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ABSTRACT
The influence of polymolecularity on molecular weight determinations is
reviewed. Several molecular weight methods give so-called mixed averages,
i.e. averages which are based on more than one moment of the molecular
weight distribution or on powers of the moment. Molecular weight averages
can be subdivided into simple, exponential resolved, order resolved and power
resolved averages. Mixed averages depend on the shape of the solute and its
interaction with the solvent. Simple averages of molecular weight can be
calculated from combinations of averages of different properties with the help
of the H-theorem. A related problem is that of the so-called polymolecularity
corrections. New experiments show a definite influence of the type and the
width of the molecular weight distribution on the second osmotic virial
coefficients which is not predicted by present theories. Methods are given to
distinguish between open, closed, molecule-based and segment-based associa-
tions. The influence of the polymolecularity of unimers on the polydispersity
of the resulting multimers is discussed for several types of association. In
general, a sharpening effect is observed. Equations are given which may help
detect polydispersity in open and closed association. Debye's treatment of

micellar solutions cannot be used to determine premicellar equilibria.

1. INTRODUCTION
All synthetic and many biological polymers exhibit a more or less broad

molecular weight distribution (molar mass distribution)1, which influences
many properties of macromolecular materials. Although the effects of this
distribution have to be eliminated first before conclusions can be drawn
on the effect of other quantities (such as composition, configurational
statistics, conformational statistics, supermolecular structures, etc.) on cer-
tain properties, astonishingly little work has been done to quantitatively
evaluate the effect of the molecular weight distribution on the various
properties2. This is even true for the methods which are most directly
affected by the molecular weight distribution, namely molecular weight
determinations.

Molecular weight determinations are normally carried out by measuring
certain molecular weight dependent properties at various concentrations.
Typical molecular weight dependent properties are, e.g., the osmotic pressure,
the Rayleigh ratio, the sedimentation coefficient, etc. Because the numerical
values of these properties are influenced by various interactions, the proper-
ties have to be extrapolated to zero concentration. The extrapolation
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procedures require theoretical guidelines, i.e. they require a molecular,
therm9dynamic, hydrodynamic, etc., model of the solution.

It has been long known from statistical thermodynamics that the concen-
tration dependence of the chemical potential of the solvent (and consequently
the osmotic pressure) of solutions of non-electrolytes can be expressed as
a power series with positive integers of the solute concentration3. Because
of the relationship between chemical potential and molecular weight, a
similar power series describes the concentration dependence of apparent
molecular weights. This power series can be generalized to

(Mg)p; = M' + X(A2)avC + IJ(A3)avC2 + ... (1)

Mg is the q-average of the molecular weight, e.g. the number average (g = n),
the weight average (g = w), etc. The apparent g-average molecular weight
(Mg)app is the molecular weight calculated from experimental data at finite
concentrations c with the help of an equation valid for zero concentration
only. The second, third... virial coefficients (A2)av, (A3)av... represent
different averages if different methods are employed. For colligative methods,
one gets4

= w.w3.(A)1 (2)

and for weight average methods (light scattering, equilibrium ultracentri-
fugation)46

=( (3)

where w, w, = mass fractions of species i andj, respectively. The coefficients
and f3 are also method dependent, giving = 1 for osmotic pressure

measurements, = 2 for light scattering experiments and =2f() for
sedimentation equilibrium experiments7 where

f() = 1 + [M/12] + [M+1/M)2
— 2(M+ 1M+2)2/M] (M)4/72O + ... (4)

The increase of the amount of molecules is directly given by the increase of
the mass of solute in non-associating non-electrolyte solutions. This is no
longer true for associating solutes because less than a proportional number of
particles are formed by an increase of the mass concentration. The relation-
ship between mass and mole concentrations obviously depends on the type
of association. For all practical purposes, the extent of the association can be
considered independent of the type and magnitude of the other interactions,
e.g. solute/solvent interactions and/or intramolecular associations. In many
cases the interactions are such that the association can be assumed to happen
in a state similar to a theta state. We can thus write

(Mg); = (Mg)pg + ( cc(A2)/c2)
+ ... (5)

where (Mg)app, is the concentration dependent association term.
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This paper will discuss the influence of polymolecularity on the type and
magnitude of the molecular weight averages Mg (see equation 1), on the
magnitudes of the different second virial coefficients (see equations 2 and 3),
and on the association of molecules (see equation 5), especially on the
polydispersity of the resulting associates (aggregates, micelles, etc.). The
effects of polymolecularity on associated solutes are treated for theta
systems only, because the problem of the virial term in associating systems
is insurmountable at the present time. The approach will be mainly mathe-
matical and based on certain physically most likely models, because this
will allow a unified treatment. Little attempt is made to compare the mathe-
matical predictions with experimental findings, mainly because the few,
if any, data reported in literature are mostly incomplete for our purposes.

The problem of molecular weight and other averages has been recently
reviewed2. Association processes have been discussed in general8' ,and with
special emphasis on '° synthetic polymers12, sedimentation
equilibrium13 and light scattering9. None of the review articles treats the
effects of polymolecularity and polydispersity adequately, if at all.

2. GENERAL ASPECTS OF POLYMOLECULAR1TY

Types of averages
The distribution function of any property E can be described by a sufficient

number of moments. Moments t of the g-distributions of the properties
E with respect to the origin are defined via

4(E) GE7 (6)

where q = order of the moment and

G1 g. = gg (7)

is the normalized statistical weight of the species i. The physical unit of a
moment of a property E thus depends not only on the physical unit of the
property but also on the order of the moment. The order may take any value,
i.e. it may be a rational or irrational number.

An average, on the other hand, is defined in such a manner that the physical
unit of the average is always identical with the physical unit of the property.
This requirement is of course met by a number of expressions. Hence, there
are a number of classes of property averages, e.g. simple averages, exponential
resolved averages, order resolved averages, etc. In each class, number,
weight, length, area, etc., averages may be defined. The following discussion
is restricted to molecular weight averages and moments.

Simple averages represent the first moment of the molecular weight
distribution curve:

Mg = G.M1 4')(M) (8)

They are always arithmetic averages. Most familiar are the number
(G1 = x1 = mole fraction), weight (G1 = w1

= mass fraction) and z-averages
(G1 = Z. = w1M1).
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Exponential resolved averages are also based on a single moment. Because
the order of this moment is different from one, the whole moment has to be
taken to the inverse power of the order of the moment to yield an average

1/q
May =

( G.M7)
= q))1/q (9)

Exponential resolved averages are normally named after the method, i.e.
one speaks of viscosity average molecular weight, sedimentation averages,
diffusion averages, etc. This nomenclature is, however, not sufficient because
the average given by a certain method may also depend on the method of
evaluation and thus on the statistical weight used by the evaluation procedure.
The well-known so-called viscosity average molecular weight (with q =a =
exponent in the intrinsic viscosity/molecular weight relationship,
[77] = KqM") is thus more properly called a mass (or weight) average
exponential resolved average because intrinsic viscosities of mixtures of
polymers without specific interactions are always mass averages'6.

Order resolved averages are composed of two moments of the same
statistical weights which differ in their orders by one:

May = G1M + G.M = ,(q+ 1)/(q) (10)

Order resolved averages are quite frequent if molecular weights are deter-
mined by the Svedberg method (combination of sedimentation and diffusion
coefficients) (see also below). The molecular weight from gel permeation
chromatography is also an order resolved average (G = w and q = a )17

Geometric averages are normally classified as the square root of the proauct
of two simple molecular weights with different statistical weights g and h:

May (MgMh) (11)

An example is the so-called M_1 average18, which has been shown to be a
geometric average (see reference 2):

(mji>m1M[ 2) = (MM_J (12)

where m. = mass of species i. A closer inspection shows that the geometric
averages are a sub-class of the exponential resolved averages. Equation
(12) can be written as

M1 = (WM2)-+ (13)

It is thus the exponential resolved weight average of the minus second
moment of the molecular weight. Another example is the 'root mean square'
average19, which is nothing but the exponential resolved weight average
of the second moment of the molecular weight2:

/
Mrms = (MM) =

(Y wM) (14)
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Power resolved averages are products of moments defined2 in such a
manner that the exponents of the moments differ by one:

p p—i
May =

( G1M) (GMi)
= (Mg)"(Mg_)' ° (15)

Many other averages can be defined on this basis. They all can be covered
by a general expression2°

1/p (16)May =
(>G1Mr(1_h/G1M_1)

There are, however, a variety of averages which cannot be expressed by
simple product sums. Sedimentation equilibrium measurements in a density
gradient yield, e.g., molecular weight averages which contain exponential
expressions21' 22:

GM exp [(—Mj/(2M)]
M =

GM exp [(—M/(2M)]
(17)

where Ma is obtained from the half-width of the density distribution.

Statistical weights
The most commonly used statistical weights can be subdivided into two

classes: entity-based and shape-based statistical weights. The class of entity-
based statistical weights comprises the number statistical weight, the mass
statistical weight, their higher and lower homologues (see below), and their
equivalents. The class of shape-based statistical weight consists of the length,
area and volume statistical weights.

The class of entity-based statistical weights can be considered as derivatives
of the numbers N1 of the species i or, of course, their amounts n or their
mole fractions x1:

n1 = Nj/NA (18)

x. = '>2 n1 = N1/ N1 = N1/N (19)

where NA is Avogadro's number and N is the total number of molecules.
The next higher homologue is the mass

m1 = n1M1 = NIMI/NA (20)

or its equivalents such as the mass fraction w1 or the so-called weight con-
centration (volume related mass):

w. = m11/rn = c1/c1 = cdc (21)

= m1/V01110 (22)

All other entity related statistical weights can be introduced by analogy
with equation (20), i.e. as products of the statistical weight of next lower rank
with molecular weight. Examples are
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(n — 1)-statistical wt: (n — l) = n1M11 = mM2 = (m — 2) (23)

number statistical wt: = nM° = m1MI' = (m — l) (24)

mass ('weight') statistical wt: m1 = n.M = mM° = m1 (25)

z-statistical wt: = nLM = mM1 = (m + l) (26)

(z + l) statistical wt: (z + l) = nM = mM = (m + 2) (27)

The first expressions give the commonly used symbols for the different
statistical weights; note that these are symbols and not mathematical
operations. The second expressions relate amounts and molecular weights,
the third expressions mass and molecular weight. The fourth expressions
give alternative symbols. One may see that the mass can be taken instead of
the amount as the base unit for entity-based statistical weights, or even the
z-unit, etc.

If the species i are not molecularly homogeneous but exhibit a molecular
weight distribution themselves, the molecular weights to be used in equations
(23)—(27) should always correspond to the multiplying statistical weight23.
An example is

(z + l) = z(M) = m(M)(M1) = etc. (28)

It must be mentioned that this statement can be generalized for any average
of any property24.

Shape-based statistical weights are lengths, areas and volumes or the
corresponding fractions. They are also related to moles and masses in the
case of simple bodies. The interrelationship between entity- and shape-
based statistical weights depends, however, on the shape of the species. For
spheres, rods (with length L and constant and negligible radius R) and discs
(with constant and negligible height H) with the surface A one gets, e.g.
for the different masses if the densities p are constant:

spheres: rn = NV1p = N(4icR3)p = N.(p/3)RA1 (29)

rods: m1 = N1l'p = N1(mR2Ljp N1(p/2)RA (30)

discs: rn1 NJ'p = N.(irRH)p N(p/2)HA (31)

Polymolecularity parameters
The ratio of any two different molecular weight averages or any two

different moments of the molecular weight distribution can be used to
characterize the width of a molecular weight distribution. The two quantities
have to be chosen in such a way that their ratio is a sensitive and absolute
measure for the width of the distribution.

In many cases, the ratio of two simple molecular weight averages is a
sensitive enough quantity for the characterization of the polymolecularity,
e.g. the polymolecularity index,

= MW/MA (32)

or its equivalent, the inhomogeneity parameter25,

Un,,,, = (M/M) — 1 (33)
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It can be easily shown that most other polymolecularity parameters such as
the ratio of two viscosity averages26 or the ratio of two different molecular
weight averages from combined sedimentation and diffusion27 are, in
general, less sensitive than the polymolecularity index or the inhomogeneity
parameter (see reference 2).

The standard deviation of the molecular weight distribution can be used
as a measure of the polymolecularity2835. As one can see from, e.g., the
number standard deviation

cr, = (MWM — MJ = (U, (34)

it is more sensitive than the polymolecularity index. The standard deviations
are absolute measures for the width of Gaussian distributions, since the
quantity (M ± a) always denotes that 68.26 per cent of the molecular
weights are in this range and the quantity (M ± 2cr) always denotes 95.44
per cent of the molecular weights, etc., independent of the position and the
width of the Gaussian distribution curve. The standard deviation is, however,
not an absolute measure for the width of other types of distribution, because
the fraction of the molecular weight as characterized by a, and its multiples
is always a function of the width of the distribution36. No attempts have
been made so far to introduce absolute measures for the width of distribution
curves for other than Gaussian distributions.

3. MIXED AVERAGES

Types of molecular weight
A mixed average will be defined as an average which is not a simple

average as defined by equation (9). All mixed averages are thus characterized
by the existence of at least one moment with the order q 1. Typical
examples are the molecular weight determinations from intrinsic viscosity/
molecular weight relationships:

[ii] = KM" (35)

or from sedimentation and diffusion coefficients via the Svedberg equation:

f RT
May =[(1 —

i32p1)D
(36)

Other equations leading to mixed averages May of molecular weight are
summarized in Table 1. Most property/molecular weight relationships can
be expressed by exponential equations similar to equation (35) for the whole
molecular weight range of interest:

E = KEMaE (E = [n], s, D, etc.) (37)

A theoretical justification is lacking in most cases, however. Exponential
relationships can be even used ii these equations contain additive terms6063,
or if the exponents aE are molecular weight dependent themselves64' 65

Analysis of the physical units (i.e. 'dimensional analysis') shows that these
exponents are related to each other by the so-called exponent rule50'6 6668

afl23aS(l+3aD) (38)
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POLYMOLECULARITY AND POLYDISPERSITY

Equations (37) and (38) allow an analysis of the types of molecular weight
averages of physical equations typically leading to mixed averages. Examples
are equations (35) and (36); others can be found in Table 1. One simply
replaces the molecular weight dependent physical quantities like the intrinsic
viscosity, the sedimentation coefficient, etc., by their averages (e.g. weight
average), expresses the properties of the species i by the corresponding
expressions for their molecular weight dependence (see, e.g., equation 37),
and finally replaces the individual exponents aD, a, etc., by the exponent
a with the help of equation (38). The resulting expressions are then converted
into averages or moments. Some of these expressions are summarized in
Table 1. They can be replaced by specific functions if the type of the molecular
weight distribution is known (Table 2). The resulting molecular weight

Figure 1. Influence of the parameter a as a measure for the solute shape and the solute/solvent
interaction on the numerical values o several mixed average molecular weights for a polymer

with a Schulz—Flory molecular weight distribution and a MW/Mfl 2(i.e. = 1)
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average thus depends on the average of the properties (e.g. intrinsic viscosity
sedimentation coefficient, etc.), the type and the width of the molecular
weight distribution, and the shape of the solute and its interaction with the
solvent. The influence of the latter, e.g. as given by the exponent a of the
intrinsic viscosity/molecular weight relationship, can be especially pro-
nounced (Figure 1). Sometimes the mixed averages are identical with simple

Table 3. Averages and moments of molecular weights (molar masses) from Svedberg and Mandel-
kern—Flory—Scheraga equations for measurements of random coils in the unperturbed state
(a = ).D = i) 2 is the so-called area average of the diffusion coefficient. The numerical
values refer to a Schulz—Flory 'normal' distribution with MW/Mn = 2and M, = 100000 g mo11

Mixed
averages Molecular weight averages or moments

Numerical value
(g mol 1)

MSD
MSD

MMj/j4
100000
150000

MSD
MSDA
M,,
MD
MDA
M
M0

M
pW(JLW)2
(ii)2 = M

((*))6/(+)
())2 = M()(/2)

200000
170646
176 716
108 074
159126
176716
250000

averages. A few examples are shown in Table 3 for the exponent a, e.g.
for random coils in a theta solvent. Very different molecular weight averages
may thus result if the property average is changed (Table 3). Two facts are
of special interest. Although many physical equations of those shown in
Table 1 clearly give 'absolute molecular weights' (i.e. the molecular weight
can be calculated from experimental data without calibration), the resulting
mixed averages may depend on the solvent. One may note furthermore that
the combination of the weight average of the sedimentation coefficient and the
intrinsic viscosity gives directly the viscosity average of the molecular weight
for random coils in the unperturbed state69. This molecular weight Msfl
can thus be used directly to establish intrinsic viscosity/molecular weight
relationships without the usual polymolecularity corrections.

Very few experimental data have been reported in literature which can
be used to check the predictions made by this simple approach. Molecular
weight determinations on a poly(styrene) sample in cyclohexane at 34°C
(theta conditions) yielded M = 423000, M = 239000 and M = 60000
g mol 1, i.e. the distribution can be represented by a Schulz—Flory distribu-
tion with 2 = -. From these data, one can calculate M, = 161000 (see
Table 2), whereas experimentally a value of 167000 g mo'1' was found.
Kotera, Saito and Takemura7° determined many mixed averages of molecu-
lar weight for a mixture of two samples and compared them with the predicted
numerical values. The agreement was good to fair in most cases. It must be
mentioned that the unknown molecular weight distribution of the two parent
samples may have affected the results to some extent, since the authors
assumed the parent samples to be molecular homogeneous.
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Simple averages from combinations of properties
The previous section was concerned with the problem of which molecular

averages result if simple property averages are inserted in one of the physical
equations given in Table 1. In many cases, however, one is interested in the
opposite problem: how to get a simple molecular weight average from a
combination of property averages.

Early papers were mainly concerned with measurements in the theta
state (Table 4), although a general solution for the problem of determination
of weight average molecular weights from sedimentation coefficient/mole-
cular weight relationships has been known for some time34' 71

Table 4. Simple molecular averages from combinations of property averages in complex
molecular weight equations for measurements in the theta state. The symbols have the same

meaning as in Table 1

Molecular weight
average Proper combination Ref.

M K' (ws2) 71,72

M K1(ws) 73

M

M

ff RT(1 — i32p, ) (

[Na?119(1
—

132p1) 1]( ( wist) ['i]

74

75, 76

A general solution for the problem of finding simple averages of molecular
weight from combinations of arbitrary averages of other properties has been
presented recently77 and utilized for the calculation of the weight average
molecular weight from sedimentation and diffusion coefficients78.

Polymolecularity corrections
Exact correlations between two different properties can be established

only if the proper averages of these properties are used. A well- and long-
known example is the correlation between intrinsic viscosity and molecular
weight where the intrinsic viscosity is a simple weight average'4'6 and the
molecular weight is the so-called viscosity average'6, which is an exponential
resolved weight average2.

Polymolecularity correction factors have to be used if other than the
proper property and molecular weight averages are used to establish cor-
relations. These correction factors can range up to several hundred per cent
even for distributions that are not very broad, and depend on the type of the
property/molecular weight relationship, the type of the molecular weight
distribution, the shape of the polymer and the polymer/solvent interaction.
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Polymolecularity corrections are most dramatic for the so-called Baumann
equation79:

(<R2>/M) = + BM (39)

KM* + BM2 (40)

where <R2> = mean square radius of gyration; K0, B = system specific
constants. Normally, the radii of gyration are determined as z-averages and
the molecular weights as weight averages. Polymolecularity correction
factors can then be calculated for either the constants K0 and B8° or (better)
for the two variables <R> and MW81. Taking the z-average of equation (40)

= Z1(R = K ZM + B ZM

and comparing this expression with equation (39) written for weight average
molecular weight and z-average mean square radius of gyration gives the
polymolecularity correction factors81

= K + B(Mq) (42)

with

=
( ZR3) (ZiM)2/<Rz>(ZM?)

(43)

qM = ( ZM) /MW( zM) (44)

0E5
E
U• 4

,%'

1

0 500 1000
O 1/2

<M>w)w

Figure 2. Influence of polymolecularity corrections on the molecular weight dependence of
reduced radii of gyration of poly(a-methylstyrene)s in toluene at 25°C (from ref. 83). Uncorrected
data (q = 1; lM = 1) are shown as open symbols, i.e. Schulz—Flory distributions (cJ), logarith-
mic normal distributions (Lx) and 'narrow' distributions (0), whereas data corrected for poly-
molecularity are given by full symbols, i.e. Schulz—Flory distributions (N), logarithmic normal
distributions (A) and 'narrow' distributions (•), corrected under assumption of a Schulz—

Flory distribution
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Equations (43) and (44) contain moments which are not easy to determine
experimentally. They can be replaced by experimental quantities if the type
of the molecular weight distribution is known.

Figure 2 compares experimental results on poly(-methylstyrene)s in
toluene at 25°C with and without polymolecularity corrections. The dramatic
influence of the polymolecularity corrections on the properties of samples
with a logarithmic normal distribution of molecular weights is clearly seen.
Many papers in literature contain remarks on polymolecularity correction
factors; most of them are improper. Correct polymolecularity correction
factors were given for the Kuhn—Mark—Houwink—Sakurada equation
(equation 35)8O 82, for the Burchard—Stockmayer—Fixman equation80,
for the Cowie relation between friction coefficient and molecular weight8°
and for the above-mentioned Baumann equation80'81' 83• Polymolecularity
correction factors were reviewed2 and tabu1ated84 in detail.

4. VIRIAL COEFFICIENT AVERAGES

The definitions of the second virial coefficient averages, equations (2) and
(3), predict an (A 2)OP (A2)Ls which has been verified experimentally8 5—88
In the case of mixtures of two molecular homogeneous polymers, equations
(2) and (3) can be reduced to

(4\OP_j'4\ 2 1(A\ (A\ 2 4— 2flW + flJWWj + 2)JJWJ

(A2)" =[(A2)1Mw + + (A2)Mwfl/M (46)
where (A2)1 and (A2) are the two second virial coefficients for the molecular
homogeneous polymers i and j, w and w the corresponding mass fractions
and (A2) the so-called cross virial coefficient.

Equations (45) and (46) predict maxima in the functions = f(w3) and
AjS = f(w .), if(A2)11 > (A2) or (A2)> (A2) (see reference 89). The second
virial coeMcients decrease with increasing molecular weight in a homo-
logous polymer series according to

A2 = KAM_A (47)

The predicted maxima have been found by some authors9092, but not by
others93' Several reasons might be responsible for this discrepancy:
(a) the polymers i and j were not homogeneous and the averaging might
thus have been improper; (b) the evaluation of the second virial coefficients
was incorrect, e.g. by using a certain relationship between the second and the
third virial coefficient; and (c) the maximum may lie at very low values of
w and thus be difficult to detect.

The effect of the type and width of the molecular weight distribution was
investigated only recently95. Many samples of poly(c-methylstyrene) were
mixed together to obtain a preselected distribution function, and with the
weight average molecular weight held constant (M = 80000 g mol ').
The second virial coefficients from light scattering measurements were
about constant and independent of the varying number average molecular
weight and the type of the distribution. With increasing polymolecularity
parameters, the osmotic second virial coefficients of the mixtures with
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Schulz—Flory distributions decreased, whereas the corresponding osmotic
second virial coefficients of mixtures with logarithmic normal distributions
increased much more rapidly than predicted by the hard sphere approxima-
tion theory (Figure 3). Replacement of the hard sphere approximations by a
soft sphere model96, i.e. a model with overlapping random coils, does not
lessen the disagreement between experimental and theoretical second virial
coefficients. The observed discrepancy might well be due to a breakdown
of equation (47) for low molecular weights. Further theoretical and experi-
mental work is clearly needed in this area.

0
E

E0
QCN

0

Figure 3. Dependence of osmotic second virial coefficient on the polymolecularity index
M/M for poly(x-methylstyrene)s in toluene at 25°C with constant weight average molecular
weight M 80000gmol . The symbols indicate samples with logarithmic normal distribu-
tion of molecular weights (0), Schulz—Flory distributions (•), a narrow distributed sample with
unknown type of distribution function () and the data point from the calibration curve for a
hypothetical molecular homogeneous sample (0). The dotted line ( ) indicates the predic-

tion of the hard sphere approximation. (From ref. 95)

5. INFLUENCE OF POLYMOLECULARITY ON ASSOCIATION

Distinction between types of association
Association equilibria can be conveniently described by two limiting

cases and combinations thereof: open and closed association89. Open
association is defined as an association of unimers with molecular weight
M1 to an unlimited number of multimers:

2M1 ± M11

M11 + M1 ± M111 (48)

M111 + M1 M1, etc.
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Closed association, on the other hand, is characterized by an equilibrium
between two distinct species only, unimer and r-mer:

rM1 ± Mr (49)

Both of these limiting cases can be distinguished easily by their charac-
teristic concentration dependence of apparent molecular weights in the low
concentration range (Figure 4). Only closed associations show a characteristic
'critical micelle concentration' (cmc). Distinctions between closed and open
associations are less easily made if the whole concentration dependence of
the apparent molecular weights is unknown, especially at low concentrations.
In this case, both the concentration dependencies of the inverse apparent
molecular weight for open and closed associations look like hyperbolic
curves (Figure 4).

2O i3i1 0.3 0.5 0.7

1 ____..J—cmc

0.8

aa
ci

A 0.1.

0.2

0 0.003 0.00/.

c,g cm3

Figure 4. Concentration dependence of the normalized inverse apparent g-average molecular
weight in the theta state for molecule-based closed associations (r = 21; = iO' (dma
mol 1)20; (M1) = (M1) = (M1) = 200 g mol 1) and the equivalent open association with
K0 = (K)'°_ 1) Wr = Cr/C = mass fraction of the r-mer. Solid lines correspond to (hypo-
thetically) experimentally accessible data, broken lines to data predicted by the model. The
'critical micelle concentrations' cmc depend on the method and do not correspond to a 'first

appearance' of micelles. (Adapted from ref. 97)

Open and closed molecule-based associations (see below) can be
distinguished from each other, however, if, e.g., the apparent weight average
molecular weight is plotted against the inverse number average molecular
weight97 (see Figure 5). For closed associations, straight lines are observed
for theta systems, since

(Mw) app,0 <M1> + r<M1> — r<M1)(M),0 (50)
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Concave lines are observed for closed associations in non-theta systems.
On the other hand, this plot always gives convex lines for open associations
in both theta and non-theta systems, as shown by the following equation
for open associations of rods under theta conditions (see reference 98):

(Mw) app,0 = — 2c(M1> + 2(Mn) app,0 (51)

Similar relationships can be derived for apparent z-averages. For closed
molecule-based associations, one obtains

(Mz)app,o <M1> + [1 + 2<M1> — — <M1>]
-1

[1 — <M1>( w) app, ] ( )
and for open molecule-based associations

(Mz)app, 0(Mw) app,0 = — ()<M1>] + () (53)

3

0
E

2
0
C

o 1

0 .1 2 3 5
iü(M0)

Figure 5. Apparent weight average molecular weights in the theta state as a function of the
inverse apparent number average molecular weight in the theta state for closed and open
associations with the same molecule-based open association equilibrium constant K0. Data
of Figure 4: 'K0 = ('K)11°_ 1); 'K = iO (dm3 mol 1)20; r = 21; (M1), = (M1),, = (M1), = 200

gmol . Broken lines correspond to theta state conditions, solid lines to end-to-end association
of rigid cylindrical rods with a radius of 5 x 8 cm and a specific volume of 1 cm3 g . The

concentration increases in the direction of the arrows. (From ref. 97)

Both open and closed associations can be either molecule- or segment-
based.

A molecule-based association is defined as an association of molecules
whose number of associogenic sites is independent of molecular weight. A
common example is association via the two end-groups of-linear molecules.
It is convenient and in many cases justified by either. experiment or chemical
intuition, to assume the equilibrium constants to be independent of the
particle size (principle of equal physical reactivities). This assumption
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allows the treatment of open associations with only a single equilibrium
constant.

A segment-based association is defined as an association of molecules
whose number of associogenic sites increase linearly with the molecular
weight. An example might be the association of partially stereoregular
molecules whose number of stereoregular segments increase with molecular
weight.

Molecule- and segment-based open associations can be distinguished in
certain cases, particularly if statistical weights of higher rank are used (see
reference 98). The distinction is possible because the relation

(WK) = r(r — 1) 1<MI> 1(K0) = Q<M1> '(K0) (54)

varies with the average numerical values of r, which in turn varies with
concentration. The factor Q is equal to 2 for a unimer/dimer association
and approaches 1 for the limit of infinite r. wK0 and K0 are the equilibrium
constants of open association on a mass or mole basis, respectively, where
c = mass concentrations and [M] = mole concentrations:

WK Cr/(Cr_ 1c1) (54a)

K0 [Mr]/([Mr_ ] [M1]) (54b)

Molecule- and segment-based closed associations cannot be distinguished
for a given sample since there is only one r, which, by definition, stays
constant over the whole concentration range. If, however, a molecular
homologous series is available (i.e. a series of compounds with the same
physical reactivity but different polymolecularities), then a distinction can
be made on the basis of their polymolecularity/polydispersity relationships
(see below).

Influence of polymolecularity on polydispersity
An r-mer can be formed by any r unimer molecules of a polymolecular

unimeric compound. The mathematical treatment is especially simple if the
physical reactivity is independent of the molecular weight. The relationships
between the g-averages of the molecular weights of unimers and multimers
obviously depend on type of association, i.e. whether it is a molecule-based
or a segment-based association.

For molecule-based associations, the number average of the r-mer is
just r times the number average molecular weight of the unimer:

<Mr>n = r<M1> (55)

The weight average molecular weight of the r-mer is, however, not a simple
multiple of the weight average molecular weight of the unimer98

<Mr>w = <MI>W + (r — 1)<M1> (56)

and similarly for the z-average98

<Mr>z = <MI>Z + (r — 1)<M1>{1 + [2<M1> —

— <M1>] [<M1> + (r — 1)<M1>]1} (57)
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For segment-based associations, general expressions have been derived
for the weight and the z-average of particle weight of the r-mers98, whereas
for the number average a closed expression exists for the case of Schulz—
Flory distributions only98:

<Mr>n = <M1> + (r — 1)<M1> (Schulz—Flory only) (58)

<Mr>w = r<M1> (59)

<Mr>z = <M1> + (r — 1)<M1> (60)

From equations (55H60), the following equations can be derived for the
relations between the polymolecularity parameter <M1>/<M1> and the
polydispersity parameter <Mr>w/<Mr>n.
For molecule-based associations:

<Mr>w/<Mr>n = 1 + r — 1] (61)

For segment-based associations with a Schulz—Flory distribution of unimers:

<Mr>i.J<Mr>w = 1 + r1[(M1>,.J<M1> — 1] (62)

or

<Mr>w/<Mr>n = [<M1>/<M1)]/[1— (1 — r)(<Mi>/c(Mi>)] (63)

Diagrams of these polydispersity/polymolecularity relationships (Figures 6
and 7) show that association is accompanied by a pronounced sharpening
of the distributions. This effect has the same origin as the one observed for
the growing of many chains from one common growth centre99: the distribu-
tions are transferred into one particle and the distributions over all particles
are thus more homogeneous. The effect is of course the more pronounced
the higher the association number r. Segment-based associations always

1.5

1.4

1.3

1.2

1.1

2

(Mi)/ (M1),,

Figure 6. Influence of polymolecularity index (M1)/(M1) on the polydispersity index (Mr)w/(Mr)n
for molecule-based associations for various association numbers r. The relationships are

independent of the particular type of molecular weight distribution. (From ref. 12)
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Figure 7. Influence of polymolecularity index (M1)/(M1), on the polydispersity index (Mr)wI(Mr)n
for segment-based associations for various association numbers r. The relationships are

independent of the particular type of molecular weight distribution. (From ref. 12)

Table 5. Influence of polymolecularity parameter <M1>/<M1>. and association number r on the
polydisperity parameter <Mr>wI<Mr>n

<M1>/<Mi>. r
<Mr>wI<

Molecule-based
Mr>n
Segment-based

1.1
1.1

2
10

1.050
1.010

1.048
1.009

1.1
2

100
2

1.001
1.500

1.001
1.333

2
2

10
100

1.100
1.010

1.053
1.005

10
10

2
10

5.500
1.900

1.818
1.099

10 100 1.090 1.009

6. POLYDISPERS1TY OF ASSOCIATED SOLUTES

Detection of polydispersity in open associations
Open associations automatically lead to a polydispersity of the r-mers,

whether the unimer is molecularly homogeneous or polymolecular. It
135
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(M1)/(M1 )

50

show more sharpening than molecule-based associations (Table 5). The
polydispersity parameter increases with the polymolecularity parameter
for both molecule- and segment-based associations. In the latter case, but
not in the former, an asymptote of <Mr>w/<Mr>n = r/(r— 1) is reached for
an infinitely high polymolecularity parameter.
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remains to show that the polydispersity of the associate corresponds to the
one predicted for an open molecule-based association with equal physical
reactivity of the unimers and r-mers.

In this particular case, one obtains for the concentration dependence of
the different apparent molecular weight averages in the theta state98:

[(Mn) app, = <Mi>n + (nKo)<Mi>n[c(Mn);, ] (64)

[(Mw) app, ] = <M1> + 2(nKø)<Mi>n[C(Mn)p, ] (65)

[(Mz)app, 0] = (<M1> + 3(ZKø)<Mi>n[C(Mn), 0])<M1>[(M);, oil
+ 3CK0)<M1>[c(M)p1p 0] (66)

Introducing the apparent association numbers (with g = n, w, z, etc.)

(Zg)app, 0 (Mg) app, oI<Mi>g (67)

one arrives at
[(Zw)app, 0] = 1 + 2(<Mi>wI<Mi>n)[(Zn)app,o — 1] (68)

and

[(Zz)app, 0(Zw) app, ] = 1 + — 1] (69)

By plotting the quantities in brackets against each other, a straight line
should be observed, if the data can be described by the model of an open
molecule-based association with equal physical reactivity of the species.
Equation (68) resembles (but does not equal) the relation between weight
and number average degrees of polymerization for condensation polymeriza-
tions (see, e.g., reference 100), i.e. for the so-called most probable distributions
(a special type of a Schulz—Flory distribution)

= 1 + 2(<X>n — 1) (70)

Comparison of equations (68) and (70) shows that the presence of a poly-
molecularity of the solute, expressed by <MI>W/<MI>, increases the apparent
polydispersity of associating solutes relative to the polymolecularity of
polycondensates. In the limiting case of molecular homogeneous unimers or
monomers, both equations become identical.

For segment-based associations, the concentration dependencies of the
apparent weight and z-averages of molecular weight in the theta state can be
given with complete generality98:

(Mz)app,o = <M1> + 2C'K0) (M1)c (71)

(Mw) app,0 = <M1> + (wK0) (M1)c (72)

whereas the concentration dependence of the apparent number average
molecular weights can be described by a simple equation only for the case of
a molecular homogeneous unimer:

(Mn) app,0 = <Mi>n(wK0)c[ln(1 + (wK0)c] —1 (73)

The combination of equations (71) and (72) leads to

(Zz)app,o = 1 + 2[(Zw) app,0 — 1] (74)
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Detection of polydispersity in closed associations

The simplest model for a closed association assumes that only unimer and
r-mers coexist in equilibrium. Because the relative concentration of these
two species varies with the total concentration, weight average methods
will invariably give higher apparent molecular weights than number average
methods in the concentration range between the 'critical micelle concentra-
tion' and the usually employed highest concentrations (see also Figure 4).
A difference in different apparent molecular weights can thus a priori not
be interpreted as a polydispersity of the associates.

At very high concentrations, all apparent molecular weight averages
become identical for measurements in the theta state, if the simple unimer/
r-mer equilibrium applies for. molecularly homogeneous unimers. The
situation again becomes complicated if the second and higher virial terms
cannot be neglected.

For polymolecular unimers undergoing a simple unimer/r-mer association
in the theta state, the ratio (Mw)a p o/(Mn) app will equal the polydispersity
parameter <Mr>w/<Mr>n at very ciigh concentrations. As may be seen from
Table 5, the polydispersity parameter is always smaller than the poly-
molecularity parameter of the unimer and very often indistinguishable
from 1 within the limits of error of the experiment. It is thus doubtful whether
any information on polydispersity or polymolecularity can be drawn from
this type of experiment, particularly if the whole concentration dependence
of apparent molecular weights is unknown and/or virial coefficients have to
be considered.

Multiple equilibria in closed associations
The previous discussion was concerned with simple closed associations, i.e.

associations between a unimer and a single r-mer. Combinations of different
closed associations or of a closed and an open association may occur, of course.
A very simple and often-suggested case is the so-called premicellar equili-
brium. This name is given to a combination of two consecutive equilibria, e.g.

qM1 ± Mq; Kq = [Mq]/[Mj] (75)

r/qMq P Mr; Kriq = [M]/[Mq]rI (76)

q is generally considered to be small, e.g. 2 or 3, whereas r is high, typically
between 10 and 100. Any other definition can be used, too, e.g.

qM1 ± Mq; Kq = [Mq]/[M1] (77)

rM1 ± Mr Kr = [Mr]/[Mi]r (78)

All definitions lead to

[Mr]/[Mi]r = (Kriq) (1KqyI (79)

Equations (75), (76) or (77), (78) should in principle lead to two-step curves
in the (Mg)app, = f(c) diagrams. Whether these two-step curves can be
observed experimentally will of course depend on the relative magnitude
of the two association numbers q and r and the two equilibrium constants
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HANS-GEORG ELIAS

Kq and K,jq• Model calculations should thus be based on 'reasonable'
values, i.e. those resembling data from experiments, it is noteworthy that
only very few equilibrium constants of association have been reported in
literature. Those for polymers are collected in Table 6, those for detergents
in Table 7 and those for proteins in Table 8. Based on these tables, equilibrium
constants of Kq = 2500 dm3 mol and K0 = (K1q)h/(rl -1) 3464
dm3 mol' with Kriq = 5050 (dm3 mol 1)24 and association numbers of
q = 2 and r = 50 seem to be reasonable for model calculations. The normal-
ized (Mg)a f(c) curves do indeed show the two-step character, the
transition at the critical micelle concentration being less pronounced as
compared with a one-step closed association (Figure 8).

aaa

Figure 8. Concentration dependence of the reduced inverse apparent g-average molecular weights
in the theta state for a molecule-based closed two-step association with q = 2, r = 50, Kq =
2500dm3 mol1 and Kriq = 55O (dm3 mol 1)24 (broken lines); the latter equilibrium constant
corresponds to an apparent open equilibrium constant for the addition on a dimer of K0
34,64 dm3 mol . For comparison, the functions for a corresponding molecule-based closed
oiiè-step association with r = 50 and = (KqY('Kriq) = Kr are given (solid lines); this
corresponds to an open equilibrium constant of K0 = 2933 dm3 mol for the addition of one

unimer. (M1) = (M1),,, = (M1) = 300 dm3 mol 1

An equilibrium constant of Kriq = 5O° (dm3 mol 1)24certainly is in the
middle range of possible equilibrium constants (see Tables 6 and 7). However,
model calculations with an increased equilibrium constant of K,jq = s 000°
and the same values for the other constants have shown that the two-step
character of these curves will not be apparent within 'experimental' error.
Consequently, premicellar equilibria can be observed only if the two equi-
librium constants are of the same magnitude. Furthermore, the two associa-
tion numbers must be sufficiently different because model calculations with
q = 10, r = 50, Kq = 52 dm3 mol and Kr = 5050 (dm3 mol 1)24
resulted also in a loss of the two-step character of these curves.
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Judging from these calculations, premicellar equilibria would seem to
be detectable only in rare cases. However, many workers in the detergent
field claim the existence of premicellar equilibria1 18125W Most of their
claims are based on the so-called Debye plots. Debye'26' 127 assumes
basically that a unimer/r-mer system can be treated as a solution of r-mers
in a solvent composed of the unimer and the dissolving liquid, i.e. the solution
is treated as a quasibinary system. The method was originally developed for
light scattering measurements, but can obviously be transferred to other
methods, too.

The principle of the method can be demonstrated by, e.g., light scattering
measurements. The Rayleigh ratio R is first plotted against the concentra-
tion c in order to determine the 'critical micelle concentration' (cmc) and
the ratio Rcmc at the cmc (see Figure 9). Instead of R, the reduced quantity
R/K can be used, where K is the optical constant of the light scattering
equations. Following Debye's assumptions, an inverse apparent r-mer
particle weight is then plotted against the 'true' r-mer concentration
(c — cmc):

1 K(c —cmc) 1=
— R + 2(i42)r(C — cmc) (80)

k rJapp cmc k nw

(see also Figure 10). The intercept is supposed to give the weight average
particle weight of the r-mer and the slope the second virial coefficient of the
r-mer/solvent system. An upward bend at lower concentrations has been
traditionally explained as due to the existence of premicellar 18125

because it corresponds to an increase of particle weights lower than Mr with
decreasing concentrations if Debye's method is correct.

c,g cm3

Figure 9. Concentration dependence of the normalized reduced Rayleigh ratio (R/KXM1);1
for one-step (I) and two-step (II) molecule-based closed associations. Same assumptions as in
Figure 8. 'True' critical micelle concentrations cmc are given by the intersection of the broken
lines with the c-axis. Arrows indicate the 'apparent critical micelle concentrations' cmc' which

were used for the calculations leading to Figure 10. cmc' = (1 ± 0.1) cmc
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c,g cm3

Figure 10. Normalized Debye plot for the determination of association numbers and the
detection of premicellar equilibria. Solid lines indicate two-step associations, broken lines
one-step associations. Same assumptions as in Figures 8 and 9. Calculations for two critical

micelle concentrations cmc' assuming Rcmc = 0. Dotted line corresponds to (Mr)w

As has been pointed out previously9, however, the choice of the value of
cmc is very critical. If cmc and Rcmc values left of the asymptote line in
Figure 9 are chosen, an upswing is observed even for one-step closed associa-
tion (Figure 10), which may be falsely interpreted as due to premicellar
equilibria. If the cmc and Rcmc values are chosen right from the asymptote
line, a downward bend appears. We can thus conclude that an upward
bend per se does not necessarily point towards the existence of premicellar
equilibria.

But even if premicellar equilibria exist, they cannot be detected by the
Debye plot. Again, upward and downward bends are observed, depending
on the choice of cmc and Rcmc The curves for two-step equilibria are only
quantitatively different from the curves for the one-step equilibria. It is
easy to see why the two-step character cannot show up in a Debye plot:
the determination and the choice of a cmc via an R = f(c) plot wipes out all
data points for premicellar equilibria because they must be by necessity at
concentrations lower than the cmc and would thus lead to the physically
unreasonable negative particle weights in the Debye treatment. Further-
more premicellar equilibria are very difficult to detect in plots like Figure 9
because they give very small R/K or R values at low concentrations where
they are most difficult to detect.

We can thus conclude that the Debye plot cannot be used to detect
premicellar equilibria because the very assumptions underlying Debye's
treatment preclude the detection of premicellar equilibria even if they exist.
On the other hand, the apparent existence of premicellar equilibria as shown
by an upward bend in a Debye plot is most likely to result from the particular

144

cmc'

0.255

0 0.3 0./.



POLYMOLECULARITY AND POLYDISPERSITY

choice of cmc and Rcmc Premicellar equilibria, if there are any, would
probably be best detected by a plot of the inverse apparent molecular weight
against the concentration (see Figure 8). Even then, they may not be apparent
if the association numbers q and r are too near to each other or if the equi-
librium constants 'tKq and 8Kr are very different. The existence of premicellar
equilibria thus has not been proven experimentally in a convincing manner
for closed associations.
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