulus in v1 and then repeat
for a certain number of times s the two steps 22 of iteration. The rapidity
of convergence of u to L1 (the true eigenvector) depends on the condition
21. Let us express the arbitrary vector u by means of the complete set of
elgenvectors Lk of D

3Np

11 = E (23)k I
Then any step in equations 22 can be re-written, apart from a normalization
factor,

Us
— ) — SJ

Equation 21 ensures that the contribution of Lk(k i) to u5 decreases with
increasing s.

The time required to compute a step of the histogram for g(o4, as given in equation 12, for
a matrix D with dimensions I 800 x 1 800 and 30 non-zero codiagonals is about 30 seconds on
a UNIVAC 1106.

By comparison with the Jacobi method on 120 x 120 matrices three iterations are enough
to ensure convergence up to the sixth decimal place, when equation 21 is satisfied.
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The use on computers of equation 20 is difficult because large matrices
must be inverted. This difficulty can be avoided'2 by using the following
decomposition of D —

D—oiI=UAU (24)

where U is an upper triangular matrix and the elements of the diagonal
matrix A are chosen in such a way that the diagonal elements of U are unity.
By use of equation 24 each step in the iteration can be split into three equa-
tions

(Jiç =u
= (D — w,J)'u5 475 = v5 (25)

=
75

each of which is very easy to solve because of the particular form of the
matrices involvedt.

For a better understanding of the complicated pattern of motion of defect-
containing lattices we usually compute also the eigenvcctors on the basis
of internal or group coordinates13.

General remarks
g(w) calculated with the above methods is the basic dynamical quantity

to be used for the interpretation of the optical (infra-red and Raman) and
neutron scattering experimental data. A direct comparison of g(w) can be
carried out only with the density of states derived from IINS experiments
since for unoricnted samples there is no need to take into account polariza-
tion vectors (i.e. atomic displacements) and the Debye Waller factor can be
considered a second order correction to the calculated spectrum.

The comparison with the optical spectrum requires the knowledge of the
transition moment for each normal mode of such a complicated atomic
system. The general concepts derived from the treatment of impure
lattices60'65 can be applied also to polymers and can also be extended when
the concentration of the defects becomes larger or the type of defect is such
that the vibrational perturbation becomes sizeable. We neglect in this dis-
cussion the problem of out-of .band or gap-modes which, with certainty,
occur in simple systems containing mass defects and concentrate our
attention on defects of geometry. A detailed discussion of the problem of a
large concentration of mass defects has been presented in detail elsewhere
for the case of isotopic mixed crystals66' 67

For the case of organic polymers geometrical defects are more important
and have been the subject of several published works.

As already pointed out in section 2 of this paper for organic polymers,
even in a perfect state, the whole energy range from 0 cm to the near
infra-red region is practically covered in a continuous way by dispersion
curves. Any extra mode arising from a defect introduced in the perfect host
chain will be coupled to the phonons of the host lattice by an extent depending

t The time required to compute an eigenvector of a matrix 900 x 900 with 30 codiagonals
on UNIVAC I 106 is about seven minutes.
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on the dynamical conditions (geometry and potential). We have then to
consider only resonance modes and their dependence on concentration, on
geometry and on force field.

For comparison with optical spectra we may use the following criteria:

For a low concentration of defects: (Impure System)
(a) k = 0 modes from the host lattice allowed by symmetry will be primarily
observed.
(b) Because of the breakdown of translational periodicity k 0 phonons
from the host lattice will gain some spectral activity. The density of state
of the host lattice will be somehow mapped in the optical spectrum.
(c) Resonance modes of a particular defect may give rise to additional peaks
which become characteristic of the defect and may be used for the diagnosis
of the existence and concentration of such a defect in an unknown polymer
sample.

Effects a to c can be predicted with fair certainty by the numerical cal-
culations previously presented only if we are concerned with their frequency
or shapes of modes. The knowledge of the optical transition moments
which modulate the g(w) is still an unsolved problem which requires careful
and extensive studies66 67 Most of the works so far carried out have ex-
plicitly assumed a dipole or polarizability unweighted density of states5256.
Comparison between optical intensity and height of the peaks in g(w) could
not in principle be carried out. In a first approximation, however, it has been
assumed that, since the geometry of an actual polymer sample is far from
being ideal and a sizeable amount of disorder does exist, any restriction by
symmetry is removed and all modes gain some activity. Hence coincidence
between peaks in the spectrum and in the calculated g(w) can in a rough
analysis be taken as positive coincidences50. Further works on model com-
pounds and on simpler systems are required for substantiating the conclu-
sions derived from the comparison of the optical spectrum with dipole or
polarizability unweighted density of states.

When the concentration of geometrical defects increases the analysis
must consider the problem of disordered lattices. The concept of resonance
modes and phonons of the host lattice is lost and each normal mode becomes
the result of a complex coupling between oscillators67. For such disordered
systems the numerical method is the only one which can provide physically
meaningful information from the calculated g(w) and the corresponding
calculated amplitudes. If some sort of charge model is assumed spectral
intensity can also be predicted66' 67, For disordered polymers the following
general criteria should be considered:

(a) While the density of vibrational states of a disordered system cannot
be compared in principle with that of the corresponding perfect lattice, some
indication of residual order in the disordered network can still be derived by
the experimental finding of g(w) peaks corresponding to the k = 0 modes of
the perfect lattice. The existence of quasi-phonon waves in quasi-ordered
regions of a disordered lattice requires further experimental and theoretical
studies. The main question which arises is the following: how large should
an ordered cluster be to give rise to quasi-phonon waves? This problem is of
particular importance for the understanding of the vibrational spectra of
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co-polymers or block-polymers. it is well known that empirical, correlative
or semiquantitative analysis of the vibrational spectrum has been the basic
tool for the characterization of polymers and co-polymer structure and
composition in applied and industrial research. These empirical studies
require a more quantitative theoretical support.

(b) The study of lattice dynamics of disordered polymers acquires a
particular importance in the field of vibrational spectroscopy of biopolymers.
n fact the degree of ordering, the 'blockness' and the regularity of these
substances is still a basic structural problem which needs to be clarified.
Furthermore since most of these substances cannot be crystallized a large
amount of disordered or irregular material is likely to exist.

(c) A relevant result from the numerical calculations based on NET is
that the calculated histogram of the density of states often shows a fine
structure or a large population of peaks. The identification of the origin
of each peak through the calculation of the corresponding eigenvectors
allows us to assign some of these peaks to islands or blocks or segments of
particular dimensions67. Furthermore some of the peaks may turn out to
be characteristic of a particular defect or of a cluster, if the experiments fit
the calculation it is thus possible to probe with the vibrational spectrum the
inside of the disordered material with regard to its structure, conformation
and configuration. A clear example of 'island analysis' and its usefulness has
been presented for a realistic case of isotopic mixed crystals67. The same
kind of analysis has been carried out on models of three-dimensional
lattices62. It has to be pointed out that no analytical treatment is able to pro-
vide such a detailed set of theoretical data to be compared with experiments.

(d) The possibility of such an 'island analysis' invites a yet unexplored
theoretical treatment of co-polymers and block polymers.

4. APPLICATIONS

Polyethylene (PE)
(1) The study of the infra-red spectra of copolymers of ethylene and

deuteroderivatives of ethylene on the basis of the dynamics of mass dis-
ordered systems has unequivocally proved that the polymerization of ethy-
lene with a Ziegler type catalyst occurs with the cis opening of the double
bond52. Miyazawa had previously reached the same conclusion on somewhat
weaker spectroscopic evidence68.

(2) The microstructure of solid PE, i.e. the conformation the chain takes
up in the solid state, had been studied53 with the methods previously dis-
cussed in this paper. While a very large amount of experimental and
theoretical studies on the dynamics of a perfect model of PE has been carried
out4' several non-negligible features in these spectra were left unexplained
and qualitatively ascribed to the so-called 'amorphous' part of the polymer2
which is known to exist even in the case of single crystals.

Since the solid state of a polymeric material is generally described as that
of crystallites of various sizes non-homogeneously distributed and embedded
in an amorphous substance46 we have generated long planar zig-zag
sequences of CH2 units intermingled with regions of coiled or geometrically
disordered chain segments. Such a structure has been translated into a
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dynamical matrix built by appropriate mathematical devices53. g(w) was
then derived using NET. The markovian structure of the chain has been
accounted for by a proper choice of the 'allowed' geometrical defects, i.e.
of the 'allowed' simplest combinations of the most common internal rota-
tional angles. Geometrical defects of the types G, GTG, GTG', GTTG,
GGTGG etc. were introduced into the polymer chain while all the other CH2
units were held in T conformation. The following results were obtained:

(i) The existence of defects results in the activation in the infra-red or
Raman of several singularities in the g(w) of the host lattice which should be
inactive for the perfect crystal. There is a general activation of all band
modes.

Recently Gall et a!.69 have suggested an alternative explanation of the
Raman band at 1461 cm which we have instead ascribed to the activation
of a k = 0 phonon only infra-red active for the perfect case. These authors
suggest that the Raman line arises from two-phonon processes of the perfect
lattice whose intensity is enhanced by some sort of Fermi resonance sup-
posedly with the k = 0 fundamental at 1440 cm '. The interpretation
suggested by Gall et a!. does not account for the fact that the Raman line at
1461 cm 1 depends on the contert of amorphous material70.

(ii) Peaks of g(w) characteristic of specific defects of the disordered section
of PE have been predicted and experimentally verified. Of particular interest
are the two resonance modes at 1350 and 1 365 cm assigned to GG + GTG
and GTTG defects respectively. Their relative intensity changes with tem-
perature, even before melting. it is thus possible to follow the thermal
history of the sample (i.e. the structural evolution with temperature) of a
solid sample of PE even before melting. It is then possible to have some indica-
tion that the melting process consists in an increase of concentrations of
kinks and folds within the chain of the type GTG and GG or GTG' at
the expense of all-trans of GTTG segments. This interpretation is also
supported by additional theoretical and experimental evidence from infra-
red and neutron scattering data in the lower energy region. As previously
discussed in the spectrum of liquid PE it is possible to find indication of
k = 0 phonons of the perfect lattice thus indicating that the chains are not
completely coiled in the liquid state but keep a certain degree of quasi order
which generates quasi phonon waves.

(iii) It has been possible to extend the analysis to the case of single crystals
grown from solution. The interpretation of the infra-red spectrum based on
NET cannot disclaim the existence of some tight fold re-entry at the surface
of the single crystal72 (GGTGG fold) but supports the existence of additional
disordered material confirming the so-called disordered or 'composite-
fold' model47.

On the far infra-red spectrum of liquid paraffins and nujol
The far infra-red spectrum of liquid octane, decane and hexadecane has

been recently reported by Hall et a!.73. The same authors report on the
temperature dependence of the far infra-red spectrum of nujol from the
liquid to the solid state. They observe a main band between 250 and 300
cm 1 flanked by a weaker very broad band with maximum at 150 cm1.
Based on the fact that the spectrum of nujol decreases in intensity with
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decreasing temperature these authors conclude that the observed far infra-
red spectrum of liquid paraffins is mainly due to two-phonon processes.
Support for their interpretation comes from calculations based on planar
zig-zag chains of CH2 of various lengths with CH2 taken as a point mass.
Summation processes are carried out and the intensity is calculated on the
basis of two-phonon interaction theory by Lax and Burstein74.

From tue reslts of our studies on geometrically disordered paraffins we
wish to suggest an alternative explanation of the spectra of liquid paraffins
and nujol and its temperature dependence. It is unlikely that paraffins in the
liquid state keep the trans planar conformation assumed by the previous
authors, but quite likely they are randomly coiled thus approaching the
model of the disordered paraffins studied by us and discussed in the previous
section. The density of states of the perfect long chain paraffin shows two
cut-off frequencies at 500 and 200 cm' corresponding to the highest
flat points of in-plane deformation and out-of-plane or torsional branches
v5 and v9. if a spectral activation of one-phonon transitions is accepted the
very weak peak at 150 cm' is accounted for. The far infra-red spectrum of
solid as well as liquid polyethylene shows two broad bands which we assign
in a similar way to the two peaks of one-phonon density of states. The
calculation of the density of states of all gauche polyethylene53 in addition
to two peaks at 100 and 600 cm' shows a broad strong peak centred at

320 cm' which is characteristic of G segments. We suggest that the
absorption between 250 and 300 cm' observed by Hall et at for liquid
paraffins and nujol arises from gauche segments which are very likely to
exist in the liquid phase. Unquestionable evidence of the introduction of
other conformations in going from the solid to the liquid paraffin comes from
the work by Schonhorn and Luongo73 who observe that at the melting
temperature a doublet at 1 350 and 1 365 cm clearly appears in the infra-red.
Just at the same frequencies we calculate resonance modes assigned to GG +
GTG and GTTG segments. We then conclude that the infra-red peak of
liquid paraffins and nujol between 250 and 300 cm' may arise from funda-
mental transitions coming from coiled sections of the paraffin molecules.
The temperature dependence of the 250 cm1 band of nujol can simply be
accounted for as a continuous structural evolution of the paraffin mixture
which tends to decrease the concentration of coiled chains by lowering the
temperature. It should be pointed out that while solid polyethylene does not
show any absorption in the 300 cm1 region, molten polyethylene shows a
peak at 315 cm' which we have already assigned to gauche or quasi-
gauche segments53. The precise determination of the frequencies is not pos-
sible because (1) the force field is approximate, (2) the real conformation of
liquid paraffin or polyethylene may not be precisely G (±120°) but may take
up slightly distorted values.

Polytetrafluoroethylene (PTFE); Spectrum and phase transitions
From several physicochemical techniques it has been shown that solid

PTFE may exist in different phases. The identification of the precise structure
of these phases and the mechanism of the phase transition by x-ray n.m.r.,
dielectric and thermodynamical studies is somewhat confused and sometimes
conflicting.
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It is experimentally certain that PTFE has two main phase transitions at
19°C and 30°C. Some x-ray studies have established that below 19°C the
PTFE chain coils into a translationally regular helix whose identity period
of 16.8 A contains 13 CF2 groups in six turns76. Phase transitions are quali-
tatively ascribed to the onset of some structural disorder variously described
by different authors77. Recent conformational studies78 based on semi-
empirical two-body interaction potentials predict that the most stable chain
structure corresponds to a 13/6 helix with rotational angle oft ± 165.66°
in good agrcement with the x-ray result. The two minima at + 166° and
— 166° are divided by a very low potential barrier at t = 180°. Other less
stable minima are prcdicted at ±91° and ±65° corresponding to

10/3 and —.4/1 helices respectively. Because of the very low potential
barrier through t 180° Giglio et a!.78 tentatively suggest that above
19°C the chains might consist of a mixture of segments of left and right
handed helices joined through bonds in trans conformation (v =
180°C).

We have then recently treated55' the case of the disordered PTFE chain
in the hope of contributing to the understanding of the structural features of
this important polymer. Indeed the infra-red2, Raman79' ° and ICNS
spectra'8 show several features which cannot he explained in terms of 13/6
or 15/7 helices. gfri) was calcu1aed for perfect and conformationally dis-
ordered chains using NET. No dipole weighting has been performed,
but consideration of intensity in the infra-red and Raman were taken
into qualitative consideration in the comparison of the theoretical data
with the experiments. From our studies the following conclusions were
derived:

(i) At room temperature there exists a non-negligible amount of trans-
planar segments as predicted from conformational energy calculations. The
phase transition at 19°C corresponds to a sudden increase in concentration
of trans-planar segments.

(ii) Evidence is found for the existence of another type of helix with geo-
metry close to that of the 10/3 helix. No evidence is found for the existence of
a helix with geometry close to 4/1.

(iii) Most of the spectral features which remained unexplained from a
vibrational analysis based on perfect 13/6 or 15/7 models were accounted for.

(iv) The evidence of Davydov's splitting in the Raman lines claimed by
Koenig et a!.8' and the consequent possibility of the existence of a unit cell
containing more than one chain has been shown to be not unequivocal. Most
of the temperature dependent doublets can be reasonably ascribed to a
conformational equilibrium which changes with temperature.

(v) The recent additional data from coherent neutron scattering experi-
ments'8 which could not be clearly explained in terms of a perfect 13/6 helix
can be easily ascribed to segments of 10/3 helix which is likely to exist in most
of the samples.

(vi) The disorder probed in PTFE by the vibrational spectrum is related
only to that which occurs within the chain. Amorphous sections due to the
lack of three-dimensional order only are not detected: contrary to what was
previously assumed by many authors, no 'amorphous band' may be located
in this way.
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Disordered hydrogen bonded systems
The type of study so far discussed in this paper has been extended recently

to the case of the simplest hydrogen bonded networks in the solid state
namely to the cases of hydrochloric acid (HC1)67, ice43' ' and methanol39.
It should be pointed out that an unequivocal understanding of the dynamics
of these seemingly very simple systems is hindered by the fact that disordered
phases may exist.

The combination of the analysis of the spectra based on perfect as well as
disordered models has allowed a more detailed understanding of the spectrum
of ice 1h43' While Shawyer and Dean have already reported on the cal-
culation by NET on a three-dimensional finite crystal of ice82 we have
carried out the lattice dynamical analysis on a complete perfect model which
includes the hydrogen atoms and four moleules per unit cell. The works by
previous authors were instead mainly based on highly simplified models4042.
On the basis of our theoretical calculations compared with the experiments
the evidence claimed by other authors of the existence of long range electro-
static forces° cannot be accepted. In a similar way we cannot support the
conclusions of the existence of fluctuating polar ordered domains41 or of
O—-O bonds of different nature perpendicular and oblique to the c-axis of
the ice crystal4 1—42

in the case of solid methanol the phase transition between the phase
stable below and a f3 phase above the transition temperature of 157.4 K have
been studied. The combined results of CNDO, packing energy and lattice
dynamical calculations39 suggest that the cx phase is predominantly ordered
and that the second order transition at 157.4 K is mainly caused by the
onset of flip-flop motion of the CH3 groups below and above the plane
formed by the oxygen atoms. The structure of the phase is disordered and
accounts for several independent physicochemical measurements which
were variously interpreted by several authors39.
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