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ABSTRACT

Polymer compatibility, to be understood here in the sense of thermodynamic
stability, depends in a subtle way on molecular parameters. Some of these
are traceable with the aid of model calculations based upon Flory and Huggins'
expression for the free enthalpy of mixing. It appears that, in oligomeric
mixtures in particular, the average chain lengths and the distributions of
chain lengths in the two constituents markedly affect the location and shape
of the miscibility gap. The entropy of mixing tends to shill the gap towards
the composition region in which the constituent with the smaller average chain
length dominates.

The interaction parameter, if depending on concentration, can outweigh this
effect. Examples, taken from literature and our own data, indicate that this
situation does occur in practice. Hence, the lattice-based free enthalpy ex-
pression is an accurate tool for describing actual phase relations; however,
it cannot quantitatively predict their temperature, chain length, and concentra-
tion dependence. In the last respect Flory's equation of state theory appears to
be very superior. This was recently shown by McMaster. who analysed
Flory's new free enthalpy function and found that small differences inter a!. in
the thermal expansion coefficients of two compatible polymers will cause the
system to become incompatible upon a rise in temperature. The latter pheno-
menon is known to occur, examples are given. Compatibility being a subtle
phenomenon, the question seems to be justified whether two samples of the
same polymer of widely differing chain length might be immiscible. For linear
polyethylene and anionic polystyrene the available data point to chain length
compatibility. Two methods for the determination of compatibility are dis-

cussed, viz, the mutual solvent method and a light-scattering technique.

INTRODUCTION
Polymer compatibility is a comprehensive subject which has been treated

from quite different angles. If one has to deal with practical production
problems the processability of a polymer blend naturally offers itself as a
useful measure of compatibility. This criterion, however important. does not
necessarily coincide with other standards. From the viewpoint of equilibrium
thermodynamics, for instance, compatibility means miscibility on a molecular
scale, and we cannot say olT-hand whether such a state goes with easy
processing.
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In view of the high viscosity of the constituents it seems obvious that one
should not expect polymer mixtures prepared by the usual technological
procedures to be in an equilibrium state, and kinetic effects will doubtless
have a good deal to do with differences in judgment on polymer compatibility.
It is of considerable importance to recognize the parameters that determine
the equilibrium state of mixed polymers. In those cases where the mixture has
not yet reached equilibrium such insight will be needed, or at least be helpful,
in understanding the change of properties with time.

A mixture of two miscible polymers will gradually increase its degree of
dispersion so as eventually to become a one-phase system. On the other hand,
thermodynamically incompatible polymers will in course of time reduce the
degree of dispersion. This illustrative example was given by Gui', Penskaya,
Kuleznev and Arutyunovat who suggested use of the conditions of thermo-
dynamic stability as a criterion for compatibility. We follow their line of
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Figure 1. Schematical illustration of the numbers of possible arrangements in a small-molecule
mixture (top), a polymer solution (middle) and a polymer mixture (bottom). The polymer chains

each contain 10 segments of the size of the solvent molecules.
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thought here and restrict ourselves to a discussion of the various parameters
that determine polymer compatibility in thermodynamic equilibrium. The
reader is referred to the literature for more comprehensive reviews2—7.

Thermodynamic considerations in this held are often limited to the
qualitative statement that the free enthalpy (Gibbs free energy) of mixing
(iG) must be negative for a system to be thermodynamically stable. This
involves a balance between the enthalpy and entropy of mixing, and a boun-
dary between stable and unstable states determined by the condition EG =
0. The usual molecular picture is a lattice representation of the system, illus-
trated schematically in Figure 1. In equal volumes, the number of possible
arrangements in the binary small-molecule mixture (top) is much larger than
that in a polymer solution (middle), obtained by partly stringing the mole-
cules of one species together to chain molecules. A similar treatment of the
molecules in the other component yields a representation of a polymer mix-
ture, and is accompanied by a further drastic decrease of the number of
arrangements (bottom). The number of nearest neighbour contacts is only
slightly affected in the process so that the energy and, hence, the heat of mixing
do not differ much between the three cases. This simple model is very illustra-
tive and reveals the principal reason why polymer solutions are less resistant to
demixing than representative small-molecule mixtures. We also understand
that polymer mixtures have so little entropy of mixing to match energy effects,
that very small positive heats of mixing suffice to bring about incompatibility.

Slonimskii et al.81' measured heats of mixing in a series of polymer pairs
and found most of them to mix endothermally, i.e. 1tH> 0. An exception
to this expected behaviour was provided by the system polystyrene—poly-
butadiene which sets heat free upon mixing and yet shows partial miscibility.
Slonimskii et al. concluded that the actual situation is obviously not at all
covered comprehensively by the simple molecular picture outlined above and
that entropy of mixing terms other than combinatorial ones are involved.
They thought the non-combinatorial entropy terms to be related to molecular
packing and, hence, to volume changes accompanying the mixing process.
In this way they foreshadowed more recent approaches to improve the theory
of liquid mixtures, among which the 'equation of state' treatment by Flory
and his co-workers124 and its application to polymer mixtures by Mc-
Master15 are particularly noteworthy.

Alekseyenko16 also considered the packing denslty of mixed polymers and
suggested the packing coefficient K, defined as the ratio of the actual and
additive (calculated) volumes of the mixture, to be a useful criterion for
compatibility. Expansion (K> 1) would then point to incompatibility,
contraction (K < 1) to miscibility. Gul' et a!."17 used the independence of a
property of the blend from the path by which it is attained as a criterion for
thermodynamic stability. They measured optical densities of mixed films as
an illustration.

It is evident that heats and volumes of mixing, as well as optical properties,
are important parameters for thermodynamic stability but they are not
wholly determinative. The free enthalpy of mixing unambiguously determines
equilibrium states and we therefore prefer to base discussions of compatibility
on this quantity. A consideration of the dependence of AG on composition
immediately shows that the boundary condition AG = 0 mentioned above
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arises from much too crude a picture. Mixtures can be and often are unstable at
negative AG (though not, of course, relative to the pure components), and can
diminish AG still further by separating into two phases.

Figure 2 illustrates this situation for a strictly-binary mixture. The stability
of the system is determined by the curvature of AG(q'2)' 8 20 and the stability
limit, also called spinodal, is given by

(a2AG/aco)PT = 0. (1)

where 42 is the volume fraction of the second component. The slight ripple in
the AG(q2)curve which goes with partial miscibility may be caused by the heat
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Figure 2. Free enthalpy (Gibbs free energy) of mixing as a function of concentration in a binary
liquid system showing partial miscibility.

of mixing, but could equally well spring from a deviation of the entropy of
mixing from mere combinatorial terms. In the latter case one may have partial
miscibility even if AH is negative. Wolf recently reviewed entropically and
enthalpically induced demixing21.

A free enthalpy of mixing expression that has proved useful in describing
liquid-liquid phase relations is that by Flory22'23 and Huggins24' 25, based
on the lattice model of the liquid state. For quantitative descriptions it must
be slightly extended23'2628 by a semi-empirical correction term. Further,
the fact that actual polymers are generally characterized by a chain-length
distribution rather than a single species must be taken into account22' 26.29
Leaving chain-branching and copolymerisation out of consideration we can
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write

AGq,/RT pi,j mlnq1 + p2mjlnp2, + V(p, T,q2) (2)

where AGQ is the free enthalpy of mixing per mole of lattice sites, and
P2, are the volume fractions of species I in polymer 1 and speciesj in polymer
2, and m1 and m2 are the relative chain lengths of the same, expressed in
the number of lattice sites they occupy. R T has the usual meaning, and p
stands for pressure.

The correction term F' can be written as

F' = g(p, T, P2) P1P2 (3)

where Pi and q2 are the volume fractions of the whole polymers 1 and 2,
i.e. tpi 1 —

cp2. For the moment we ignore a possible chain-length depen-
dence of interaction parameter g. If g goes not depend on concentration we
have the familiar Van Laar interaction term30.

Using the multicomponent version of equation (1) one finds for the stability
limit of a system obeying equation (2)':

—(2f/ôP),T = (1/mw iPi) + (l/m2p2) (4)

where m and m2 are the weight-average chain lengths of the two poiy-
mers. Within the range of validity of equation (2) the stability limit of a two-
polymer mixture is determined by the concentration dependence of F' (or g),
and the chain length distributions of the polymers reveal themselves in terms
of the two weight averages only. In some of the cases we shall discuss presently
this simple approach seems to work satisfactorily even though relatively small
chain lengths are involved.

The simple lattice theory supplies descriptive expressions for g in terms
of temperature, concentration and chain lengths3 but it cannot predict
how g will depend on pressure and temperature. For that purpose the theory
by Flory and his co-workers1 2-14 and Patterson and Delmas36 38 have
proved to be powerful tools. A striking example of the usefulness of Flory's
theory has recently been given by McMaster who applied it to mixtures of two

'5. Both Flory's and Patterson's free enthalpy expressions are very
complicated and contain many parameters that, although readily obtainable
from independent measurements on the constituents of the mixture, make
these expressions less suitable for the present purpose. Moreover, they are
mainly concerned with the dependence of F' on temperature, pressure and
concentration and attribute the effect of the chain length distributions to the
same two combinatorial entropy terms that are used in the lattice theory
[first two terms in equation (2)]. Since we are primarily interested here in the
effect molecular weight distributions have on the location of miscibility gaps
in polymer mixtures we prefer the simpler expressions (2) and (3). The impli-
cations of 'equation of state' parameters will be discussed briefly on the basis
of McMaster's results.

Very recently, Derham, Goldsbrough and Gordon39 expressed serious
doubts about the adequcy of equation (2), in as much the influence of the
molecular weight distribution is concerned. They carried out very accurate
measurements of stability limits in the system cyclohexane—polystyrene, using
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the pulse-induced critical scattering method developed in their institute.
The spinodals were found to depend on the molecular weight distribution of
polystyrene in an intricate manner, much more complicated than is suggested
by equation (4) which restricts the influence of the distribution to the weight
average alone. It is possible to introduce an arbitrary, empirical dependence
on the chain length distribution into equation (3), and work out the stability
limit33' An improved theoretical treatment of the free enthalpy, however,
would be preferable. With the systems on hand in particular we are not yet in a
position to discuss such subtleties and we shall have to proceed on the basis
of the simple expression (2) for the time being.

It has been noted before4042 that the stability condition (1) supplies a
convenient means of investigating phase behaviour of liquid systems. This is
because all AG functions in current use allow equation (1) to be worked out and
the result be written in closed form. This is not possible with the equilibrium
conditions for the concentrations of the two coexisting phases (Figure 1),
P'2 and q. The latter conditions (arising from the equality of the chemical
potential of each component in the two phases) lead to implicit equations that
must be solved with numerical methods. Every miscibility gap, however,
comprises a spinodal and the occurrence of such a limit of stability is there-
fore indicative of a range of two-liquid-phase equilibria in the system. In
case of doubt one might use the sign of the curvature of AG(p2) to decide on
which side of the spinodal the unstable states are located.

Changing from a heterogeneous to a homogeneous mixture by a change in
temperature or pressure, the system passes through the consolute or critical
state in which the points of inflection as well as the double tangent points
of AG((p2) coincide (Figure 2). The critical state is characterized by equation
(1) in conjunction with

(c3AG/I3co)PT 0 (5)

The multicomponent version of this condition leads to
i3r/ 3 — / 2 2 j / 2 2— /Uç02,P,T — 1,m —

where m stands for the z-average chain length, and ip is the critical con-
centration. Equation (6) is subject to the assumptions underlying equation
(4).

A critical point is located on the spinodal. It coincides with the latter's
maximum in a strictly-binary system and shifts away from the maximum
if one of the constituents or both contain more than one component32.
Estimations of the shape of miscibility gaps are greatly helped if the location
of the critical point on the spinodal, calculated with equation (6), is included.

In the following discussions the experimental evidence will mainly be
derived from literature and our own data on mixtures of low-molecular-
weight polymers. Allen, Gee and Nicholson43, who studied the system poly-
isobutene—poly(dimethylsiloxane), realized that, owing to their relatively
low viscosity, oligomeric systems allow investigation of phase equilibria
with the usual means, and yet have some of the properties characteristic for
long-chain constituents. For related reasons Mcintyre, Rounds, and Campos-
Lopez44 investigated the system polyisoprene—polystyrene to which data
we have added some of our own.
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Many experimental methods are in use for establishing the miscibility, of
polymers27. We limit ourselves to some general remarks which might
justify the choice of the methods discussed here in some detail. Alekseyenko
warns against methods using solutions of the mixed polymer in a common
solvent (mutual-solvent method)1 6, We agree with him that reliable con-
clusions about the properties of the solvent-free polymer mixture cannot be
drawn from its behaviour in more or less dilute solution, no matter whether
the solvent is good or poor.

Procedures based upon solvent-free mixtures are not without danger of
misinterpretation either. It has been established that polymer mixtures can
sometimes follow temperature changes with an amazing speed. Direct
observation of blends with the light microscope has shown that demixing of
even high-molecular-weight constituents can set in quite rapidly upon a
change of temperature15'45' 46, Hence, if the sample has to be frozen in, as
for instance in the preparation for the electron microscope, the picture taken
is not necessarily representative of the system at room temperature but may be
determined by what happened during the heat treatment.

Similarly, mechanical loss peaks, in wide use to detect the number of
glass transitions (number of separate phases) in a blend, have only significance
in the temperature range where the peaks occur and may easily not be
representative for the system at other temperatures. In this connection the
system natural rubber-SBR might offer an interesting example. Mechanical
loss measurements reveal two peaks below 0°C47, yet microscopic investiga-
tion at room temperature shows transparent films only. One could conclude
that the system exhibits upper critical solution behaviour upon cooling
below room temperature. This conclusion however depends entirely on
whether the refractive indices of the constituents differ enough to make the
microscopic observation significant. This is the main limitation of the
microscopic determination of compatibility.

Scholte48' Chu et al.50'51 and others have shown that light-scattering
measurements provide direct access to the stability limit and thus yield
basic thermodynamic information. As in light microscopy, the constituents
should have sufficiently different refractive indices for the method to be
applicable but the amount of information is much greater. This, however,
seems to be the only limitation of the light-scattering method which, in
particular in the elegant variation by Gordon et a!. (pulse-induced critical
scattering39' 52), will doubtless prove to be of great value in thermodynamic
studies of polymer compatibility.

MISCIBILITY GAPS IN MIXTURES OF POLYDISPERSE
POLYMERS

1. Concentration-independent interaction parameter
If g in equation (3) depends on p and Tonly, we have

= 2g = (l/m, p1) + (1/rn,2Q2) (7)

(spinodal). The location of the critical points on the spinodal is determined by
__i / 2 2 j 2 2I /U4Jflp,T — 1m — m2,m2Cp2 —
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Equation (8) can be solved for p2, which yields

P2,c = 1/Ill + (m2a1/m 1a2)] (9)

where ak stands for m /m k' For m m 1 = 1, equation (9) reduces to
the critical concentration of a quasihinary polymer solution (polydisperse
polymer in a single, small-molecule solvent), first derived by Stockmayer53.

In this study we are only interested in properties at atmospheric pressure.
Further, we leave the temperature dependence of g unspecified for the time
being. Thus we have a g axis instead of T in Figure 3 which shows some

01 03 05 07 09

Figure 3. Stability limits for various polymer l-polymer 2 systems for indicated m, 1/m2 values.
Critical points for strictly-binary systems and for mixtures of polydisperse polymers with
identical m/m (Q). If the m/m values differ the critical point shifts away from the maximum
towards the axis of the constituent wIth the larger m/m ratio (. The dashed lines are loci of

critical points at equal m/m.
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spinodals and critical points calculated with equations (7) and (9). Concen-
trating on the stability limits in polymer solutions first (systems 1/mw, 2)
we note the well known asymmetry of the unstable region (and, hence, of the
miscibility gap), and the equally familiar shifting of the critical point towards
the solvent axis with an increase of m 2 At constant m 2' the critical point
travels down the right-hand branch with a broadening of the molecular
weight distribution of the polymer (increasing a2)54. A truly binary polymer
solution (a2 = 1) has its critical point at the maximum of the spinodal.

A similar, but less pronounced, asymmetry is seen if the solvent (con-
stituent 1) is also a polymer, but with a smaller average chain length than
constituent 2. The stability limit is shifted towards smaller g values because
the entropy of mixing per unit volume is less than in the (1/mw 2) mixtures.
A peculiar situation arises if the two polydisperse polymers have equal a
values. Then, the critical point coincides with the maximum of the spinodal
and, no matter how broad the distributions, the system behaves in this
respect as if it were a truly binary one. However, it is only in this respect that
polymer mixtures may look like binary systems, all other features. of phase
behaviour differ5 .

WI
II

w(tvl)

Figure 4. Molecular weight distributions with equal m (= 50). I: monodisperse: II binary
polymer (m = 62.5): III: exponential weight distrihution (m, = 62.5).
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To appreciate this we must turn to the shape of the miscibility gap which is
wider than the unstable region comprised by the spinodal (see Figure 2).
Numerical methods have been developed to calculate the location of the
two-phase region. They are based on the equilibrium conditions mentioned
above (equality of chemical potentials). Multicomponent systems present
some problems, since there are as many equations as there are components.
Methods to deal with them are described in the appendix.

To elucidate the peculiar situation when the critical point in a non-binary
system coincides with the maximum of the spinodal we compare miscibility
gaps calculated for mixtures of two polymers with identical molecular
weight distributions (Figure 4). We have: I, a strictly binary mixture (m 1 =
m2 = m = 50) of two monodisperse polymers; II, two binary polymers
(rn,, = = 50; m,1 = rn2 = 62.5); and III, two polydisperse poly-
mers, each with an exponential distribution and m and m values equal to

/
I

// / \\
006 spnod

008

T Y5 1

02 04 06 08

Figure 5. Miscibility gap calculated for a mixture of two polymers (P1, P2) with identical mole-
cular weight distributions. The three cases refer to the distributions in Figure 4.

those of case II. Distributions II and III also have identical number-average
chain lengths m (m/m = 4/3). In accordance with equation (7) these three
systems share the same spinodal, and have the critical point at its maximum
[equation (9), a1 a2], but they differ with regard to the extension of their
miscibility gaps. The mixture of monodisperse polymers has the narrowest
gap, and increasing polydispersity appears to widen the gap, i.e. decrease the
miscibility. Although the average chain lengths m, m and m arc identical in
cases II and III, the continuous distribution HI contains appreciable amounts
of very high molecular-weight material which presumably is responsible for
the smaller compatibility.
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Figure 6 shows that a decrease of the average chain lengths of the smaller
constituent shifts the miscibility gap towards the latter's axis, in accordance
with Figure 3. In the examples 35/46.4 and 27.5/31.8 the critical point is

' I I I I p
02 04 06 08 mjrn2

W,L Z
OJ / 625

Figur? 6. Calculated miscibility gaps (—), spinodals (—)and critical points (0) for mixtures
of two polydisperse polymers showing the effect of a variation of the average chain length in

polymer I m/m values are indicated g independent of concentration (q2).

shifted away a little from the maximum of spinodal and cloud-point curve
owing to slight variations in a1.

2. Concentration-dependent interaction parameter
Many studies on thermodynamic properties of polymer solutions have

established beyond doubt that the interaction parameter generally depends
on the polymer concentration. It seems therefore worthwhile to check the
influence of a possible concentration dependence of g on polymer compati-
bility. In polymer solution work a linear dependence on P2' although not
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sufficient for quantitative purposes. qualitatively describes observed devia-
tions from behaviour predicted by a concentration-independent g. We assume

g = g0 + g1(p2 (tO)

and, for convenience, take only g0 to be temperature-dependent. This in-
volves that g1 is a correction factor for the entropy of mixing.

It was shown elsewhere that such a correction may have a considerable
effect32. A positive value ofg1, for instance, may even give rise to a correction
term outweighing the first two (combinatorial entropy) terms in equation (2),
and thus shifting the miscibility gap over to the 'wrong' side of the phase
diagram. Figure 7 gives some further examples, calculated for the same mole-
cular weight distributions as used in Figure 6.

001

I

002

0.03

P1

m1 Irn1

Figure 7. Caption as Figure 6. g g0 + g1p2; g1 = 0.02.

m "m2
500/ 625

An increase of the average chain length in constituent 1 involves a decrease
of the combinatorial entropy of mixing. As a consequence we observe the
shift towards the axis of constituent 2 to become more pronounced as m
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increases. We observe also that the location of the critical point relative to
the maximum of the spinodal is more sensitive to differences in the average
chain lengths than in the case of a concentration-independent g (Figure 6).

The concentration dependence of g may well have been responsible for
the remarkable location of miscibility gaps in the system polyisobutene—
poly(dimethylsiloxane), reported by Allen, Gee and Nicholson43. These
authors found cloud-point curves in the silicone-rich region of the phase
diagram; the silicones, however, had the larger average chain lengths.

POLYISOBUTENE-POLY(DIMETHYLS!LOXANE)
The extensive data by Allen, Gee and Nicholson43 (Figure 8) deserve a

more detailed analysis, in particular because these authors took the consider-
able trouble to measure heats of mixing in addition to could-point curves.
Heats of mixing data can supply useful additional information on the inter-
action parameter, in particular on its dependence on concentration.

/
1 7OQI/

/
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Figure 8. Two of the cloud-point curves in the system polyisobutene (PIB)—polydimethylsiloxane
(silicone) measured by Allen, Gee and Nicholson43. Average molecular weights: PIB: 250,

silicones: 850; 17000; w,,fl = weight fraction of silicone.

If we assume the first two terms in equation (2) to be independent of
temperature we have

AH = —T25(AG/T)/3T = —RT2ço1p23g/UT (12)

Extending the concentration dependence of g [equation (10)] to a power
series in p2. and taking every coefficient to show the usual linear dependence
on 1/T56), we can write

g=g0+g1q'2+g2q+... (13)

13
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gk—gk,1 +g/T
Application of equation (12) yields

AH/p1p2 = R(g02 + g1 2P2 + g22q + ...)

(14)

(15)

Allen et a!. plotted AH/p1q2 data, taken at two temperatures, against
P2' and found the same significantly curved line with a minimum at c02 0.2
for the two temperatures. This implies the feasibility of the description by
equations (13) and (14) and calls for at least a quadratic dependence of g on

001

003

00J

0 07

Figure 9. Cloud point curves (—), critical points (0) and spinodals ( ) calculated with the
indicated values of g1 and g2 for two sets of m2/rn1 values, qualitatively representative for the
systems in Figure 8. In the 1700/25 system problems of computational accuracy prevented
calculation of the full curve at higher g0 values. The existence of the shoulder, however, is well

established.
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P2 Then, the occurrence of a minimum reveals that g1 2 and g2 2 are related

P2,min = —g12/2g22(g1, < O;g2 > 0)
If we assume the signs of the coefficients in equation (15) also to be valid

for the complete expression (13) we may attempt to calculate miscibility gaps
for the various mixtures investigated by Allen et a!. Figures 9 and 10 demon-
strate that inclusion of an appropriate concentration function greatly

06 08

Figure 10. Caption as Figure 9, g independent of concentration.

improves the similarity between calculated and measured cloud-point
curves. The combinatorial entropy terms are clearly outweighed by terms
which cause the miscibility gap to be shifted into the region of compositions
rich in silicone, the constituent with the larger average chain length.

Using the g(q2) function (13) we do not only describe the shift but also
recover the remarkable shape of the cloud-point curve of the 250/17 000
system. The upper part of the calculated curves in Figure 9 refers to the
experimental data, the lower part suggests that the 250/850 system would
have shown a similar shoulder at P2 0.1 if the measurements would have
been extended to lower temperatures. Evidently, the shoulder has to do with
the minimum in the AHftp1q2 curve.

The use of different g1 and g2 values in the calculations for the 250/17 000
and 250/850 systems was prescribed by Allen et al's observation that
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AH, although not being affected significantly by temperature in each of
the systems, did differ between the two systems. This indicates that g depends
on chain length. The calculated cloud-point curves refer to strictly binary
mixtures so that the chain length problem (difficult to deal with in multi-
component systems) could be circumvented simply by using different sets of
g1 and g2 values. In multicomponent calculations this would have been
incorrect.

The measured cloud-point curves (Figure 8) reveal that the location and
extension of the miscibility gap are very sensitive to changes in chain length
in one constituent or both. For instance, a twentyfold increase of the silicone
chain length shifts the maximum over several hundred C. We should note
that the simple description by means of equations (2), (12) and (13) can allow
for this phenomenon without need of introduction of unreasonable values of
g0 (see Figures 3. 57).

If the concentration dependence of g is ignored. we have the usual asym-
metry towards the polyisobutene axis (Figure 10). This was noted by Allen
et al., who also suggested that a possible concentration-dependence might
have something to do with the discrepancy. This conjecture is supported by
the calculated curves in Figure 9. The agreement, however, is only qualitative
for which we can advance two reasons—(a) polydispersity was ignored,
and does affect the detailed shape of cloud-point curves and (b) the tempera-
ture dependence of g was restricted to g0 (for sake of convenience), whereas
equations (13), (14) and (15) indicate that this premise cannot be quite
adequate for the system on hand.

The fact that nevertheless qualitative agreement is obtained suggests that
the main cause of the phenomenon has been located. Improved agreement
could doubtless be achieved if the polydispersities were known, and if addi-
tional information on the AG function itself were obtained, for instance by
measuring critical points and spinodals.

Spinodals in particular could be very informative. The calculated curves
in Figure 9 indicate that a shoulder on the cloud-point curve seems to be
accompanied by a second maximum in the spinodal. The latter maximum also
represents a critical point, but this is metastable, like the critical point located
at the minimum of the spinodal. It can be shown35'4' that, by a suitable change
of the values of g, and g2. the second maximum in the spinodal can be em-
phasized to an extent that the cloud-point curve eventually becomes bimodal
too (see next section).

POLYSTYRENE--POLYISOPRENE
Mcintyre et al.44 studied miscibility gaps in oligomeric mixtures of

polystyrene and polyisoprene in order to collect thermodynamic data that
might be helpful in understanding properties of triblock copolymers of
styrene and isoprene. We used the same system to gain insight into the
parameters that determine location and shape of a two-phase region.
Figure 11 shows our data for two quasi-binary systems containing anionic
polymers: polyisoprene (M 2700) and two polystyrenes (M 2 100
and 2700).

As in the system polyisobutene--silicone, changes in chain length bring
16
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Figure 11. Measured cloud-point curves in the system polyisoprene (PIP: M = 2700)—poly-
styrene (PST, M values indicated): = weight fraction polystyrene.

0

005

006

Figure 12, Cloud-point curves (—), critical points (0) and spinodals (— —--), calculated with
g = g0 — °°4P2 + 0.04q, for indicated m 1/m2 values. Corners of three-phase triangles

(t\). metastable cloud-point curve: (— — - -) (see ref. 35).
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about vast variations in location of the miscibility gap. A decrease of the
polystyrene molecular weight from 2 700 to 2100 goes with a temperature
shift of about 50 °C. Judged from the data of McIntyre et a!. the sensitivity
is even greater towards the chain length of the polyisoprene, the maximum of
their cloud-point curve (PIP 2000; PST 2700) occurs at 56 °C.

The system 2 700/2 100 in Figure 11 is particularly interesting because its
miscibility gap has two maxima. After the preceding considerations it is
obvious to assign this behaviour to the concentration dependence of g.
Model calculations on a system that is only a very rough representation
bring out that a qualitatively correct description can be obtained with a
g(p2) function similar to that used for polyisobutene—silicone mixtures (Figure
12). The shift with chain length is now achieved with the combinatorial
terms alone, and no variation in g1 and g2 with molecular weight is needed.
Again, further attempts at improving the description would call for knowledge
of polydispersity and for measurements of stability limits and critical points.

The bimodality of a cloud-point curve might be thought to be caused by
polydispersity in one of the polymers or in both. It has been shown elsewhere
that this is not necessarily so, a strictly binary polymer mixture may also
show a two-peaked cloud-point curve35. The phenomenon can be attributed
to a particular dependence of g on p2 (at least quadratic).

g0

0035

004

0045

08p
Figure 13. Caption as Figure 12, g independent of concentration.

Another objectjon might be raised in view of the relatively short chains
considered here. End-group effects, leading to g being dependent on m8,
cannot off-hand be ruled out as possible causes of unusually shaped miscibi-
lity gaps. It is possible to derive the stability limit for an arbitrary m-
dependence of g at the cost of some lengthy algebra which we shall not
repeat here3 Some model calculations for oligomeric mixtures indicate
that two maxima can artificially be brought about in spinodals by end-group

18
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effects, but only for values of the interchange free enthalpies that are un-
acceptably large. The two maxima vanish upon introduction of reasonable
values. Hence, end-group effects are not likely to be the origin of bimodality
in cloud-point curves of these oligomeric mixtures46.

It hardly needs verification that the observed behaviour cannot at all be
described with g independent of p2 (Figure 13).

EQUATION OF STATE APPROACH
We have seen that the lattice theory is capable of supplying a satisfactory

but after-the-fact description of liquid—liquid phase relations in polymer
compatibility. For predictive purposes, however, it is inadequate. For in-
stance, the sensitivity of the cloud point to relatively small variations in
chain length is reflected in the relation between g0 and T, which can be
described but not predicted. The marked influence of the exact form of the
g(p2) function is another example.

Very recently it was shown by McMaster15 that Flory's equation of state
theory12 is superior to the lattice treatment in that it does not only predict
the extreme sensitivity of the cloud point to variations in chain length, but
also reveals the marked influence of thermal expansion and pressure co-
efficients. McMaster's model calculations show that lower critical miscibility
(phase separation upon an increase of 7') must be expected to be a normal
phenomenon in polymer mixtures. This is a particularly strong point for
the theory; Flory and his co-workers'3' predicted lower critical demixing of
polymer solutions, consistent with experimental findings. McMaster predicts
that a difference by a factor of two in the average chain length of one of the
polymers may shift the cloud point more than 100 °C. Similar shifts may be
brought about by quite acceptable differences between the thermal expansion
or pressure coefficients of the two polymers. Further, the value of Flory's
interaction parameter X,2 is also sensitively determinative, the merging
together of two separate miscibility gaps (upper and lower miscibility type)
in the same system into a single hour-glass shaped two-phase region calls for

orckzr of
cc? c

Figure 14. Dependence of the location of the miscibility gap intwo-polymcrmixtures on equation
of state parameters (cx = thermal expansion coefficient y = thermal pressure coefficient) and
interaction energy parameter (X, 2). Cloud-point curve: — critical point: 0. Schematical,

from McMaster".
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subtle changes in X12 only. Figure 14 schematically summarizes some of
McMaster's results we refer the reader to the original paper for details.

In order to support the general conclusion of his calculations, McMaster
presented two examples of miscible polymer pairs that demix upon heating.
His systems are polystyrene—poly(methyl vinyl ether) and styrene—acrylo-
nitrile copolymer—polycaprolactone. From our own experience we can add
the system butyl-rubber—EPDM terpolymer which is also compatible at
room temperature and becomes immiscible when heated46.

The lattice treatment of the oligomeric systems showed that a well-defined
concentration dependence of the interaction parameter g must be introduced
for quantitative descriptions of phase relations to be feasible. The form of the
g(T, P2) function, however, is rather peculiar and cannot be derived from
lattice considerations. The equation of state theory defines g(T, P2)to a con-
siderable extent in terms of fundamental parameters. It should be noted,
however, that, at least within the range of values McMaster attached to these
parameters, the irregular asymmetry of miscibility gaps reported by Allen
et al.43 cannot be described. All of McMaster's calculated and measured
cloud-point curves have the normal asymmetry and are located in that part
of the phase diagram which represents systems rich in the constituent with
the shorter chains. Further, McMaster's extensive data do not suggest the
possibility of describing a bimodal cloud-point curve with his equation of
state treatment in unmodified form. Although tremendous progress had
been made by this application of Flory's equation of state theory it is obvious
that further improvements are needed in order to achieve a completely
quantitative prediction of phase relations in polymer compatibility, which
proves to be a very subtle phenomenon indeed.

CHAIN LENGTH COMPATIBILITY

Polymer compatibility evidently being governed by subtleties in the
enthalpy and/or entropy of mixing, the question does not seem to be alto-
gether superfluous whether a mixture consisting of two chemically identical
homopolymers with widely varying chain lengths might show incompatibility.
If, for instance, the interaction energy between end and middle groups
differed enough from that between end---end and middle--middle contacts,
one might have a positive heat of mixing of the two samples. Assuming Flory
and Huggins' expression for the entropy of mixing to be valid, one can estimate
that the energy difference, necessary for samples with chain lengths of 10 and
10000 to be partially miscible, is only a fraction of RT Hence, the pheno-
menon would seem physically possible58.

There is some controversy in the literature as to the question whether
polyethylene might show this behaviour6. Orwoll and Flory'3 made a
thorough analysis of heat of mixing data on binary mixtures of n-alkanes of
various chain lengths in terms of the equation of state theory. They were
remarkably succesful in describing the data and, in addition, the phenomenon
of lower critical miscibility in alkane pqlyethylene solutions, which does
occur. From the heat of mixing data one could roughly deduce that the
mixing of two polyethylene samples with widely differing chain lengths will
presumably go with a negative heat of mixing at temperatures above Ca.

20
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120 (58 However, this is no guarantee for chain length compatibility,
because the entropy of mixing may also bring about a ripple on the AG(p2)
curve. Hamada et al.59 considerably extended the existing data in this field
by measuring cloud-point curves for linear polyetbylenes with various average
chain lengths in alkanes (C5 C8). They found the miscibility to increase
with increasing chain length of the solvent.

In view of all these data one is inclined to accept the compatibility of
polydisperse polyethylene.

Buchdahl and Nielsen6° reported a secondary maximum in the mechanical
loss as a function of temperature for a 1/1 mixture of two polystyrenes with
weight-average molecular weights of 2 x iO and 1.2 x 106. The occurrence
of two peaks points to the existence of two phases, each with its own glass
temperature. Buchdahl and Nielsen are somewhat vague in their discussion of
the polystyrene mixture and we thought it worthwhile to repeat their

10
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¶
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- roc
1 T T 1 T

20 40 60 80 100

Figure 15. Loss modulus in shear (G", dyn cm 2) at a frequency of 0.2 Hz as a function of tempera-
ture for mixtures of narrow distribution polystyrenes (per cent by weight of constituent II

indicated). M,1 = 2 x io M11 = 1.25 x 106.

measurements. Two anionic polystyrene samples from Pressure Chemical
Co. were used with weight average molecular weights of 2 x io and 1.5 x
106. The polystyrene mixtures were prepared by evaporation of the solvent
from homogeneous solutions in ethyl methyl ketone under stirring, and
drying for several days under vacuum at 40 °C. The glass temperature was
defined as the temperature at which the mechanical loss modulus at a fre-
quency of 0.2 Hz shows a maximum. The pure 2 x iO sample was measured
with the Perkin-Elmer Thermomechanical System47. The mixtures and the
constituents gave only one peak which points to complete miscibility in the
temperature and concentration ranges covered (Figure 15). In addition,
Tg shows the usual linear dependence on 1/Mr (Figure 16). All this points to
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chain-length compatibility. The secondary peak reported by Bucbdahl and
Nielsen may have been due either to incomplete mixing (non-equilibrium
state) or to end groups that are of a chemical nature different from those in the
Pressure Chemical anionic polystyrene.

Ig

90

70

Figure 16. Glass temperature i as a function of 1/Ma for the systems in Figure 15 and constituent I.

EXPERIMENTAL METHODS
Various methods exist for determining the compatibility of polymers.

We refer to literature for a complete survey27 and only discuss two pro-
cedures based upon thermodynamic principles. In our opinion light-scatter-
ing techniques supply the most reliable data whereas the better-known
mutual solvent method may easily lead to incorrect conclusions.

I. Light scattering methods
In a homogeneous system the intensity of the scattered light is proportional

to the second derivative of AG with respect to concentration and depends
further on the scattering angle

Wehavef(O) = O,so that
1/I(9) cc 32AG/ôq4 + f(9)

1/1(0) = f(T,2)
(P2

The stability limit of the system is defined by equation (1), hence, at the
spinodal, 1/1(0) = 0.

At a given concentration c02 the scattered intensity can be measured as a
function of the scattering angle. Extrapolation to zero angle yields 1(0). In
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this way 1(0) values can be determined for different temperatures and be
plotted, e.g. as I(0)' against T . By extrapolation to I(0)' 0 one finds
the spinodal temperature for that p2 value (Figure 17).

is2
1o

4

32\
—

245 250

Figure 17. Scattered light intensity at zero scattering angle as a function of temperature. System:
n-octadecane—polystyrene (M = 4 x i0. concentration: 40 per cent by wt).

The proportionality constant in equation (17) contains the dependence of
the refractive index of the mixture on its composition. The extrapolation
method has the advantage that such data do not need to be known, but it
is subject to the limitation that the system must have a miscibility gap.
Miscible systems can be dealt with, but call for knowledge of the parameters
in the proportionality constant in equation (17)48.

There are two ways of applying the extrapolation method. One is to choose
the measuring temperatures in such a way that the miscibility gap is ap-
proached as closely as possible without being entered into4851. The second,
more recent method by Gordon et al.39'52 is devised so as to allow entering
the miscibility gap deliberately in order to approach the spinodal more
closely. Entering the two-phase region happens very quickly by means of a
temperature pulse (pulse induced critical scattering) and the system is brought
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back to a temperature above the cloud point before it can separate into two
phases. In the mean time, however, the intensity of the light scattered at a
fixed angle has been recorded. Applications of the method have proven that
spinodal temperatures determined in this way are in excellent agreement
with other thermodynamic information35

Figure 17 shows an example of the light-scattering method, applied to
the system polystyrene-n-octadecane under conditions where it is homo-
geneous. The solutions were prepared in a dust-free special light-scattering
cell. The polystyrene concentrations were too high for filtration of the solu-
tion to be feasible. The solutions were homogenized at 150°C by successive

140
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W p0ytyr2n
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02 04 06

Figure 18. Cloud-point I—), spinodal ( ) and critical point (0) in the system of Figure 17.
Estimated experimental errors are indicated. Crosses denote measuring temperatures in light-

scattering (Figure 17). n' = weight fraction.

shaking and vibrating of the cell until no heterogeneity could be observed by
eye (2 hours). Vibration was then continued up to a total dissolving time of
about 16 hours. The accuracy of the measuring temperature is estimated to
0.3 °C, but the extrapolation adds to the uncertainty in the spinodal tempera-
ture (0.5 °C). The cloud-point curve and the critical point were determined by
means of phase-volume-ratio measurements, and are consistent with the
location of the spinodal (Figure 18).
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II. The mutual solvent method
The phase behaviour of a mixture obtained upon mixing solutions of

polymer 1 and of polymer 2 in the same solvent is often used as a criterion for
the compatibility of the solvent-free polymer 1—polymer 2 system. The reliabi-
lity of the method rests entirely on the validity of the assumption that the mis-
cibility gap in the two-polymer system extends far enough into the solvent—
polymer 1—polymer 2 composition triangle to be discernible in relatively
dilute solutions of the mixed polymer. The method is based on calculated ter-
nary phase diagrams reported by Tompa2661 and Scott62 which indicate that
incompatibility may indeed reveal itself down to fairly low concentrations.
This behaviour is shown schematically in Figure 19b. In such situations the

S S

1/
1 %1V4

S

(Bqnzn Butylnjhber_EPDM)
(c) (d)

Figure 19. Possible liquid—liquid phase behaviour of quasi-ternary solvent (S)—polymer I (P )—
polymer 2 (P2) systems. Hatched areas denote two-phase regions. Schematical,

mutual solvent method will give the right answer; however, in Figure 19a it
will lead to an incorrect conclusion. The only difference between the two
cases is the nature of the solvent. In both situations the solvent is completely
miscible with each of the polymers.

Another source of erroneous conclusions is a phase behaviour like that
depicted in Figure 19c. Here we would conclude that the two polymers are
incompatible, whereas they are completely miscible, The systems benzene—
butyl—rubber—EPDM rubber and diphenyl etber—atactic polypropylene—
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linear polyethylene present examples of such closed miscibility gaps (Figure
20a). Liquid—liquid phase relations may be even more complicated as is
shown schematically in Figure 19d. As far as the solvent-rich part of the
diagram is concerned we have an experimental example in the system
diphenyl ether—isotactic polypropylene—linear polyethylene (Figure 20b).

I .7 .15C

/

/
/

p77O7yIQQ

(b)

Figure 20. Closed miscibility gaps in the system diphenyl ether-- polyethylene- polypropylene3241.

The data upon which Figure 20b is based do not extend beyond about
15 wt % of mixed polymer. The question as to the compatibility of molten
polyethylene/polypropylene blends remains open, and Figure 19d may well
be inappropriate for that system. In this connection recent observations by
Kryszewski et al.63 might be mentioned. These workers studied the inter-
diffusion of molten polyethylene and polypropylene and measured inter alia
infrared absorption bands characteristic for polyethylene and polypropylene

26



THERMODYNAMIC ASPECTS OF POLYMER COMPATIBILITY

at various distances from the interface between molten films of the two
polymers. Kryszewski et at. conclude that there must at least be partial mis-
cibility in molten blends of polyethylene and polypropylene.

This is a significant new development dealing with solvent-free mixtures.
In the present context it offers additional support to our opinion that the
mutual solvent method does not permit reliable conclusions about the state of
the solvent-free polymer mixture and should therefore be regarded with
reserve. An adequate increase of the mixed-polymer concentration is im-
practicable because of the steep rise of the viscosity with concentration.

CONCLUSIONS

In the present paper we have tried to show that polymer compatibility is a
very complicated and subtle phenomenon that cannot be dealt with by the
mere statement that in most polymer mixtures the free enthalpy of mixing is
positive. Summarizing some of the parameters that are determinative for the
miscibility of two polymers, we have:

1. AH, the heat of mixing, the most important parameter. A small positive
value already suffices to cause demixing. Formally it can be treated by
introduction of the Van Laar type parameter gin the lattice theory, and by the
interaction parameter X12 in Flory's equation of state treatment.

2. At a given level of AH, phase relations are markedly influenced primarily
by the average chain lengths and to a lesser extent by the chain length
distributions of the two polymers.

3. The combinatorial entropy terms in the free enthalpy of mixing may be
outweighed by correction terms that may be of entropic (non-combinatorial)
and/or enthalpic nature. Their effect is a distortion of the miscibility gap
which may even shift towards the composition region of the phase diagram
representing mixtures rich in the constituent with the longer chain lengths.

4. Small changes in the difference between the thermal expansion coeffi-
cients or the thermal pressure coefficients of the two polymers have a marked
influence on the location of the miscibility gap.

Provided g is made an appropriate function of concentration the lattice
expression for AG can deal quantitatively even with the most unusual shapes
of miscibility gaps. This is a descriptive rather than predictive quality, but
the lattice treatment is indeed very powerful in this respect.

The equation of state theory is superior in that it can predict the order of
magnitude of the effect which the average chain lengths and the thermal
expansion and pressure coefficients have on the location of the two-phase
region, It also predicts lower critical solution phenomena. In a quantitative
respect, however, it still has to prove its usefulness. The remarkable shift
mentioned under (3), for instance, seems to be beyond its range so far.

Two parameters of considerable importance have been left out of considera-
tion here. Dealing with subtle effects we must expect chain branching in
bomopolymers and sequence length distribution in copolymers to have an
influence on phase relations that may at least be similar to that exercised by
the four parameters dealt with in this paper. The reason for leaving them out
of consideration is the present apparent lack of theoretical relations needed
in model calculations.
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Partial miscibility in a homopolymer on account of large differences in
chain length theoretically does not seem to be impossible. In linear poly-
ethylene and anionic polystyrene no experimental indication has been found
for chain-length incompatibility.

Two thermodynamic methods for establishing compatibility have been
analysed. The familiar mutual-solvent method proves to be unreliable
because miscibility of the mixed-polymer solution does not necessarily imply
miscibility of the solvent-free polymer mixture and vice versa. Light-
scattering measurements on polymer mixtures supply unambiguous thermo-
dynamic information. They are limited to one-phase systems although the
success of the Pulse Induced Critical Scattering method of Gordon et al. has
shown that the metastable part of the two-phase region can be entered into.

The extreme sensitivity to chain length might be employed to bring the
many incompatible polymer pairs within reach of the light-scattering
methods.

APPENDIX

Calculation of phase relations in mixtures of two polymers
(a) Polymer 1 (monodisperse)-polymer 2 (polydisperse):
The program MEXPREC calculates concentration and molecular weight
distribution of polymer 2 in both phases and the g-value at which the separa-
tion takes place, starting from known values of

S0 molecular weight polymer I.
w(M) = molecular weight distribution of polymer 2 (exponential or a set of

delta functions),
P2 = volume fraction of polymer 2,
r = V'/V", ratio of the volumes of the phases concentrated (") and

dilute (') in polymer 2.

For a concentration dependent interaction parameter g

g = g0 + g1(p2 + g2p (Al)
the concentration dependence (g1 and g2) should also be known.

With an estimated starting value for the distribution coefficient i[' (1/rn1)
ln q'/p] the weight of polymer 2 in the concentrated phase, w, is calculated
from

w' = J dM (A2)

by means of an accurate integration subroutine. In addition to equation (A2)
the following integrals are calculated

M' w(M)N" = dM (A3a)
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N' N — N" (A3b)

= I dM (A4a)J 1+re
0

Z'=Z—Z" (A4b)

C M2i1M)(Z + 1)" =
.L l+re_MdM

(A5a)

(Z + 1)' (Z + 1) — (Z + 1)" (A5b)

where N, Z, Z + 1 are the relevant moments of the initial distribution wM)
and of the distributions of the fractions in the two phases.

From this m', m', m' m and ,n' are easy to calculate. The concentra-
tions of polymer 2 in the phases are then

= (r + 1) w'jp2 (Aôa)

and
= [p(r + 1) — p']/r (A6b)

From AJ4 = ji and At' = N. g0 and Oaic are calculated according to

[a — 1n— — 3(2 — q'22)(g1 — g2) —

q3)g2]/
— 4"2)] (A7)

acaic (p'(S01 m'') — — m') + 3(g2 — g1)(p2 — p)
+ 3(g1 — 2g2)(q3 —

P'23) g0 — g1)[(p'2 — 2(p —

(A8)

With an adequate extrapolation subroutine startis changed and the calcula-
tion repeated until

I0calc — startI < '0caIc

Starting with a reasonable a this is possible in less than 10 iteration steps.
Normally an accuracy of = iO suffices.

(b) Two polydisperse polymers.
Instead of S0 in MEXPREC the molecular weight distribution of polymer

1, X(M), must be given. The distribution coefficient of polymer 1 is

[= (1/rnu).ln4'][ Pi
The program MENGPOL starts with estimated values of a and x. In the
equations mentioned below the concentrated (") and dilute phase (') are the
phases concentrated and dilute in polymer 2 respectively.

The weight of polymer 2 in the concentrated phase is calculated with
29
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equation (A2) and similarly the weight of polymer 1 in this phase is

I X(M)dMw=i— (A9)j 1 + re
0

With the same integration subroutine as in MEXPREC the average molecu-
lar weights of both polymers and the concentrations in the two phases are
calculated with equations (A3HA6). The weight of polymer 1 in the con-
centrated phase has to be

1—co2
W1 caic = (r + 1)(1 —

By comparing this value with equation (A9) it is possible to change
stad with an extrapolation subroutine in such a way that, after some itera-
tions, w' = w' caic within iO per cent. From the equality of the chemical
potential of all species of a polymer in both phases,

= A and tt,u', =

it is possible to calculate g0 and aIcwith

g0 = [a — — 3(g1 g2)(tp2 — c°2) — 4g2((p'3
— (All)

acalc = — + --'- - — 3(g1 — (12)('P2 P'22)
rn,,2 rn,,, rn,,,

+ 3(g1 — 2g2)(p3 — 'p'j3) — (g0 — g1)[p'2 — '2 — 2(q —

(A12)

By comparing 5calc with astart a new starting a value, a2 is calculated with
the extrapolation subroutine. With a2 and the c' value from the iteration on
equation (A 10) as ctart, a new iteration is performed. With properly chosen
values for Cstart and start one can get caic = (Tstart within iO per cent in
less than 10 iteration steps.

Because it is sometimes difficult to know a proper value for r it is possible
to perform both MEXPREC and MENOPOL procedures for a given g0
values have to be carried out. For 2 > co2r goes to zero and if 2 < p2, r
separation temperature is possible if the temperature dependence of the
interaction function is known.

In both systems the phase compositions are not cloud points but coexisting
phases. To obtain a cloud point several separation calculations for different r
values have to be carried out. For p2 > P2c r goes to zero and if 2 < (p2 r
goes to infinity in the cloud point ((p2c is the critical concentration).
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Note added in proof:
Dr L. P. McMaster kindly drew the authors' attention to hitherto unpub-

lished calculations by Dr 0. Olabisi and himself which show that a shift of
the miscibility gap to the 'wrong' side of the phase diagram may be obtained
by an appropriate choice of the interaction energy parameter X12. Such
shifts are brought about by rather large negative values of X12. It may there-
fore be that the criticism we expressed on pages 20 and 27 has been a little
too severe.
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