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ABSFRACF
Electronic absorption bands result from transitions between two electronic
states. Associated with these states are vibrational and rotational levels. For
inorganic complexes embedded in a lattice, the librations associated with the
excited states of the solute molecules may give each vibrational level a breadth
of up to several hundred wavenumbers. The vibrational levels of the ground
state are populated according to a Boltzmann distribution and the resulting
electronic absorption band is a superposition of many individual vibronic
transitions. Therefore, the usual broad structureless band in most cases is a
result of crowding and overlapping of vibrational levels. However, unresolved
structure may sometimes be seen. The dangers of assigning weakly structured
bands to partially resolved vibrations, lower symmetry, spin—orbit coupling,
Jahn—Teller effects, 'Antiresonances' or a suitable mixing of all are poitited out.
Only by using many different experimental techniques is it sometimes possible
to sort out the various 'effects'. All parameters derived from weakly structured

bands are therefore to be viewed with caution.

INFRODUCHON

Most chemists who do spectroscopy on inorganic complexes have come to
the subject via an education in inorganic chemistry rather than one in spectro..
scopy. Consequently a great deal of background is often lacking. This mani-
fests itself in the theoretical and experimental treatments of many systems.
How many times have we been shown a broad, nearly featureless band with a
small dent on the red side accompanied by the most detailed interpretation?
Spin—orbit coupling, Jahn—Teller distortions and lower symmetry are effects
usually introduced to explain the 'unusual' bandshape. Theoretically the
phenomenon is then treated, using at least tensors of rank four, with the most
astonishingly detailed conclusions being drawn. Indeed, a characteristic
feature of the literature is the over-interpretation of a few data and/or the
over-elaboration of what was in the beginning an approximate theory.
Instead, our aim should be to get a simple physical understanding of the
various phenomena. That can, fortunately, be done without much theory.

NATURE OF BROAD UNSTRUCTURED GAUSSIAN BANDS

The questions which I shall try to treat in this lecture are:
(1) Why do the electronic absorption bands of complexes often show up as
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broad unstructured Gaussian shaped envelopes? (2) What might the appear-
ance of 'weak' structure on such a band signify?

In contrast to the electronic energy of an atom, the electronic energy
of a molecule also depends upon the atomic distances inside the molecule.
The immediate consequence of this is that while atomic absorption lines are
sharp, the electronic excitations of molecules, reflecting the molecular
vibrations and rotations, may take the form of band envelopes. Consider a
medium sized molecule. We can to a good approximation write the energy of an
electronically non-degenerate state as

W = We + W, + ot
Defining the length a 10b0 m, we have iI/ h2/ma2 and I4 h2/Ma2
where W and W0 are the electronic and rotational energies of the molecule,
respectively; m is the electronic mass and M the total nuclear mass. For the
vibrational energy we have W,jb = h(k/M)+ where k is the 'force constant'.
We can also write I4 = h(k/m)+ since at equilibrium the same forces act on
the electrons and nuclei. Hence

ib = (m/M)I4'1 and 14'rot = (m/M)W1
As 'VeI for a molecule is a few electron volts, W is of the order of magni-

tude of a few hundred wavenumbers and W is a few wavenumbers
in magnitude. Our spectral resolution for 'visible' light is such that the
rotational .quanta cannot be easily resolved but appear as a bandwidth
associated with the vibrational levels. If we observe the spectrum of a molecule
embedded in a medium, be it a solution or a crystal, additional broadening
of the vibrational levels may occur. Following Moffitt and Moscowitz1,
we introduce a 'libration' effect associated with the molecular vibrational
levels. The librations refer to a continuum of states, arising from the motions
of the solute molecules with respect to the centres and axes of their parent
sites. The resulting band is not resolvable and, depending upon how different
the excited state geometry is from that of the ground state, may give the
vibrational transition a halfwidth of up to a few hundred wavenumbers.

For a non-linear molecule possessing N nuclei, each having three coordi-
nates we can form 3N —6 vibrational molecular symmetry coordinates. (The
six 'missing' are the three rotational and three translational coordinates which
give rise to the librations.) Each vibrational symmetry coordinate is ortho-
gonal upon each of the others. Performing a cut through a multi-dimensional
surface we can then picture the energy as a function of a particular vibrational
symmetry coordinate, say (Figure 1). The potential curve gives the electronic
energy as a function of , and the vibrational energies (that is, the energy of
the entire molecule in the vibrational mode w1) are indicated as horizontal
levels. For the 3N — 6 multi-dimensional potential surface the energy
difference between two electronic states in the harmonic approximation is
given by

J4/ —14' + 1( '+h '' "-'--'h "
1(excited) (ground) — 0

•
Lk j 2/ j k j ' 2! j

Here is an angular vibrational frequency and n, n' refer to the values of
the vibrational quantum number in the excited and ground state respectively.
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Usually the excited states possess different equilibrium configurations and
different sets of force constants from that of the ground state. Formally,
this is described as a rotation and translation of the molecular coordinates
(the Duschinky effect).

An excited
state

Ground
state

In absorption spectroscopy we observe a narrow range of frequencies.
If too many lines, each with a certain spectral width, are congested in that
spectral region, no individual levels will be discerned. Clearly, there will be a
density of states in the ground potential, and the assembly of molecules will
be distributed over these states according to the Boltzmann distribution. At
OK only the lowest vibrational state will be populated but at higher tempera-
tures the higher lying vibrational states also will become populated. The num-
ber of vibrational states as a function of the energy Wrises steeply with W Two
excitations of a vibration with energy hw1 may for example equal the energy
of one excitation hco, giving two states of that energy. With 3N — 6 vibra-
tions the number of combinations of excitation giving the same energy be-
comes quite large!

It has been found that, to a good approximation, the total number of states
N(W) goes as N(W) = e'. The state density, dN(W)/dW is then ixe'. The
number of individual transitions contributed by levels in the energy interval
Wto W + dW therefore is proportional to

e'dWe_WT = (2)

Clearly2 this becomes independent of W for 7 =(k) . Therefore for
T> 7 each band group between hv and hv + A(hv) will spread out over the
entire spectrum. By going to low temperature we may, on the other hand,
avoid the crowding and see some structure. However, most frequently some,
if not all, of the vibrational structure is still lost. In these cases the relevant
degrees of freedom may be treated as quasi-continuous and the situation
is analogous to the 'libration' case.

In crystal field theory for a regular octahedron the transitions which depend
upon the parameter 10 Dq involve the excitation of a t2g electron to an eg
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antibonding orbitaL The excited state is expanded compared to the ground
state. The vibrational levels are then associated with a lot of librations and fuse
together to form one structureless vibrational band envelope.
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Figure 2. Low resolution spectra of the 3A28 — 3Tig(a) band in Ni(H20)6 SiF6 at various
temperatures.

Let me illustrate these points by showing the appearance at different
temperatures of the 'red' Ni(II) band, assigned as 3A2g —÷'1g(Figure 2).
It is immediately obvious how the details emerge more and more clearly,
without completely getting rid of the absorption background, as the tempera-
ture is lowered. It has been possible3, by studying the Ni(H2O) + cluster
embedded in sixteen different crystal-surroundings, at 5 K to follow in detail
the nature of the non-crossing of the 3T1g and 1Eg levels, and at the same
time to account for the resulting bandshape.

CALCULATION OF BAND SHAPE

The bandshape of a structureless absorption band may be calculated from
'first principles' as follows. Let Mba() be the electric dipole matrix element
between the initial and final electronic state '1a(r, ) and b(r, ), where r
denotes the electronic and the molecular symmetry coordinates. The absorp-
tion intensity Iba(hY) as a function of wavelength is proportional to

2

ba) A; j'Xbn#()Mba()Xan?()d (w. — — hv) (3)

x stands for the vibrational wavefunctions, and Av is to be understood as a
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Boltzmann distribution over the initial states. Mba is the electronic transition
moment. In the so-called semi-classical approximation in which one neglects
a few commutators'° this expression can be reduced to

1ba) = __- JeMa 1V() — hv) d (4)

where y2 = h/co coth (hco/2kBT) and A'Vç) stands for the potential energy
difference of a and b.

Figure 3. Displaced potential surfaces.

In the simplest case, Figure 3, we have

= + + k0 (5)

= + (6)

From the ö function in expression 4 we immediately get

exp { —(i00 — hv)2/y2k2(L0)2} (7)

The band is seen to be Gaussian, with a temperature dependent halfwidth.
In cases where weak structure is seen superimposed on a smooth 'back-

ground', one possible explanation is that single lines may 'come through'
because of a favourable vibrational overlap (compare equation 3). This is
partly so in the Ni(IJ) band already discussed.

ORIGINS OF WEAK STRUCTURE

Weak absorption band structure may, as is well known, also arise from the
superposition of two or more electronic transitions. The resolution of a weakly
structured absorption into the anticipated electronic transitions is a process
beset with danger. Indeed, the proposed resolution is usually governed by what
'one would expect'. In other words, what one wants to prove is put into the
procedure. The result is then taken as a proof of one's theories. The resolution
of composite bands into components, even when these components are real,
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cannot in practice be done in a unique way. The composite curves of Vanden-
belt and Henrich4 offer proof enough (Figure 4). Unless one can separate the
components of a composite band through some physical measurements,
attempts to do so are only numerology.

Even if the observed structure is well documented experimentally as a
'band splitting', one should be aware that an extraction of parameters is a
tricky process. From the Wigner—Eckart theorem in connection with the
variational pThiciple we know that provided the orbital i/ii transforms
correctly, the calculated quantity w1 = d-r will be proportional to
the 'true' energy, e1. We do not, however, know the proportionality constant,
which will be different for each system and for each electronic configuration.

For a t2g and eg orbital in °h we can therefore write:

8(t2g) = (W(t2g)

e(e5) = flw(e5)

(8)

(9)

We can further define a zero of energy by completely filling the two orbitals
with electrons and taking the orbital energy of that state to be zero

W = &XW(t2g) + 4$w(e5) = 0 (10)

In spectroscopy we deal with energy differences. Hence we can define the
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energy separation

e(eg) — C(t2g)
= rlw(eg)

— 13W(t2g) = lODq (11)

Using the equations 10 and 11 we can therefore from the definition of an
energy difference, defining a particular system, calculate the orbital energies,
ci.

C(t2g) = —4 Dq, e(eg) = 6 Dq (12)

Consider now the case where we have a lower symmetry than °h' say D4h

eg II ::
10 Dq

t29 -'KjII
04h

Figure 5. Tetragonal splitting parameters.

(Figure 5). We may define:

c(aig) = 6Dq + &w(a1g)) = xw(a1g) — IJW(big)C(big) = 6Dq + 13W(big)J
(13)

c(b2g) = — 4Dq + 5w(b2 ))g >42 = yw(b2) — w(e).
c(eg) = —4Dq + w(eg) J

As before we take our zero of energy to be the filled shell

2&w(a15) + 2W(b1g) + 25w(b2g) + 4w(e5) = 0 (14)

The tetragonal splitting for the system is defined by and A2. Using the
definitions of A1 and A2 in equations 13 we get

A1 + 2 + 213W(big) + 3w(eg) = 0 (15)

Jt is therefore not possible to find a unique expression for the orbital energies
of the tetragonal complexes in terms of the characteristic splitting para-
meters and A2. A characterization of the orbital energies in terms of
and 2 can only be done provided some assumptions for the bonding scheme
are introduced.

The state energy differences, hv, can of course be written as hv = f(Dq, A1,
A2, K) where J and K are functions of the electronic repulsions. Here
Dq and the electronic repulsions are slowly varying from one system to the
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next, whereas and 2 vary greatly. Naturally the worth of parameters
depends upon how slowly they vary.

Consider the molecular orbital for the complex

(16)

where frM is a metal orbital and tilL is a combination of ligand orbitals. Using
a suitable Hamiltonian, .', this leads to the secular equation:

HMM — e HML — CSML = 0 (17)
HML — eSML HLL —

where

HMM = J'tIFM*'tiIM dr, HLL = JtfrL'tPL dr,

HML = J'ti/Jrl/lLdr = dr, S = dr.

The lowest 'bonding root' to good approximation is given by
= HLL — (HML

—
HMMSML)2/(HMM

— HLL) (18)

and the 'antibonding root' as

= HMM + (HML — HLLSML)2/(H — HLL) (19)

Most inorganic complexes will have
— HLL > IHML

— HLLSI (20)

Solving for and fi in equation 16 then leads to

(21)

and
— "1 — S2 — 22'V —k MU k MLY'L 't'MI

correct to second order in SML.
The orbitals used in crystal field theory are the i//aS, and we notice that only

by arbitrarily putting SML = 0 do we get i/la to be a pure metal orbital. We
can of course in accordance with the Wigner—Eckart theorem use a pure
d-orbital as a 'variational' function. In that case, but in that case only; the
Hamiltonian can be expanded in a few spherical harmonics, and we can
calculate a, b and c in an expression for the orbital energies,

6(1/la) = aDq + b Ds + Dt (23)

Knowing b and c, Ds and Dt can then be related to z1 and 212. But, the above
partitioning of the energy on three parameters is a consequence of putting
SML = 0. To do so is completely unrealistic. We must conclude that an
ordering of the orbital energies in some set of a 'tetragonal series' is physically
meaningless.

Effects other than the two already treated may also give rise to dents in an
otherwise smooth absorption curve. The electronic origin of a formally
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flu W

Figure 6. Idealized potential surfaces for octahedral d3 systems. Ground state 4A2g excited
states and

forbidden, but vibronically allowed transition could produce a dip, and so
might the presence of a dynamic Jahn—Teller effect in the excited state.
However, due to the presence of librations or of other active vibrations these
anticipated effects may not be observable.

Finally, let us take a brief look at what may happen provided we have
two states of different spin-multiplicity located on top of one another, as
for example found in octahedral Cr3 + complexes, Figure 6. The ground
state is a 4A2g state, the excited states 2Eg and It is a characteristic
situation that 4A2g and 2Eg having approximately, the same electronic
configuration, have their minima nearly on top of each other whilst 4T2g is
displaced towards a greater equilibrium distance.

The situation here is that 2Eg 'borrows' spin-quartet character from 4T2g
via the spin—orbit coupling. The transition from the ground state 4A2g Eg
is thereby made spin-allowed. The combined system will further have to
'steal' some intensity from a parity allowed transition.

Consider the following idealized situation for the interaction of the 2Eg
and 4T25 excited states. A level associated with 2Eg interacts with three
vibrational levels, cl,1, t/i and c3 associated with 4T2g (Figure 7).

Figure 7. Interacting levels.
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The combined wavefunction for the system is

'I' = + x2/i2 + cx3i;fr3 + 4/'s (24)

and the secular equation is given by:

—e—W 0 0

o —w 0
=0 (25)0 0 e—W v

V V V —W

Assume further that in zeroth order, transitions from the ground state
are allowed to ,,&, /'2 and fr3 with the same transition moment p0, i = 1,2,3
but that the transition to i/, is forbidden; p0 = 0.

Provided e v we obtain

12 + 2v2
2 (26)

LV

The intensity of the levels is given by

2 v2(e2 — 3w2)21(W) = IP0jI
2W2(e2 + W2)v2 + (2 — W2)2(v2 + W2)

(27)

Putting p02 = 1 we find to first approximation:

I( ± Je2 + 2v) = 1 + 2 v2/e2 (28)

I( ± v) = — 2v2/e2 (29)

Equations 28 and 29 lead to an increase in intensity at high and low absorp-
tion frequencies with a decrease in I at intermediate frequencies as shown in
Figure 6. Notice how intensity is pressed 'out on the wings'. A more refined
calculation5'6 gives the same result.

Now consider Figure 6 again. A transition to /i excites no vibrations in
the system. The excited electronic state and the ground state are not rotated
or translated with respect to each other. Hence the associated librations
will be superimposed upon each other and the transition —÷ t/iproduces a
sharp, nearly atomic-like line. If, on the other hand, we compare t/i with

(i = 1,2 3)the librational coordinates of the excited electronic state will be
translated and rotated relative to that of the ground state. Hence the Franck—
Condon overlap factors in the librational coordinates will lead to a broad
line. The situation for e v is pictured to the left in Figure 6.

Should v s the situation changes drastically. In that case

3v2 + 22
={2 (30)

and 1( ± J3V2 ± 2s2) = -; 1( ± .Jc) = 0.
Figure 8 shows how a 'dip' or a so-called 'antiresonance' appears in the

band contour. Considering inorganic complexes, this effect has been claimed
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for V2 in KMgF3 by Sturge7'8 and for Cr(en)3Cl3 3H2O by McCarthy
and Yala9.

V <<C

hv

V >> £

by

Figure 8. Intensity distribution for the situation pictured in Figure 7.

Taking L*' as the perturbing operator for the spin—orbit coupling, we
obtain

=
j'JJfri(r )X1( *'oi/i(r, )x,() dr d (31)

= 1,2,3.

V

CMJxi(D)Xs((D)dD
(32)

where CM is the spin—orbit coupling for the central atom. Hence, v2 contains a
Franck—Condon factor which will be much smaller than unity, provided the
potential curves are displaced from each other. On the other hand, v is likely
to be a semi-constant, since the overlap of x8 with the 'tails' of must vary
slowly. A typical value of CM is 300 cm' for Cr(en) + leading to a value
of v of perhaps 30 cm . This is less than the totally symmetric stretching
frequency e 300 cm . Over an energy'gap of say 100 cm 1, the intensity
is then expected to be diminished by about five per cent. Under favourable
circumstances, a dip in the absorption curve might be observed.

CONCLUSIONS

Weak structure in an absorption band may be due to one or more of the
following causes:

(1) Poorly resolved vibrational structure.
(2) Overlapping bands; 'lower symmetry'.
(3) Vibronic 'forbidden' bands.
(4) Jahn-Teller dynamics.
(5) Spin—orbit coupling or 'antiresonances'.
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Only by doing a very careful analysis, using as many different experimental
techniques as are available, is it possible to sort out these various 'effects'.
However, the model used in defining parameters is often too simple, and the
experimental details usually not sufficient to give a reliable answer. It is
therefore recommended that chemists refrain from extracting parameters
from weakly structured bands. In order to reach a band assignment it should
be sufficient to know orders of magnitude for the parameters involved. To
try to elaborate upon the basic parameters of crystal and ligand field theory
is bound to end in frustration.

Unfortunately, many chemists do not realize this. They are impressed by
the mathematical superstructures with the associated parameter variations
one can build upon any model. However, the connections to chemistry
disappear and they get lost in the maze of the model. Indeed, a parallel
which springs to mind is the many futile attempts made by scholars in trying
to establish a chronological sequence for the cases of the late Mr Sherlock
Holmes. It may be fun but it is hardly to be taken seriously.
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