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ABSTRACT

A comprehensive statistical mechanical theory for elastic networks is deve-
loped on a basis which neglects the interaction between network atoms and
superficial constraints. The strain is calculated from the molecular configura-
tion by means of the gyration tensor. The probability distribution of the latter
quantity may be evaluated from an appropriately modified configuration
integral. Terms in this integral are conveniently manipulated with use of the
incidence matrix for the complete star graph representative of all possible
interactions between atoms. The last formal step entails averaging thermo-
dynamic functions over all internal connectivities that might be formed
under a given set of external constraints. Finally, an illustrative calculation is
performed for the Gaussian model with excluded volume interaction; en-

tanglements are not included in the model.

1. INTRODUCTION

The formal theory of high elasticity to be presented here is developed
from beginning concepts to final averages. It is applicable to all elastic mate-
rials regardless of chemical structure. Specific calculations on a particular
model are made to exhibit the manner in which the configuration integral
is handled; the model does not include entanglements. The aim of the dis-
cussionis to show that it is possible to develop a theory for elastomers which
avoids, or at least makes explicit, all approximations to the fundamental
relations between the strain and molecular configuration, including network
connectivity.

The subject is developed in four stages. We first choose a particularly
simple way for dealing with the mechanical coupling between the elastomer
and the siress applicators. This is not done without approximation; but it
can be argued that in the thermodynamic limit the error entailed on ignoring
the interaction energy between the system (elastomer) and surroundings
(stress applicators and thermal bath) is negligible. Next it will be shown that
the general thermodynamic stress—strain relation is reducible to a form which
is appropriate if the elastic free energy is a function of the radius of gyration
of the network. Here a new view of affine deformations emerges. Following
this is a section on the formulation of the configuration integral; graphs and
matrices which are useful and important aids for organizing terms in and
computing the value of the configuration integral are introduced there.
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At the last stage of the formal theory the methods for computing ensemble
averages are discussed. Finally, the techniques of the third section are ap-
plied to the quadrature of the configuration integral for a model network
consisting of Gaussian chains which interact with one another via a short-
range repulsive force. The integrations can be carried to the penultimate
stage, at which point it becomes necessary to diagonalize random sparse
matrices.

2. GENERAL CONSIDERATIONS

Elastomers, to be effective as mechanical devices, must be constrained
only over a small fraction of their surface. Let S(r) be the bounding surfaces
of the stress-applying devices. The discontinuous surface-specifying func-
tion S(r) is considered to depend parametrically upon the space point r in
the laboratory reference frame. Now consider the set of volumes V1[r, S(r)],
1 i , bounded by continuous surfaces, all of which include S(r), as
depicted in Figure 1. Further, let the measure of volume /2(V1) +
so that the set consists of a sequence of increasingly large volumes. The limit
of this set, V, is the volume available to the elastomer. Whether the network
occupies a large or a small portion of this volume is determined by internal
forces.

The potential energy of the system of N atoms, or groups of atoms, is
V({R}), which depends upon the set {R} of atomic positions. The con-
figuration integral Z is given by

-

Figure 1. A representation of the set of volumes F which are available to network atoms. The
heavy bars represent fixed external constraining devices. The volume over which integrals must
be performed is V, a volume of infinite measure but one which is partially bounded by the

fixed surfaces indicated
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Z = $...Sexp[—flV({R})]d{R} (1)

where f3 = 1/kT, and the integrations extend over the entire domain V.
The potential V({R}) includes terms representing the interaction between the
atoms comprising the restraining device, i.e. S(r), and the elastomer.

We now state the main assertion of this section:

In the thermodynamic limit of large systems the energy of interaction between
network atoms and constraining surface atoms may be taken to be a negligible
fraction of the interaction energy of network atoms themselves. Likewise, the
bounding surface S(r) is taken to be a negligible fraction of the total surface
area of the elastomer.

This assumption is motivated by: (1) the difficulty of restraining surface
atoms in any rigorous manner (the method of James and Guth1 has been
criticized repeatedly in this respect2' 3); (2) the reluctance to admit that it is
necessary to compute the configuration integral for all conceivable or useful
constraints. Freed3 has previously pointed out the importance of the thermo-
dynamic limit.

The volume V has now become all of space with no restrictions. However,
by un-restricting the volume in which to place the elastomer we have created
new problems. Since the volume is infinite, the configuration integral
diverges even for connected networks, owing to the centre of gravity (c.g.)
motion. This is easily circumvented by choosing a coordinate system which
is co-moving with the c.g., and this in turn is accomplished by inserting the
delta function 5(7 1 r) in the configuration integral, so that equation (1)
becomes

z = $ j r) exp [-flV({R})] d{R} (2)

Here we have taken all atomic groups to be identical, with the ith group
located at r1. Elaboration to account for individual atom positions in the
delta function is easily accomplished by taking the argument of this func-
tion to be

m1r1/ m

where m is the mass of atom i. For simplicity, however, we will henceforth
deal exclusively with generic networks composed of N identical groups.
The reader should have no difficulty in applying the equations to two or
more types of groups or even to individual atoms as may be appropriate.
However, it is worth noting that the general properties of elastomers are
relatively insensitive to chemical composition, and our preoccupation at
this stage with general descriptions is convenient, not shortsighted.

The second problem which is raised on passing from equation (1) to
equation (2) is that the obvious means for introducing the strain have
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disappeared. It will be necessary to augment equation (2) so as to obtain
information of one kind or another which relates to the macroscopic con-
figuration in space. We now turn to the question of what kind of information
is required of the configuration integral.

3. STRESS-STRAIN RELATION

The fluctuation theory which is to be offered here has its basis in the work
of Wall and Flory.

The definition of strain which we shall use dates to the time of the mathe-
matician Cauchy. Main features of the development may be found in mono-
graphs devoted to continuum mechanics and elasticity4' .

Let the infinitesimal distance ds0 between two material points in the
unstrained body be given by

ds = h2dyd/ (3)

where df is the component of the displacement along the xth coordinate
axis. The tensor is the metric for the space, and is determined by the
intrinsic geometry of the medium. (The summation convention is used
throughout.) The similar displacement ds2 between the same two points in
the strained state is

ds2 = gdxdx (4)

where is the metric tensor of this state, and the dx are the new natural
coordinates. These new coordinates are related to the old by

dx = (x2/y)dy
= )dy (5)

where is the deformation gradient tensor. Substitution from equation
(5) into equation (4) and subtraction of equation (3) gives

ds2 — ds = (g,22 — h)df d/
= 2idy dy (6)

where is in hydrodynamics the Lagrangian strain tensor; it is related to
the Eulerian strain by

= (7)

(The Lagrangian and Eulerian strains are functions of the coordinates of the
undeformed and deformed states, respectively.)

Analysis4 of the (virtual) work accompanying deformation gives the
symmetric stress tensor TØ referred to the undeformed state as

TØ = (8)

where p is the mass density and A is the (Helmholtz) free energy per unit
mass. This free energy is, properly speaking, a point function, i.e. it may vary
from point to point in the medium. Yet, statistical mechanics does not pro-
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vide the means for calculation of the free energy per unit mass, except in the
trivial sense of the total free energy divided by the total mass. This is only
the second of such difficulties in connecting continuum mechanics to
statistical mechanics. (The first is in the definition of strain, where it is
necessary to be more precise in specification of distances. We cannot be
referring to displacements between instantaneous atomic positions, for these
microscopic coordinates fluctuate rapidly even in the equilibrium state.
Instead, a point of the continuum must be understood to refer to the c.g. of
large collections of atoms which nonetheless occupy only a very small volume.)
In order for us to be able to calculate the stress, the elastomer is taken to be
homogeneous, so that equation (8) becomes

TØ = V '(aA/a,fl)T (9)

where A is the total free energy and V is the total volume for the particular
state of strain at which the derivative is evaluated.

The combined first and second laws are written in terms of the free energy as

dA = — SdT + VTØ d (10)

We will later return to this equation for ensemble averaging.
More convenient than TØ is the stress referred to the coordinate

system of the stressed state. Owing to the tensor character of T, we imme-
diately have

(8x/y) (axfl/yv) TV
= 22TV

v (11)

The free energy, and the strain, are ultimately dependent upon the whole
collection {R} of atomic coordinates. To establish the connection between
%the two, we now introduce a tensor S2P which is defined by

S =N x74 (12)

which will be called the 'gyration tensor'6. The sum on i is over all groups
comprising the material, and the x7 are the coordinates of the ith group
referred to a coordinate system co-moving with the c.g. of the network.
The coordinates x7 of the atomic group i in the deformed state will cer-
tainly be affinely connected to the coordinates in the undeformed state
y7 by

x = (8x7/y)y
= 2.iy (13)

if the deformation is infinitesimal in the continuum sense. It may be that
atoms interchange relative positions on such a deformation, but individual
atoms must follow a mean classical path that is continuous and differentiable,
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and equation (13) holds for all i. Since this is the case, equation (12) becomes

S° = N' >2 (14)

and the average deformation gradient may be defined by

S° = 22S (15)

where

S = N1 >2 yy7 (16)

This quantity 2Iiswhat is required in the stress—strain relation (equation 11)
for the homogeneous medium; the atomic are not meaningful in con-
tinuum mechanics.

It is seen that questions concerning whether or not a deformation is
affine are moot. The proper connection between molecules and the continuum
demands that the strain be defined as an average, and deformations in the
continuum can always be taken to be affine.

Inspection of the strain tensor, as defined in equation (6), suggests the
formation of

— = —

S2 — S = 2iS (17)

Here S2, or S in the undeformed state, is just the trace of S, i.e. the squared
radius of gyration in the sense common to polymer chain configuration
theory, if the coordinate system is Cartesian. The same identification may
be made in the general curvilinear case.

Equation (17) now will be used to simplify the stress—strain relation (equa-
tion 11). First, it is seen from equation (17) that

= (18)

and, hence, that

T2P =

= (2/V)S°(8A/S2)T (19)

since the undeformed state is independent of . This particular version of
the stress—strain relation is of importance for the actual calculation of the
elastic free energy. The fact that A could be calculated as a function of S2
alone, is a simplification, especially since one may make use of the same
mathematical techniques for whole networks as have been used for single
chains. However, it must be admitted that the free energy may not be a
function of the radius of gyration alone, especially ifolc's work6 is considered.
In fact, equation (19) may be used to prove that the elastic free energy cannot
be a function of 2 alone. If equation (19) were correct, then an asymmetrical
body could not sustain a uniform dilation in the presence of a hydrostatic
pressure. Such a contention is untenable, and so equation (19) is not a
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sufficient description of the equation of state. However, an alternative and
exact version of the stress—strain relation is easily obtained if the strain is
taken in the principal axes, for which S —S = 2S; then

= (2/V)S9A/S2) (no sum) (20)

and we consider A = A(S1 1, S22, S33). (It is also possible to obtain the stress
in terms of the invariants of 27;, or S, as Rivlin has shown7.) The virtue of
equations (19) and/or (20) is that they make a direct connection to our next
subject.

4. CONFIGURATION INTEGRAL
Gyration tensor

The above considerations suggest that equation (2) may be modified to

Z(S2)dS2 =
dS2$...J'o(S2

—

N_1r)c5(r)
x exp[—flV({R})] d{R} (21)

for use with equation (19), or to

Z(S) fl dS = fl dSs. . . s — N1
i=1

x ö ( fri) exp [—flV({R})] d{R} (22)

for application of equation (20). In the former approximation, the intrinsic
coordinate system is not rigidly fixed to the origin, but instead may rotate
and as a consequence the network is rotationally averaged. Hence, equation
(21) should only be considered for spherically symmetric bodies. However,
equation (22) is so difficult to handle that equations (21) and (19) offer the
best opportunity for calculations, and may be generally applied with the
understanding that they are approximations.

(The situation with elasticity is here parallel to single-chain configuration
theory. For many years the distribution function of the radius of gyration
was considered to be a satisfactory description of the chain statistics. It is
only since olc6 showed how to handle the gyration tensor and that the tensor
is not spherically symmetric that there has been concern for the anisotropy
of the distribution.)

As a demonstration of the inherent difficulties of equation (22), but also as
a beginning on the integral, we will show how the gyration tensor can be
handled. First note that

j — N1 x74) = (2ir)6. . . .ç exp[i kS2fl i=1

— i kN' x7x] dk (23)
i=1

where the volume element dk = dk11dk22dk33dk12dk13dk23. The gyration
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tensor is symmetric, so that the matrix of wave vectors

k11 k12 k131k = k12 k22 k23 I (24)

k13 k23 k33]

has only six independent components. The matrix k may be rendered in
polar form by

k = MicM' (25)

where Ic is diagonal [K1, K2, K3] and M (transpose M') is the 0(3) rotation
matrix dependent upon the three Euler angles 0,4)and i/i. Therotation matrix
M = CBA, where C = C(4i), B = B(4)) and A = A(0) are rotations in two
dimensions. We require the Jacobian of the transformation from dk to
dK1dK2dK3d0d4)d//. (In the principal axes of S'3 there are only three inde-
pendent components of S, which allows integrations over angles to be
performed separately.)

The Jacobian is easily obtained8. We make use of the fact that in an n-
dimensional real space the invariant ds2 dx2 dx has an associated
invariant volume element Jgdx, where g is det (g). The invariant ds2
in k-space is conveniently taken to be Tr (dkdk), and the volume element is
8+ larger than that appearing in equation (23). Now, from equation (25),

dk = (dM)icM' + M(d,c)M' + M,c(dM') (26)

or

M' dkM = (5M)ic — K(5M) + dIc (27)

where 5M = M'dM is antisymmetric. In equation (27) we have made use
of the fact that M'M = E3 (the identity of dimension 3 x 3) and (dM)M' =
— 5M. From equation (27) we have

Tr (dkdk) = Tr(dicdic) + Tr {[(öM),c — ,c(5M)] [(öM)ic — ,c(5M)]} (28)

Identification of terms on the right-hand side of this equation with the
matrix in variables dK1 and öm (i = 1,2, 3), the latter of which are func-
tions of dO, d4) and d4i, and subsequent transformation, via another Jacobian,
from t5m to the Euler angles, gives

dk = ilk — KIdK1dK2dK3d0Sifl4)d4)d4/ (29)
i>j

Finally, the k2 may be obtained as functions of the i and angles by direct
calculation from equation (25).

The reader might now profitably consult olc6 to see how the angle inte-
grations are accomplished in terms of beta functions. This is not the place
to give the very complicated result of those integrations. Suffice it to say
that further pursuit of the exact theory does not at this date look very
promising, and so we are obliged to reconsider equation (21), which is
practically tractable. Regardless of which function one chooses to calculate,
the remaining comments of this section apply to both.
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Potential energy and matrices
The potential energy of the system V({R}) is separable into two parts as

V({R}) = Vb({R}) + V({R}) (30)

representing, respectively, the total potentials for bonded (b) and non-
bonded (b) interactions. As is usual, we assume that the potentials depend
upon the directed distance between atoms (or groups of atoms), so that
Vb and V are in fact functions of the set of N(N — 1)/2 vectors r, — r3.
(Added body forces X will contribute to the potential terms of the type
X r. We exclude from further consideration this elaboration.)

It is generally certain that the bond potential is not determined completely
by near-neighbour interactions. For instance, the potential energy of a
real chain depends upon bond lengths, bond angles, dihedral angles9 and
perhaps higher-order bond correlations. Such terms could be represented
in the potential by appropriate combinations of (r, — r.÷ (r, —

(r1
— r1)(r71 — r2), (r — — r3) and (r, —

— k+ respectively. The non-bonded interactions will be taken to
be pairwise additive.

It is now convenient to organize the construction of the various rL — rj.
To this end, define'0 the N(N — 1)/2 x N matrix

1—1 0 0 . . 01 0—1 0 . . 0

1 0 . . . . 0—1
C'= 0 1 —1 0 0 (31)

0 1 0—1 0 0

0 . . . 1 •—1 0
0 . . 0 1—1

and the 1 x 3N row vector

R' = [X', Y', Z'] (32)

where, for example,
X' = [x,, x2,. (33)

Here, and in the following, A' denotes the transpose of A. The operation

(E3 ® C')R

where ® denotes the direct product, creates a 3N(N — 1)/2 x 1 vector which
consists of all possible pairs r1 — r3. Some of these vectors determine the
potential for bonded interactions V, and the remainder belong to V. A
given r, — r belongs to either Vb or V, but not to both, if we are dealing with
real atoms. However, it may be that a particular model, e.g. the Gaussian
chain with volume exclusion, requires some of the r — r to appear in both
Vb and V.
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The matrix C' is the incidence matrix'0 of an associated graph, the 'com-
plete star on the circle', which is depicted in Figure 2 for a small system con-
sisting of N = 11 atomic groups, alternatively called vertices or nodes in the
terminology of graph theory. The chords on the circle should be considered
to be directed from the (lower-indexed) node for which the +1 appears in the
m, i element of C' to the (higher-indexed) node for which the —1 appears
in the m,j element of C'. That is, the vector r — r3 is the mth [modN(N — 1)/2]
row of (E3 ® C')R. Furthermore, the chords are of one or another type,
depending upon whether the adjoined pair of nodes belongs to Vb or to V.
Such indications on Figure 2 would spoil a pretty graph, and so the graphical
representation of differences between chords is deferred to the section on
illustrative calculations.

9

Those terms of (E3 0 C')R which belong to 1' are claimed by the operation

where
[E3 0 (JC')]R

0
0 1 0 . 0

(34)

6 7
Figure 2. The complete star on a circle of eleven vertices

120
0
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1
0

0

0

0 1 0
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is an M x N(N — 1)/2 matrix consisting of rows containing a single non-
zero element equal to unity. Here M is the total number of r — terms
required for specification of 1',. The remaining atomic distances required in
V are generated by

[E3 ® (JtC')]R
where J contains all rows of the identity of order N(N — 1)/2 that are not
found in In other words,

[] = EN(N_1)12 (35)

where P is a permutation.
The matrix C' has completeness properties, which, added to the funda-

mental character of the vectors r. — r3, suggest it above other matrices for
primary consideration as the tool for construction of the configuration
integral. The first such property is

N'CC' = EN
— N'U (36)

where U is an N x N matrix, all elements of which are unity. This relation
is 1easily seen to be true by direct construction, and has been algebraically
proved'0 for N prime. In operations involving C, equation (36) acts as a
generalized identity. For example,

(N'CC')C = (EN — N'U)C = C (37a)

and

C'(N 'CC') = C'(EN
— N 'U) = C' (37b)

for UC = 0 and C'U = 0, since C(C') contains a +1 and —1 in each column
(row).

In addition, we may construct an Abelian group from C. Let A be an
N x N matrix which possesses the properties

AU=UA=0 1
A'U=UA'=O (38)

AA' = EN + const. U

These conditions are similar to those required of the generalized, or Moore—
Penrose, inverse' . The matrices

= N ' 'C'A'C; —oo n oo (39)

form an Abelian group. This statement has been proved'0, and will not be
completely proved here. However, one aspect of the group property is easily
demonstrated:

G(m)G(n) = N (m+n+ 2)(CAmC)(CAnC)

= N(m)CAm(EN — N'U)AC
= N_(m+l)CFAm+71C = G(m+ (40)
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With this background material we will later return to S and the con-
figuration integral, so as to obtain formulas for a model system which depend
only upon the r1 — r3. It is first interesting to note that we may obtain the
generalization of Lagrange's theorem very quickly. From equation (22)
the scalar function

kN 4=N'R'(k®EN)R (41)
i=1

where k has off-diagonal elements which are just half those of k. Now make
use of equation (36) with X'U = Y'U = Z'U = 0, to obtain

N 1R'(k ® EN)R = N2R'(k ® CC')R
= N 2R'(E3 ® C)(k ® E)(E3 ® C')R (42)

Here we have used the theorem on direct products, and the unlabelled E is
of order N(N — 1)/2. The result, equation (42), is easily seen to be Lagrange's
theorem jfk = E3.

The utility of the matrices which have been introduced depends ultimately
upon the form of the potential energy. That is, if the potentials are such as
to allow representations in simple functions of matrices so that integrals
can be computed, then what has been laid out in this section will be comu-
tationally useful If, on the other hand, potentials are so complex as to defy
such representation, then we have only obtained a superfluous accounting
procedure, and other devices will have to be used for calculations. There is,
however, at least one model, i.e. the Gaussian, for which these matrices
are extremely useful. We will apply the results of this section to Gaussian
chains after considering the last formality.

5. ENSEMBLE AVERAGES

The stress—strain relation, and other thermodynamic relations, must be
averaged over the ensemble of all possible internal constraints or connectivi-
ties. However, at the time of network formation, the polymer is subject to a
set {i} of initial conditions, or constraints, which influence the averaging
procedure. Such conditions might include the nature of the crosslinking
reagent, a container of particular shape, a diluent, etc., which act so as to
form networks of a particular structure. To put the influence of these con-
straints in another way, they act so as to select networks non-randomly
from the ensemble of all possible networks.

The mathematical description of the type of averaging required has already
been made by Edwards and Freed3' 12 The notation here is somewhat dif-
ferent from theirs. Let P({C} I{i}) be the conditional probability for forming
a network with a specified connectivity, denoted by {C}, given that a set {i}
of conditions prevailed at the time of cure. Since the network that is formed
is immutable, if elastic limits are not met, it is the free energy that must be
averaged, and not the partition function. The effect of averaging the partition
function is to allow the crosslinks to scramble during strain. Thus, if X({C})
is a thermodynamic function which depends upon the internal constraints
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{C}, we must form
= P({C} I {i})X({C}) (43)

{C}

It will be noted that <X> is dependent upon the initial constraints; in this
way a rubber band remembers that it is a band, and does not become a ball.

The fundamental thermodynamic relation (10) is averaged as

d<A> = — <S> dT + <V7> (44)

The volume must be included in the averaging, since it fluctuates owing to
the absence of a container. The strain is not averaged, since the free energy
<A> refers to a particular state of strain as specified by S. This is somewhat
clearer on inspection of equations (10) and (19), which become, respectively,

=
(a<A>/o12fl)T (45)

and
= 2S2fl(a<A>/oS2)T (46)

Finally, the complete equation (20) is averaged to

<Vt2> = 2S22(t<A>/S22)T (no sum) (47)

We expect that S is fixed by the initial conditions, and, hence, members of
the ensemble over {C} must all be characterized by the same S.

For practical purposes, the average of the product on the left-hand side
of equation (47) may be approximated as the product of averages; it is
anticipated that fluctuations in the volume are small. Thus

(21< V>)S22(a<A>/aS=)T (48)

which is construed to be essentially exact.
If the free energy is a function of S2 only, then the most probable value of
occurs where (<A>/aS2)T = 0. This state is free from stress, and pre-

sumably occurs at 2 > 0. In fact, this simple condition alone is sufficient
to show that theories which give only a Gaussian form to Z(S2), and, hence,
only the 2 — 1/22 strain function for uniaxial stretch, are in need of modi-
fication1 .

Further analysis of equation (46) in the case of a uniform hydrostatic
pressure is instructive. First, take the principal axes of S219, and, hence, of

so that
= <TXX> = (2/<V>)S'(<A>/S2)T (49)

with similar equations for y- and z-components. This equation can be shown
to conform to standard thermodynamics if the material is taken to be
spherical or cubical. Then SXX = S = and t = t = tz = —p. However,
the general case works out as easily. Define

= _()g2<T2fl> = —(<V>)S2(a<A>/aS2)T (50)

where use has been made of equation (17). Alternatively, equation (50) is

= —(<V>)(a<A>/ lnS2)T
= —(<V>)(<A>/<V>)T(a<V>/ lnS2) (51)
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Dimensional analysis alone gives
= —(a<A>/a<V>)T (52)

Further use of equation (51) may be made to calculate the Gibbs free energy
<G>by

= <A> + <pV> <A> + <p><V>
= <A> — ()(ô<A>/ lnS2)T (53)

where the latter expression can be obtained exactly by similar reasoning
from equation (46).

A final comment on averaging may be directed to the problem of network
reformation or other historical phenomena. Let {C} be the set of internal
constraints present at time t (0 j oo), and for convenience take {C0} =
{i}, where the latter set has been previously defined as the initial external
constraints (at time t0 the external constraints are translated into internal
constraints by the crosslinking reaction, if it is instantaneous). Then
P({C3÷ 1 } I {C3}) represents the probability for transition from {C} to
{C+ } during the time interval t3 —÷ The condition of the network at
time t, is then obtained as

P({C}J{i}) = flP({C+1}I{C}) (54)
{C1} {C2} {C_1} j=O

The probability may be represented by an exponential, and the temporal
grain made small to give

P({CT}I{i})=JJexP[_$F(t)dt]fld{Ct} (55)

a functional integral3. Further pursuit of such a theory would take us far
afield of the present discussion. The interested reader should consult the
work of Edwards and Freed3' 12 see how the theory of elasticity is developed
by use of the devices exemplified by equation (55).

6. THE GAUSSIAN MODEL

The procedure described in section 4 will now be applied to the calculation
of the configuration integral for a bead—spring network of given connectivity,
in which the beads repel one another on close contact. The probability for
finding a pair of beads separated by r1 is

exp [— yr] (56)

if the beads are directly connected by a spring. Here 'y = 3/2<l2>, where
<l2> is the unperturbed mean square step length. In addition, the beads
repel one another in pairs by a potential given by

exp [— f3V(rkl)] = 1 — cx exp[ — (57)

where x and /i are parameters to be specified later.
[The potential (57) has been chosen for the following reasons: (1) if
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= X(/i/ir), and if we take i/i —+ oo at the end of the calculation, the 5-
function pseudo-potential devised by Fixman is recovered; (2) if alternatively

= 1, then exp [— f3V(rkl)] = 0 at rkl = 0, and 1 — exp[—fiV(rkl)] is
positive semi-definite and is normalizable to (ir/i/i)1 = X; (3) it is easily
integrated, and possesses the above generality. However, the potential is
only a gross approximation, and should not be considered in any other light.
Yet it is at least as good as, if,not better than, other approximate potentials
that have been used for the polymer excluded volume problem to date.]

There exist at least two ways to introduce crosslinks. In one method, the
set of N groups is taken to represent the network as it exists in the cross-
linked state. Then the function exp[ —yR'(E3 ® A)R] contains all terms
necessary to describe the product of probabilities (equation 56) for primary
chain bonds as well as for bonds introduced by crosslinks. Here A = CJbJC',
and J, selects rows from C' which correspond to both nearest neighbours
and far-distant strangers in the complete star. The integrals over {R} may
be computed formally with this representation, as Forsman and co-workers'4
have shown more recently than James and Guth', who first devised this
representation. However, the eigenvalues of A are required for progress
beyond formality, and A is not easy to diagonalize. Furthermore, the alter-
native to be discussed shortly allows us to use the properties of C discussed
in section 4 to some advantage. Nevertheless, this is the direct route, and
possesses the advantage of simplicity. It is easy to see, for example, that the
network consists of as many disjoint pieces as there are zero eigenvalues of A.

k'

Figure 3. A representation of one term in cluster expansion of the configuration integraL The
circle, with breaks, is the set of primary chains; the solid and dashed chords represent crosslinks

and excluded volume interactions, respectively
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The zero eigenvalues correspond to the c.g. motion of the pieces. A con-
nected network is described by a matrix A containing a single zero eigenvalue.

An alternative method for introducing crosslinks has been presented
elsewhere15. In that scheme the crosslinks were represented by (5-functions,
which constrain specified pairs of beads to occupy the same volume elements.
Calculation of the configuration integral for a network composed of a
multitude of primary chains with such a representation requires special
treatment of the c.g. of each chain, and the formulas are rather lengthy. For
illustrative purposes, the representation originated by James and Guth is
to be preferred for calculations on networks with defects. h effect, a multitude
of difficulties are formally delayed to the ultimate quadrature, and in any
case, this is as far as the theory can yet be taken.

The configuration integral (equation 22) is now

Z(S) fl dS = fl dSJ. ..J fl (5(S — N'x7x)fl(5(x7)fl
x exp [—yR'(E3 ® A)R] fl [1 — cx exp( —/ir)] d{R} (58)

k<l

in which it is assumed that the spectrum of A contains a single zero. To save
some space, the volume element in the gyration tensor space is henceforth
deleted. The product of excluded volume factors is expanded in powers of
cx to obtain

Z(S) = cx J J' J (5(S — N1 x7x) fl
x exp [—yR'(E3 ® A)R] exp[ — /iR'(E3 ® B)R] d{R} (59)

where is a sum over all circle graphs consisting of p distinct chords. A
graph associated with one such term in equation (54) is shown in Figure 3.
The matrix is

B = CJJJC'
in which contains only p non-zero rows corresponding to the p chords
in the circle graph. The sum may be stated as the sum over all Jr,. The
upper limit on the sum over integers p is left unspecified.

The integr4tion over {R} in equation (59) is effected by transforming to
normal coordinates, with concomitant diagonalization of both k (see
equation 41) and yA + ç1iB to obtain

Z(S) = (/)3(N 1)/2 pO cx" J'exP(ikS)0') I,, I

(i-i I 'c — K i) dK df (60)
L>V

where , denotes the determinant of
= E3 ® A — (i/yN)ic ® EN_.l (61)

and is the matrix (of dimension N — 1) of non-zero eigenvalues of
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A + /iy 'Br. In equation (60) d = dO sin4) di,1i, with the angles defined on
the intervals 0 0 2ic, 0 4) it, 0 i/i 2ir, and dic = dK1 dK2 dK3.
(There is a trivial factor of 2 associated with the change of basis for k as
well as (2it)6 which are discarded in proceeding from equation (59) to
equation (60).)

If only the S2-dependence of Z is desired, equation (21) may be integrated to

Z(S2) (ic/y)3(N_ 1)/2
p=0

c exp(ikS2)E dk (62)

where = A, — (ik/YN)EN1 (63)

These equations are seen to be equivalent to the result of Coriell and Jackson16
for a single chain without volume exclusion. For reduction to this case, take
c'. = 0; the matrix A is defined as the usual Rouse matrix, and the nonzero
eigenvalues of A, i.e. A0, are 4 sin2 icl/2N. Circular chains have been done by
olc1 '.

Further progress with the theory to completion of the quadratures is very
difficult. The spectrum of A + 4iy 'B is required for all B, and final averages
as specified in section 5 require the spectra of all A. Any approximations
in the latter averaging have to be handled with some care, so as to avoid
pre-averaging. However, there is reason to believe, especially from the work
of Gordon and collaborators1 8, that calculation of the determinants is not
an insurmountable problem, and that spectra of even relatively small ran-
dom networks contain most, if not all, of the information necessary to
extrapolate to very large N.

The quick method of calculation which has been demonstrated here does
not allow use of the group properties of C that were discussed in section 4.
The alternative route, mentioned above and used for the excluded volume
problem'°, takes the quadratures into wave space, where the order of
matrices CAC' is reversed to C'BC. Products of matrices of this form are
readily computed by use of the group property, and, because of this, the
alternative representation may be more useful for actual calculations. It has
been our purpose here to show how far the theory can be taken, and to point
out the essential ingredients needed to complete the last steps; other methods
of calculation are equivalent to the one demonstrated.

The fact that sums over the excluded volume contributions are calculated
differently from the sum over connectivity is the result of our neglect of
entanglements. A more complete and accurate theory which incorporates
entanglements would place these two aspects of the configuration integral
on more equal footing. Entanglements certainly act so as to restrict the
neighbours of a given segment to an elite few; segments are confined to a
much smaller region of real space, and the network to a smaller phase space,
than the above theory would allow. Whether a soft Gaussian cluster function
is adequate to describe such containment is a question which deserves
investigation.
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