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The main results of the theory of exciton—exciton interaction processes in
molecular organic crystals are reviewed and discussed.

1. INTRODUCTION
The study of multiple exciton interactions in organic molecular crystals

has been intensively pursued in recent years. This has been due to the fact
that the exciton—exciton interactions can lead to different processes resulting
in observable effects in organic crystals especially at high-exciton concentra-
tions.

In this paper we review and discuss the exciton—exciton interactions lead-
ing to the formation of new excited states of the crystal represented by bound
states of two or more excitons moving as a whole through the crystal, ana-
logous to the Bethe spin wave complexes1 and to the mutual non-radiative
bimolecular annihilation of a pair of excitons resulting in one-electron exci-
tation with higher excitation energy, especially at high-exciton concentrations.

The possibility of the existence of bound states of two excitons, called
biexciton, has been formulated and theoretically discussed2, but these have
not yet been detected experimentally in organic molecular crystals.

The mutual non-radiative bimolecular annihilation of a pair of excitons
due to their interaction is a well-established phenomenon. Its existence for
singlet excitons was conjectured3 in an attempt to interpret the production
of charge carriers in anthracene crystals and it has been invoked for this
purpose by many workers since then4' . Although this mechanism of
charge-carrier production is not proven, the presence of the annihilation
process for singlet excitons in anthracene crystals has been demonstrated7.
Dynamic interactions between pairs of excitons do not necessarily lead to
the charge-carrier production and may result in a higher exciton state.
These processes of mutual annihilation of triplet excitons with one resulting
singlet exciton have been observed in naphthalene and phenanthrene
crystals in the form of the observation of delayed fluorescence8. although
the interpretation was suggested later9' 1O• The conclusive evidence for
explaining the delayed fluorescence in terms of triplet—triplet exciton
annihilation in anthracene crystals was presented in 1963". Since then
triplet—triplet exciton annihilation has been verified in anthracene crystals
by others'2 and it has been observed in pyrene crystals'3, naphthalene
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crystals13 14 and a number of mixed crystals'°' . As an intermediate
state, involved in this annihilating process of a pair of triplet excitons, a
real'6 or a virtual'6 17 charge-transfer exciton. formed by bound states of a
positive and negative molecular ion pair, was considered.

The fluorescence quenching in anthracene crystals under high intensities
of excitation was discovered and ascribed to singlet—singlet exciton annihila-
tion resulting in one exciton with higher excitation energy'8 19 The main
process of quenching of fluorescence of the anthracene crystal under long
illumination was interpreted'9 as a mutual annihilation of a pair of singlet
and triplet excitons leading to the formation of a triplet exciton with higher
exciton energy.

We begin the review and discussion of the theory of the biexciton and non-
radiative bimolecular annihilation processes of excitons with a brief descrip-
tion of the Frenkel molecular and charge-transfer excitons, with a brief
description of their parent electron excitons of the crystal-molecular and
charge transfer electron excitons and with an introduction of the crystal
Hamiltonian describing the exeiton—exciton interaction processes.

2. MOLECULAR AND CHARGE-TRANSFER ELECTRON
EXCITATIONS OF THE CRYSTAL

We will consider a simple model of an organic crystal consisting of neutral
molecules in a periodic arrangement with one molecule per unit cell held
together by weak van der Waals forces, whose sites in the crystal are denoted
by lattice vectors p. There are N unit cells with volume v0 in the crystal.

Because of the weakness of the intermolecular interactions the energy
levels of the excited states of the electrons of the crystals are traceable to
parent excited molecular states2° 23 Assuming that each molecule of the
crystal may be divided into itelectrons and the core, the excited states of the
isolated molecules can be described in a one-electron approximation. Using
this model of excited states of the isolated molecule we will consider two
types of parent electron excitations of the crystal.

As the first type we will consider the electron excitation constructed by
the promotion of one it electron from the highest filled orbital with
energy r to all possible unfilled orbitals of the same molecule li(r) with
energies - > > 0) and quantum indices f> 0 in the ground state
configuration of the molecule. These neutral electron excitations are called
molecular electron excitations and are characterized with regard to the
singlet or triplet spin states by the quantum indices f and S 0, 1; M =
— S + S. Their quasi-boson2223 creations and annihilation operators
at the pth molecule of the crystal by BJ(S, Ms), BJ(S, Ms). These molecular
electron excitations have the same excitation energy E1(S) independent of
their location in the crystal.

As the second type of parent electron excitations we will consider a
positive and a negative molecular ion pair constructed by the transfer of a
it electron from the highest filled orbital of one neutral molecule of the
crystal into an orbital Ii(r) with energy and quantum index p in the
Hartree field of another neutral molecule of the crystal. The creation and
annihilation quasi-boson operators of this charge-transfer electron excitation
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with excitation energy E and with an excess electron and hole localized at
the pith and p2th molecules of the crystal are characterized with regard to the
singlet (S = = 0) or triplet (S = 1; = — 1, 0, 1) spin states by
B1,4 )(S, M5), B111 P2 (5, M5).

3. CRYSTAL HAMILTONIAN N ELECTRON EXCITATION
SECOND-QUANTIZED REPRESENTATION

Using the introduced models of parent electron excitations and Refs. 22,23,
and neglecting the interaction between the charge-transfer electron excita-
tions, it is possible to write the crystal Hamiltonian describing the processes
which we shall examine in the form

H = W0 + excjj + CXCH + VXCH + H3 + ehH (1)

where "0 is the energy of the quasi-vacuum of the electron excitations of
the crystal, CXCH1 is the Hamiltonian of the non-interacting molecular
electron excitations given by

excjj1 = E E1(S)B;1(S, M 5)B1(S, M5) (2)
p f S,M

and

excjq2 = L(p — p2)B;111(S, M5)B2J2(S, M5) (3)
p1p2 J SM5

describes the migration of the molecular electron excitations from one
molecule to another through electrostatic and exchange interaction between
molecules for singlet spin state S = 0 and through exchange interaction
between molecules only for triplet state S = 1. The matrix elements
e5eL15(p1 — p2) characterize the electrostatic and exchange mechanism of
the migration2224.

The operator CXCJJ4 contains quartic products of molecular electron
excitation operators and describes the collision and reaction processes
between pairs of molecular electron excitations:
cxc _IV V V V Vcxc42 L Lj flf2;f1fiP1P2

PtPZ Si. Ms1 52, M52 f.fi 1212
x B;21(S2, M5jB212(S2, M52)B;11(S1, M5 )B111(S1, M51) (4)

where CXCU 11(p1 — p2) are the matrix elements of the dynamic inter-
action between molecular electron excitations given in Ref. 25.

The Hamiltonian H3 contains cubic products of the operators of the
molecular electron excitations or the products of operators of two molecular
electron excitations and of one operator of the charge-transfer electron
operator of the form:

S
H3 YL{14r.p 252I5)

{rl p2a2 JJ2 s1s2 s=s1 2I 1s 2'Il'PZ 2

x Bjt11 1(S,M5)[E (S1S2M51M52JSM5)

X öM52,M5_MS1P2f2(S2,MS2)Bplfl(Sl M51)] + herm conj.} (5)
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where the first term describes the simultaneous non-radiative annihilation
of two molecular electron excitations and creation of one molecular electron
excitation or of one charge-transfer electron excitation, and the second
hermite conjugate term describes the inverse process, i.e. the non-radiative
decay of one molecular electron excitation or of one charge-transfer electron-
excitation into a pair of molecular electron excitations. The well-known
Condon—Shortley coefficients26 (S1S2MSIMS2 SMS) couple the total spin
angular momentum (S, M5) with the spin angular momentum (S1. M5)
and (S2, M2) of two molecular electron excitations and

'I' P2 /2
(S12 S) = 21St1i[f

P It' P2 1,
(S1S2 I)

+ exh1L,1,, p P2 '2 (S1S2 IS) (6)

Here

ektatu , , (S1S IS) and
exh ,, 1s2 1s

are the matrix elements characterizing the electrostatic and the exchange
mechanisms of the non-radiative fusion of two molecular electron excitations
(fS) (f'2 S) into one molecular electron excitation (f'1, S) localized at
the pth molecule of the crystal, or into one charge-transfer electron excitation
with the excess hole localized at the p1th molecule of the crystal and with
the excess electron in the state p localized at the p2th molecule of the crystal,
both fulfilling the condition:

feistat! feistat/
kexch I S — exch ' S

p, /,p212 I '2 °! — .pj. 2 '2 )2L1

The Hamiltonian:

ehH = MS)BPI P2(S, M)
P1/A J,

V VFehL ehU SL.. L. L p1p'2;pj!Lp2 pap2;pI;1p2
Pt/h P2 /2 pp Y2I

x B(S, M)B(S, M) (8)

describes the behaviour of the charge-transfer electron excitations migrating
through the crystal. Here ehL are the matrix elements of the
migration of the charge-transtr electron excitation through the transfer
of the excess electron (p'2 = p2) and the excess hole (p'1 = p1) from one mole-
cule to another, and ehU,(5) is the matrix element characterizing
the electrostatic and exchange interaction 2b between the excess electron, the
hole being different from zero for '1 = p1, p'2 p2 or = p2, p'2 = p.

4. MOLECULAR AND CHARGE-TRANSFER EXCITONS

(a) Molecular excitons
Using the translational symmetry of the crystal, the Hamiltonian

excjj = exeJJ1 + H2, describing the behaviour of the migrating moleculai
electron excitations, can be diagonalized in the form2223:
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CXCHO = E15(k)B(S, MS)B&J4S, M5) (9)
kf

B,1(S, M5) exp [i(k p)]B1(S, M5) (10)

E15(k) = E1(S) + XCL(k) (11)

excL15(k) pO excL5(p) exp [i(k p)] (12)

Here B,}(S, M5), BkJ(S, M5) are the creation and annihilation operators
of the coherent electron excitation wave with spin (S, M5) and with quasi-
wave vector k assuming any of N values in the first Brillouin zone of the
reciprocal space of the crystal. This collective electron excitation is called
the Frenkel or molecular exciton and, according to equations 11 and 12,
its energies form a band containing N states. This description of the behaviour
of the molecular electron excitation in the crystal is correct if the mean free
path i of the molecular exciton, determined through incoherent colliding
with the thermal or other fluctuations of the crystal, is considerably larger
than the lattice spacing characterized by the quantity

= (13)

But if s R0, the quasi-wave vector k is not a good quantum number and
the migration of the molecular electron excitation must be described in
the random-walk model as a random incoherent hopping from one molecule
to another with the probability per second determined by the transfer matrix
element excL15(p)l?2?. in the diffusion approximation this motion is that
of the molecular electron excitation characterized by the diffusion coeffi-
cient'7' 27.

Df5(i,J) 2 p:0 WfSQJ)(P eJ(p. ei); i,j = 1, 2, 3 (14)

Here WfSQJ) is the probability per second of the non-radiative transition of
the molecular electron excitation fS from the reference molecule to the
molecule at the distance p under' the intermolecular interaction character-
ized by the matrix element CXCLfS(p), and e1(i = 1, 2, 3) are the unit vectors of
the Cartesian coordinate axis.

(b) Charge-transfer excitons
Using translational symmetry of the crystal and the results and the methods

described in Ref. 28, the Hamiltonian ehjj describing the behaviour of the
charge-transfer electron excitations in the crystal, takes the following
diagonalized form:

ehjj0 = E; ,Zs(K)BAP. K(S, MS)B2AP; K(S, M5) (15), A p K SM,

B:APK(s, M5) = 2JV4
exp p1 + P2)1Dp(AK; iSM5)

Pt

{B1(S,M5) + (i)2Bp+2pp1(S,Ms)};cx = 0,1 (16)

Here BA,j 11W M5), B2AP. ,éS, M5) are the creation and annihilation operators
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of the coherent excitation wave with spin (S, M5) and with quasi-wave
vector K characterizing the motion of the charge-transfer electron excitation
in the crystal as a whole, EA. (K) is the excitation energy of this wave,

= 0, 1 are the parity quantum numbers and p p1 — p2 is the distance
between the excess electron and hole. The coefficients DcaAK /iSM) ful-
filling the normalization condition

0ID(iMs)I2 = 1

and the conditions

D_(cxK; pSM) = (— 1)D(AK: pSM)
D_0(zAK:pSM) 0

are the wave functions of the relative motion of the excess electron and hole,
the stationary states of which are characterized by the quantum indices ,.

Let us introduce the energy c,(i, K) of the non-interacting excess electron-
hole pair with the help of the relationship:

[ / K\ I K
c,(ic, K) = K + — K +-

[ / K\ / K'\1
+ 4[E — — K — - )j (20)

Here the quasi-wave vector K characterizes the relative motion of the
non-interacting excess-electron hole pair as a good quantum number,

is the energy of the excess electron with quasi-wave vector k belonging
to the parent orbital of the negative molecular ion with quantum index i,
and 0(k) is the energy of the excess hole with quasi-wave vector k belonging
to the parent orbital J = 0 of the positive molecular ion. The explicit expres-
sions for the energies E(k), —0(k) are given for example in Ref. 29. The
energies of a non-interacting excess electron-hole pair for a given quasi-
wave vector K, describing its motion as a whole, form a band between the
minimum value mm K, K) and the maximum value max &,(K,K)21.

Then using the results of the mathematical analysis28, we conclude that
for the given K:

(1) There exist stationary states of the interacting and migrating excess
electron-hole pair which for N — CJ have a continuous energy spectrum
in the range:

mm e.(,c, K) E7). ,15(K) max K,K)

i.e. in the band of the energies of the non-interacting excess electron-hole
pair. These states describe the scattering of the excess electron and hole
caused by their dynamic interaction and they may also be called 'ionization
continuum' states28. In these scattering states, the excess electron and hole
may become freely moving when an electric field is applied.

(ii) Because of attractive long-ranged forces between the excess electron
and hole, for N —* there also exist stationary states with a discrete
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spectrum of energies in the range:

E22; (K) < mm Cfl(K, K) (22)

These states belong to the bound states of the relative motion of the
excess electron and hole. In this ease the bounded excess electron-hole
pair moves as a whole through the crystal in the form of a coherent excitation
wave with quasi-wave vector K called charge-transfer exciton. The corres-
ponding energies ESA.p5(K) for given , A, p. S form a band containing N
states.

The occurrence of charge-transfer exeitons in molecular organic crystals
has been discussed30. Experimental evidence for the existence of charge-
transfer exeitons is meagre. The only reported experimental determination
of the energies of charge-transfer exeiton states is that of Pope et al.31.

5. MOLECULAR BIEXCITONS

If the cubic and quartie anharmonicity interaction terms H3 and CXCH4
of the molecular electron excitations are taken into consideration, and if we
use the translational symmetry of the crystal, the creation and annihilation
operators B,VK.f iSi f 2S (S, M5) and BIJvK;fksi f252(S, M5) of two interacting
and migrating molecular electron excitations f1S1, f2S2 with total spin
quantum numbers (5, M3), diagonalizing approximately the Hamiltonian

= H1 + + H3 + C1CH4 in the subspaee of two exeiton states,
can be written in the form:

B;K.flSlf2S7(S, M3) =2[N(l + (— 1)b1to3i2)]t
C(flvK; JS1, fS; SM3)

x { (S1S2M5 M52 SMS)iM5 MS_MS1[BplflWi M51)
M5, Ms.,

B;212(s2, M37) + (— l)fl-Es1+52_SB;112(52, M52)B;211(s1, M31)]};

11=0,1 (23)

Here p = p1
— p2 is the coordinate of the relative motion of the inter-

acting pair of molecular electron excitations, K is the quasi-wave vector
characterizing the motion of the interacting pair of molecular electron
excitations as a whole and f3 = 0, 1 are the parity quantum numbers. The
set of coefficients C(/JvK; f1S1, f2S2; SM3) for all p # 0 is the wave function
of the relative motion of the interacting pair of molecular electron excitations,
the stationary states of which are characterized by the quantum indices v
and it fulfils for given K the following important conditions and relation-
ships:

p0 fJf3 f1S1, fS2; SM5)l 2 = 1 (24)

C0(flvK; f1S1, f2S2; SM3) = 0 (25)

C_(f3vK; j51, J'2S2; SM3) = (— 1) s1-l-32--SCqJvK; f2S2; SM3)

(26)

203



M. TRLIFAJ

C(f3vK; f2S2, JS1; SM3) = (— l)'3C(f3vK; f1S1, JS2; SM3) (27)

Using the Fourier transformation, we can derive for the coefficients
C0(JJvK; f1 S1, JS2; SM3) the following set of difference equations:

C9(flvK; f1S1, f2S2; SM3) = E Gfi;fl3lf232(ji 1")

X Up;fis1f2s2(P)Cp)(1iVK f1S1, .f22 SM3 (28)

where

Up;fsfsQJ) = 2[l + (—l)öflf2O3l32]
< {ecuf1fff(p) + (—- l)ö31 eUf1f2;f2f4(p)} (29)

is the matrix element of the adiabatic interaction between two molecular
electron excitations f151, f252, localized at the p 1th and p2th molecules of
the crystal, and

exp[i(sc.p — p')]GflVK.fSf3(P — i)= N / rr 'K' TE (30)
Z....J L fiv;fiSi.f2S2;3k / fI31.f232K

In this expression, E$v;fjsj 1232;3(K) is the excitation energy of the inter-
acting pair of molecular excitations and

= + + K +

K
+ — + — (31)

are the energies of two non-interacting molecular excitons f1S1, f252; the
relative motion of these is characterized by the quasi-wave vector ic as a
good quantum number. Energies (equation 31) form a band ranging for the
given K from the minimum value mm E1131232(sc, K) to the maximum value
max Ef3 f23(1c K).

The excitation energies Eflv;fisif2sz;s(K) are determined by the secular
equation of equation 29, i.e. by the equation:

det —
GPVK;fsfs(P excu111 (,j)} = 0 (32)

Equations 28 and 32 are similar in form to the one derived for the study
of stationary states of two interacting magnons32. Using the results of the
general mathematical analysis32, it can be shown that equation 32 for the
given K has N roots in the range of energies:

mm F1131 12320c, K) i& Epv;1131i232;s(K) C max -32(K, K) (33)

passing over for N —* into the continuous band spectrum of energies of
two non-interacting excitons. These solutions correspond to the scattering
states of two interacting molecular electron excitations or of two interacting
molecular excitons.

Equation 32 can also have singular and discrete roots for N —. in the
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range of energies:

Epv;iisi,12s2;s(K) c mm Ei1s1i252(K,Kfl

Epv; fSl 1257;5(K) > max P21151 1257(ic, K))

i.e. under and above the energy band of two non-interacting excitons. Be-
cause of short-ranged interaction forces between the molecular excitations,
the number of discrete roots is at most finite. The solutions with a discrete
cnergy spectrum belong to the bound states of the relative motion of two
interacting electron excitations. In this case, a bound pair of interacting
molecular electron excitations moves as a whole through the crystal in the
form of a coherent excitation wave called molecular biexciton. The energies
of this molecular biexciton as a whole form, according to equation 32, a
band containing N states. The number of these bands for given /3, f1S1,
f2S2 and S is determined by the number of discrete roots of equation 32.

The intensity of the absorption band of the molecular biexciton is mainly
determined by the matrix element of the radiative transition from the ground
state of the crystal to its excited state with one molecular biexciton. 'To
calculate this matrix element a second-order time-perturbation theory is
used, treating the sum of 1-lamiltonians H3 + HTad as perturbation causing the
radiative transition, where Hrad is the Flamiltonian of the interaction of the
molecular and charge-transfer electron excitations with the radiation field.
In carrying out these calculations we drew the following conclusions which
were also partly reached by other workers2c2h1

(i) The one-phonon excitation process creates singlet molecular biexcitons
formed by two singlet or triplet molecular electron excitations. This excita-
tion process goes through the excitation of virtual singlet molecular or
charge-transfer excitons and it is this process which governs the absorption
polarization in the corresponding frequency region.

(ii) The two-photon excitation process creates singlet molecular biexeitons
formed only by two singlet molecular electron excitations. This excitation
process goes stepwise through the virtual excitation of two molecular
electron excitations. In this case, the absorption polarization is determined
by the absorption polarization of single molecular exeitons forming the
molecular biexeiton.

The coherent biexeitons in organic molecular crystals have been studied
theoretieally2' g—i but, as was said in the introduction, they have not yet
been detected experimentally.

The description of a molecular biexeiton in the form of a coherent excita-
tion wave equation 23 is possible, provided that the mean free paths i. i'i22 of the molecular excitons forming the molecular biexciton are very
large compared with the lattice spacing R0. If one of the molecular exeitons,
say the f2S2 forming molecular biexciton, moves in its free state in incoherent
form, i.e. i2 R0, then under suitable conditions the motion of the
molecular biexciton as a whole is best viewed as an incoherent random
hopping of the molecular electron excitation f2S2 with the bound molecular
electron excitation f11 from one molecule to another (incoherent molecular
biexciton)33.

If both molecular exeitons move in their free state in an incoherent form,
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i.e. if ills!
11252 R0, the interaction between them can lead generally

to the dependence of their hopping rates on their separation. But neglecting
this dependence does not lead to serious errors because of short-ranged
interaction forces between the excitons, especially at higher temperatures.

6. GAS KINETIC AND DIFFUSION THEORY OF TWO EXCITON
NON-RADIATIVE ANNIHILATION

All mutual non-radiative annihilation processes of a pair of molecular
exeitons through their interaction, mentioned in the introduction, are con-
veniently described by the equations:

d51(t) = — yn151(t)n1252(t); i = 1,2 (35)

where n15.(t)(i = 1,2) are the concentrations of annihilating molecular
excitons at the time t, and y is the overall bimolecular annihilation rate
constant. The aim of the theory is to calculate the bimolecular constant y for
all possible channels of the non-radiative annihilation.

The first-order processes determine the following channels of the non-
radiative annihilation of a pair of molecular excitons: (i) the formation of a
real molecular exeiton with a higher excitation energy'7, (ii) the formation of
one real charge-transfer exciton followed by its transformation into one
molecular exciton34 and (iii) the formation of a real 'ionization continuum'
state of the charge-transfer exciton3.

The two exciton non-radiative annihilation processes may also have an
intermediate stage—the formation of real or virtual bound states of two
molecular electron excitons. If we neglect this intermediate effect of the
binding energy of two molecular excitons known to be very small35, then
it is necessary for the calculation of the rate constants y(i = 1, 2, 3) for the
channels mentioned to consider two rate-determining processes governing
the magnitude of y ' 34, 36: (a) the diffusive migration of the two excitons
towards (as well as away from) one another, and (b) the non-radiative annihi-
lation of the two excitons through spontaneous non-radiative transition
to the final state once they are at sufficiently close relative distance Re1 to
interact.

If the condition

R0 fs, ¼2 (36)

is fulfilled, then, (i) the diffusive migration of the two excitons can be neglected
and the rate-determining step is the process (b), and (ii) the rate constant y
is determined through the non-radiative spontaneous transition of the
crystal from the initial state with one coherent molecular hiexciton in a
'dissociation continuum' state into the final state with one of the electron
excitations determining the annihilation channels.

Using in this gas kinetic limit the first-order time-dependent perturbation
theory with H3 as the perturbation operator and denoting the initial and
final energies and state vectors of the channels determining the excited
electron states of the crystal by E,. I in> and 1E11. 11>(i = 1, 2, 3) respectively
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we obtain the following formulae for the two molecular exciton annihilation
processes:

Yitrans = 2mNv0 g J i<finIN3 I in> 12 C(tEfin — Em) i = 1,2,3 (37)

Here the sum fin) is the summation over all possible one molecular exciton
states for i = I, over all possible charge-transfer exciton states with A
belonging to the discrete states for i = 2 and to the continuous states for

= 3. The sum (in) is the thermodynamic average over all possible 'dis-
sociation continuum' states of the molecular biexciton in the initial state of
the crystal, and g is the weight factor of the initial excited electron state of
the crystal. The quantity C(Efjn — Em) is the effective density of the final
excited electron states, determined through the incoherent interaction of
electron excitations with thermal or other fluctuations of the crystal, this
interaction giving a finite non-radiative lifetime as well as a non-zero width
of absorption and emission lines3437.

Constructing the state vectors I in>, I fin>m of the initial and final states
with the help of the operators of equations 23 and 26, the transition matrix
elements '<fin I3 I in> for the single channels (i = 1,2, 3) can be written in the
form:

1<fin H3 I in> = Uflv;K(flSl, f2S2; SM) + Uflv;K(f2S2 f151; SM5) (38)

2'3<finIH3Iin> = UIA;PV;K(JSl f22; SM5) + UaA;K(flSl f2S2; SM5) (39)
where

Uflv;K(JSl f2S2; SM5) = exp[—i(. p
rtO -

x C0(flvK; f151, f2S (40)

and

U;flv;K(flSl f252; SM5 = 20 C(flvK;f1S1, f2S2; SM5)

x DxAK; IJSM5)Up2; put, 212i2 I) (41)

From these formulae we conclude that exclusive of the effective density
of the final excited electron states: (1) the generation of a singlet molecular
or charge-transfer exciton via two singlet molecular exciton interaction and
of a triplet molecular or charge-transfer exciton via the interaction of a
singlet molecular exciton with a triplet molecular exciton takes place with
identical rates through the electrostatic and exchange mechanism of the
non-radiative transfer of excitation energy; and (ii) the generation of a singlet
molecular exciton or of a charge-transfer exciton, or the generation of a
triplet or charge-transfer exciton via interaction of two triplet molecular
excitons takes place with identical rates through the exchange mechanism
of the non-radiative transfer of excitation energy only.

The approximate calculations of the rate constants y1trans (i = 1, 2, 3),
according to equation 37 with a simplified model for the effective density
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a(E) of the final state, were performed for the following two molecular
exciton annihilation processes: (i) The non-radiative annihilation of a singlet
coherent molecular exciton on an incoherent triplet molecular electron
excitation resulting in one incoherent triplet molecular exciton38. As the
effective density of the final states a(E), the effective density of states of an
incoherent, hopping triplet molecular exciton in a strong interaction with
the vibrations of the crystal was used. The rough estimate y1 trans for the
anthracene crystal gives the value y1 trans = x 108 cm3 s' which is
not too far from the experimental value 7i trans = (7 ± 4) x l0 cm3 s 1 19
(ii) The non-radiative generation of a pair of charge carriers—-of free excess
electron with high kinetic energy, and a hole moving incoherently in the
crystal—-as a result of the annihilation of two coherent singlet molecular
excitons4' b, fl The density of the final states of the free electron in vacuum
was taken as the effective density of the final states4 . The calculated
rate constant 73 trans = 2.6 x l0 12 cm3 s for the anthracenc crystal is
in good agreement with the experimental value of Y3trans = 5 x 1o12
cm3 s 1 5a The theory presented by Kearns4t was extended to triplet—
triplet and triplet—singlet coherent molecular exciton annihilation4a 39.

The rate constant y for the charge-transfer exciton annihilation channel of
two triplet molecular excitons, as the transition rate to the final state, was
calculated34 under the assumption that:

1115! 11252 R0 RCf (42)

i.e. that the propagation of the triplet molecular excitons can be described
in the random-walk model. The effective density of the final states was
calculated assuming that only the totally symmetric intramolecular C--C
stretching modes are active, including intermolecular vibrations phenomeno-
logically. Under the same condition 42 the matrix element of the annihilation
process of two triplet molecular excitons was calculated as a second-order
process involving the charge-transfer exciton states as virtual states17.

If condition 42 is fulfilled, the diffusive motion of the molecular excitons
must be taken into consideration in an estimation of y. The first estimate of y
on condition that the diffusion encounter process of triplet molecular
excitons constitutes the rate-determining step, was given by Jortner et
al.17, and was based on the assumption that the annihilations occur when-
ever two triplet molecular excitons are on nearest neighbour lattice sites, i.e.

Ydif 8rcDR11 (43)

where DT is the isotropic macroscopic diffusion constant of triplet molecular
exciton. This estimate clearly places an upper limit on y if annihilation of two
adjacent triplet molecular excitons is sufficiently fast. But the measurement
of the dependence of y on the magnetic field for the triplet—triplet molecular
exciton annihilation process4 d, indicates that both the rate-determining
processes—the encounter and transition processes—-occur at comparable
rates. Therefore a stronger diffusion theory for the calculation of y was
developed34' These theories analyse qualitatively and quantitatively
the dependence of the rate constant y on the rate of encounter of two triplet
molecular excitons and the transition rate to the final state. A relatively
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simple form of the formula for y was derived36, which for the three-
dimensional crystal is roughly given by:

= Yjiç YtransUo)
(44)

Ydif + Ytrans(1o)

Here Ydf is the encounter rate of diffusing triplet molecular excitons given
by equation 43 and Ytrans(Ro) is the transition rate constant to the final
state at the relative distance of molecular excitons R0. The rate constant has
been calculated for naphthalene, anthracene and tetracene crystals34.
The calculated value y = 4 x lO 3 1 for the anthracene crystal is
in good agreement with the experimental value of y = (2 to 5) x 10'h1
cm3 s.

It should be emphasizcd that this diffusion theory of rate constant
p343o is applicable on the following assumptions :(i) the molecular excitons
satisfy the hopping equation of motion, (ii) the effects of the binding process—
of biexcitons—can bc neglected. Both these assumptions can be fulfilled
for triplet molecular excitons at high temperatures, but not for molecular
excitons with a larger length of coherence and not for all types of molecular
excitons at low temperatures. Therefore the inclusion of binding and band
effects would necessitate a new development of the diffusion theory.
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