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ABSTRACT
In order to defme the detection limit the two-step model is used, based on a
false detection probability P10 (error of the first kind) to which there is a
corresponding detection level as well as a proper detection probability P11.
Given two probabilities P10 and P11 one may associate them with the detec-
tion level Ykas well as with the detection limit i7d' respectively Cd, two values of
the eatropy Hk, respectively 11drn In order to estimate the detection limit two
procedures ate given: the procedure based on the calibration function j = f(c)
obtained for values c <d and the frequentornetrical procedure based on the
calibration function P11 = f(c), where c < Cd. In both cases a confidence
interval is associated with the detection limit. Finally, there is a description of
the manner in which three tests are applied in order to check the hypothesis
concerning the detection of a component in the sample under investigation:
a parametrical (Student), a non-parametrical (Wilcoxon) and a sequential

(Wald) one.

1. DEFINITION OF DETECTION LIMIT

Like any experimental magnitude, the analytical signal also depends on a
very large number of variables:

y = f(x1, x2,.. . ,x) (n — oo) (1)

and since all variables x have a random character, the analytical signal has
obviously a random character, i.e. it always includes a certain uncertainty.
Its distribution will be normal (Gaussian) when relation (1) is described bythe
Liapunov—Lindeberg central limit theorem.

The uncertainty (deviation of the measured values from the actual ones)
which accompanies any analytical measurement has therefore a very complex
nature and always includes the background noise; whose fluctuations in most
cases have a Gaussian distribution.

The perturbation of the analytical signal occurs in all phases of an analyti-
cal system, as seen in Figure 1.

We shall consider below only the perturbations arising in the measurement
step, which obviously also include perturbations occurring in the previous
steps (sampling and physico-chemical treatments).

An analytical system, as a result of the examination of a material, must
solve the following problems: (a) the problem of detection (qualitative analy-
sis) and (b) the problem of determination (quantitative analysis).
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As seen in Figure 1, in the case of an analytical system, the material to be
analysed is at the input and the result of the analysis is at the output of the
system.

In the case of the detection, the material at the input of the system may be
present in two states: with the component to be identified (c> 0) and without
the component to be identified (c = 0).

Figure 2 shows the relation between the average value of the fluctuations
of the background j7 and the average value of the analytical signal $5, for a
given concentration value1. One can observe that in some cases, due to inter-
ferences, an assumption may be made as to whether the signal belongs to
the background or to concentration.

The relationship between the background noise and the analytical signal
in the frame of the problem of the definition and evaluation of the detection
limit initially was studied by Kaiser1 and subsequently in other papers220.

Figure 3 presents the graphical model for a linear dependence between the
concentration c and the analytical signal y, in the presence of a Gaussian
noise.

In this case, one may write:

y=N($5 = yo + bc;) (2)

i.e. the analytical signal y is normally distributed with a mean $7 and dis-
persion a; $7 is the mean of background fluctuations.

The acceptance of such a model to discuss the problem of the analytical
detection is justified by the following: (1) in most cases, for low concentrations,
the relationship between the analytical signal and concentration is linear;
(2) the values of the analytical signal in most cases have a Gaussian distri-
bution; (3) the dispersion of the analytical signal o, in general, changes little
for the narrow variations of concentration.

An examination of the model in Figure 3 shows that as the concentration
increases, the probability field for the analytical signal will have fewer and
fewer common elements with the probability field for the background signal
(c = 0). Only at higher concentrations of a certain value will the two proba-
bility fields become practically separated and therefore the detection of the
component in question will raise no problems.

536
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0 Time

Figure 4. Two-step statistical model for defining the detection limit

Figure 4 shows the relation between the fluctuation fields of the background
signal (c = 0) with the probability density Po(Y) and that of the analytical
signal p(y) corresponding to concentration c1.

Considering the model presented in Figure 4, as a result of a measurement,
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Figure 2. Fluctuations of the background and the analytical signal, respectively, in the case of a
given concentration value'

y

Figure 3. Graphical model of the variation of the signal distribution for a linear dependence
between concentration c and analytical signal y in the presence of a Gaussian noise
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we must choose, based on a criterion, between two hypotheses: H0 (the signal
belongs to the probability density Po(Y)) and H1 (the signal belongs to the
probability density p,(y)). This criterion aims to divide the values of y into
two regions R0 and R1, so that for a value of a measurement situated in the
region R1 we may accept the hypothesis H1 (y> Yk)' i.e. the component is
present.

Consequently, all the values of the analytical signal situated in the region
R1 permit us to accept, with a certain probability, the hypothesis present, from
the two possibilities: present or absent respectively. In this manner, all the
values y> Yk provide an amount of information of one bit.

The value of the analytical signal Yk which divides the value field of signal y
into two regions is called critical level18, decision level18'20 or, more suitably,
detection level. Under these conditions, the following probabilities may be
distinguished, which characterize the detection process:

1. Probability of choosing hypothesis H0 when it is true:
(Yk

oo =
JPo(Y)dY

2. Probability of choosing hypothesis H1 when H0 is the true one (error of
the first kind):

P10 =
LP0(Y)

dy

3. Probability of choosing hypothesis H0 when H1 is the true one (error of
the second kind):

ry1c

P01 =ji()dY
4. Probability of choosing hypothesis H1 when it is true:

= p(y)dy

Relations

P00 + P10 = 1

P01 + P11 = 1

are evident.
From these last relations it results that for the characterization of the

identification process two probabilities are sufficient (one each for the two
fields R0 and R1).

In order to establish the detection level Yk' or indeed the probability P10 of
false detection (error of the first kind), one may use several criteria: the criter-
ion of minimum risk, the criterion of maximum verisimilitude, the criterion
of the ideal observer, the Neyman—Pearson criterion, etc.21' 22

The Neyman—Pearson criterion calculates the detection level based on a
previously imposed false detection probability P10.
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By normalization of the normal distribution law, i.e. if

= (Yk — y)/ci, (8)

(cr0—standard deviation of background fluctuations), one obtains

P10 = (I exp (—z2)dz (9)

and thus, since P10 <0.5, one obtains

P(zk)=O.5—Plo (10)

Then, using tables23 with the Laplace function values I(z), one obtains the
Zk value, i.e.

Yk = Yo + aY0Zk (11)

namely, the value of the signal corresponding to the detection level.
Then it is necessary to consider a proper identification probability P11,

corresponding to the correct hypothesis H1.
Since P11 > 0.5,

'k(Zd) = P11 — 0.5 (12)

and from the tables with the Laplace function values one obtains:

Zd = (Yd — Yk)/aYO (13)

whence

Yd = Yk + O0Zd (14)

In expression (14), o has the same value as in expression (11), which is
justified by the fact that the concentration field corresponding to interval

Yd is low (see p. 536).
From equations (11) and (14),

Yd—YO+(zk+zd)Y0—Y0+'Y0 (15)

Since the value of signal y always includes two components, i.e. that corres-
ponding to the background and that due to the concentration, the net
analytical signal will be given by the difference d — i.e.

— io = kcr0 (15')

In conclusion, the coefficient k = (id — Yo)/o0 is given by the ratio between
the net analytical signal and the background noise whose measure is the
standard deviation 00•

Considering, for instance, the detection level Yk for which the false identifi-
cation probability of the first kind P10 = 0.001 and also the proper identifica-
tion probability P11 = 0.998, it is found that Zk = 3.1 and Zd = 2.9, so that
for the detection limit under such conditions one obtains

Yd = j30 + 6cJ (16)

In conclusion, the detection limit may be defined by that value of concentra-
tion d, for which, with regard to the detection level Yk' that is admitting a
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certain false detection probability value P10, to the analytical signal d
corresponds a correct detection probability P11.

Figure 5 shows the relationship between the mean of the background
noise fluctuations and the mean of the analytical signal fluctuations corres-
ponding to the detection limit in the frame of the two-step model.

Figure 5. Two-step graphical model for the relationship between the background signal (back-
ground noise) and the analytical signal corresponding to the detection limit

Returning to the two-step detection model presented in Figure 4, we
see that two events are attached to the density of probability for the back-
ground signal p0(y) in relation to the detection level y: y <y and y > y,
for which P(y <y) = P00 and, respectively P(y> y) P10, so that
P00 + P10 = 1, and, hence, the two events form a complete system of
events, for which the entropy will be

H(P00,P10) = — P00 logP00 — P10 log P10 = Hk

and since P00 = 1 — P10 (see equation 7), it results:
H(P00,P10) = — (1 — P10)log(1 — P10) — P10 log P10 = Hk (18)

Thus, for P10 = 0.001, Hk = 0.0114 bit.
Figure 6(a) represents relation (18) which expresses the dependence of

the false detection entropy Hk on the value of the signal corresponding to
the detection level defined by means of the Neyman—Pearson criterion.

In conclusion, the detection lcvel yk may be defined by that signal value
for which, considering a certain false detection probability P10, the entropy
of events y < y, and y > y, has a certain value Hk.

In relation to the detection level y, the density of probability for the
analytical signal p(y) also delimits two events y < y and y > y for which
P(y < y) + P(y> y) = P01 + P11 = 1, i.e. a complete system of events,
so that the expression of the entropy Hd will be

H(P01,P11) = — (1 — P11) log (1 — P11) — P11 log P11 = Hd (19)
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Thus, for P11 = 0.998, Hd = 0.0208 bit. Figure 6(b) presents relation (19)
which expresses the dependence between the correct detection entropy Hd
and the values of the analytical signal.

In conclusion, the detection limit may be defined by that concentration
value d to which, with regard to a certain level of the false detection entropy
H(P00, P10) evaluated on the basis of the detection level y, there corresponds
a certain value of the proper detection entropy H(P01, P1 ).

1.0 0.8 0.6 0.5 0.L 0.2 0

Yk (Detection level) i'd Y
4—ZkaO >- Z a,

oK2;.;I6ütop
Figure 6. Two-step information model for defining the detection limit

2. ESTIMATION OF THE DETECTION LIMIT

We shall give below two procedures for estimating the detection limit:
(1) the procedure based on the calibration function j7 = f(c) obtained for

541



CANDIN LITEANU AND ION RICA

values c < d and (2) the frequentometrical procedure based on the calibra-
tion function P11 = f(c), where c < Cd.

Estimation of the detection limit based on the calibration function $ = f(c)
In order to calculate the detection limit by means of formula (15), the

value of the analytical signal i7d must be converted into concentration. To
do this, it is necessary to know the correlation j7 = f(c) in a concentration
range as close as possible to the detection limit. Analytical signal j3 for a
given concentration in the range c < d, is the mean value of N repetitions
(see Table 1). For this purpose, in the concentration range higher than the
detection limit, using the pairs of values j71, c, one calculates (least squares
method) the calibration function

L=a+bc=)3'0+bc (20)
Even in the case of a non-linear correlation, one may eventually obtain

a linear correlation in the form of equation (20), by appropriate procedures
(change of variables). In equation (20) the intercept 5Y0 represents exactly
the estimated mean of the background oscillations (c = 0). As seen in
Figure 7, to the calibration function (20) is attached a dispersion (confidence)
band, limited by two arcs of the hyperbola whose equations are24

t(p,_2)(SPD)1[SCC + n(c —

(21)
[n(n — 2)S]

where j is the value of the signal corresponding to concentration C1 in the
calibration function (20); t(p, 2) is the Student variable (test) for probability
P and n — 2 degrees of fredom; n is the number of pairs of values $,c used
for the calib.ration function; and ë = ( c)/n is the mean of concentration

values used for obtaining the calibration function (20)
SPD = — bS is the sum of squares of deviations from function (20):

S = i1 — i1 j3)2/n

= —

b = is the slope of function (20)

S, = i1 — c.)2/n

— be is the intercept, i.e. the estimated value for the mean of back-

ground fluctuations, in which j7* = ( 51)/n is the mean of all values of
signals used for obtaining the calibration function (20).

Then the analytical signal j7 corresponding to the detection limit will
be calculated by equation (15) written in the form

= j + ks (22)

i.e. in which o, was replaced by its estimate s obtained from the calibra-
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Figure 7. Evaluation of the detection limit from the calibration function

tion data (function 20), a replacement justified by the fact that, as has been
shown, one works in a concentration field close to the detection limit. In
this case, obviously, j and also j7 will be estimated magnitudes as well.
In order to determine the confidence interval of the detection limit, we must
first calculate the confidence interval of the analytical signal. To this end,
one considers the random variable

t = (j7 — yJ)/s' (23)

which has a Student distribution with 2n — 3 degrees of freedom.
Based on the dispersion summation law, from equation (22) one obtains

Sd = [(s2) + k2(s2)siy]4 (24)

in which

= c/n> (c1 — e)2 (25)

(s2)± = 4/2(n — 2) (26)

and

4 = [E ii — i3'0j1 ji — b, c]/(n — 2) (27)

represents the dispersion of values j around the calibration line (20).
Based on these considerations, the expression of the confidence interval

for the analytical signal corresponding to the detection limit will be

Yci — t(p, 2n—3)S < Yd < Yi + t(p,2n— (28)

The confidence interval for the detection limit results from the inter-
section of the confidence interval of the analytical signal corresponding to
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the detection limit, with the confidence interval of the calibration function
(20), viz, with the two hyperbolae (21). We shall give below an example of
the manner in which the detection limit and its confidence interval are esti-
mated from a series of calibration data.

Analytical signals of seven steel standard samples with a known chromium
content have been recorded 31 times each, on an ARL-31 000 type emission
automatic spectrometer. Working conditions: = 2989.2A; argon;
intermittent arc; recording time 3 s. The results of measurements (in digits)
are listed in Table 1.

Table 1. Values of the analytical signal (digits) of seven steel standard samples, on ARL-31 000
type emission automatic spectrometer

Digits Signal frequencies (number of samples)

12 1 — — — — — —
13 2 1 1 — — — —
14 4 3 1 — — — —
15 7 5 3 1 2 — —
16 9 10 7 3 1 — —
17 5 8 9 9 6 2 —
18 2 3 5 9 8 3 2
19 1 1 3 4 6 4 2
20 — — 1 3 6 6 4
21 — — 1 2 2 9 6
22 — — — — — 4 6
23 — — — — — 3 5
24 — — — — — — 3
25 — — — 2
26 — — — — — — 1

27

DigitsQ) 15.6 16.1 16.9 17.9 18.3 20.3 21.8

%Cr(x) 0.016 0.027 0.043 0.064 0.074 0.102 0.130

By calculation one finds: j' = 14.7; b = 53.4 s = 1.75; (s2) = 0.0625;
(s2).. = 0.0080; and s = 0.43.

Tlierefore the estimate of the calibration function will be

j7 = 14.7 + 53.4c (29)

Considering a false identification probability P10 = 0.025 (Zk = 1.96)
as well as proper identification probability P11. = 0.975 (zd = 1.96), i.e. a
signal-to-noise ratio k = 3.92 (see equations (15) and (15')), one obtains

= 21.56 (22) and therefore c'd = 0.128 per cent Cr (equation 29). Under
the above-mentioned conditions, one finds s =0.43 (equation 24), so that
for a confidence probability of 0.90, t(0.90 ;431) = 1.65, and thus, according
to equation (28) one obtains

20.85 <Yd <22.27

From these two extreme values of the analytical signal, by introducing in
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Figure 8. Evaluation of the detection limit for the experiment illustrated in Table 1.

equation (21) of the two hyperbolae, one finds for the detection limit the
following confidence interval (see Figure 8):

0.112% <Cd <0.145%

From the above it results that the two steps of the model for estimating
the detection limit (the probabilities P10 and P1 ) are included in the coeffi-
cient k = Zk + Zd (signal-to-noise ratio) of equation (22).

Estimation of the detection limit by the frequentometrical method

As has been shown, the method is based on the calculation of the concentra-
tion value for which the proper detection probability P11 reaches a certain
value. As to the discrimination between the two alternatives, the component
present or absent, there are two working procedures.

The first procedure'° is based on a successive comparison (N repetitions)
of the value of the analytical signal with that of the background (blind test)
on n samples of known concentrations, but below the detection limit (un-
certain reaction domain25). The second procedure26 uses the two-step
model and is based on the comparison of the values of the analytical signal
of N repetitions with the value corresponding to the detection level Yk'
calculated from the background fluctuations (blind tests):

Yk = Yo + ZkSV (30)

considering a false identification probability P10 (error of the first kind).
Based on the data given in Table I and considering the same value for

P.A.C.—44--3D

545

U' 16

Concentrution, 'I. Cr



CANDIN LITEANU AND ION RICA

P10 = 0.025 (zk = 1.96) as well as equation (30), one obtains Yk = 14.7 +
1.96 x 1.75 = 18.2 18 digits.

In conclusion, all samples for which y> 18 will be positive and thus the
primary analytical signal will be precisely the frequency of appearance of
positive samples F(c) = N+/N.

In view of linearization, one passes from frequencies to the variable z
by means of the Laplace function (z) = F(c) — 0.5 for F(c) > 0.5 (posi-
tive z) and, correspondingly, (z) = 0.5 — F(c) (negative z). Under these
new conditions, the values of z will obviously play the role of the analytical
signal. Since, according to Glivenko's theorem27, the experimental frequen-
cies obtained in this manner estimate the theoretical frequencies, the values
z have obviously also an estimative character. Consequently a confidence
interval must also be attached to function z = ftc), i.e. a dispersion band
limited by two hyperbolae described by equation (21). Based on the data of
Table 1, one can derive Table 2 and correspondingly Figure 9.

Table 2. Values of empirical frequencies and of variable z obtained from data of Table 1 for a
detection level Yk = 18 digits

%Cr (x) 0.016 0.027 0.043 0.064 0.074 0.102 0.130
F(c) 0.032 0.032 0.160 0.290 0.450 0.840 0.935
z(y) —1.85 —1.85 —1.00 —0.56 —0.12 +0.97 +1.53

0 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Concentrat ion, 0/0 Cr

Figure9. Frequentometrical procedure for estimating the detection limit

From the data of Table 2, applying the least squares method, one obtains

z = 2.48 + 31.82c (31)

Considering, for example, P11 = 0.975 and thus Zd = 1.96, there results
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for the detection limit, ë = 0.139 per cent Cr, therefore a very close value
to that obtained by the previously described method (0.128 per cent).

In order to calculate the confidence interval of the detection limit one
proceeds as in Figure 9, since the value Zd results by univocal defmition of
the value of the proper identification probability P11. For this reason the
confidence interval of the detection limit results only from the uncertainty
of the experimental function z = f(c). Therefore, the two extreme values of
the detection limit, as seen in Figure 9, are obtained by the intersection, of
value Zd with the two hyperbolae (21) associated with the calibration func-
tion, to give the expression

z = (— 2.48 + 31.82c) ± 2.02 x 0.646[0.01 + 7(c — 0.0651)2]4

For z = 196 one obtains

0.130% <Cd <0.150%
There it results that the described frequentometrical procedure also

includes two steps: the first, that the probability P10 is included in equation
(30); and the second, that the probability P11 is included in the value Zd of
the calibration function (31).

3. FORMULATION OF DETECTION DECISION BY MEANS
OF STATISTICAL TESTS

Due to the random character of the analytical signal, the formulation of
any detection decision must be compulsorily made by means of statistical
criteria. We shall describe below the manner in which three tests should be
applied with a view to checking the hypothesis concerning the detection of
a component in the sample under investigation: a parametrical test (Student),
a non-parametrical one (Wilcoxon) and a sequential test (Wald).

Test (Student)
The 't' test may be used in formulating detection decisions by comparing

a selection of analytical signals obtained on samples of the material under
investigation with a selection of measurements obtained on samples free of
the component to be detected, i.e. on blind samples (background).

To do this, one calculates the variable

t — yi—yp
exp

—

5n0 + n, [(n0 — 1)s + (n1 — 1)sfl11
1 n0n [ n0+n1—2 ii

where s and n0, respectively, represent the dispersion and the number of
measurements with mean jIJ performed on the blind (background) sample
and s and n1, respectively, represent the dispersion and the number of mea-
surements with a mean j performed on the sample under investigation.

if texp> t(p0 + ,, 2)28, one accepts the hypothesis that the component to
be detected is present, or, in general, that the material under investigation
has a higher concentration on the component to be detected than th
reference material.

Table 3 lists the results of spectral measurements performed on three steel
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samples, a reference and two unknowns, to detect titanium. The results of
the measurements represent the differences in blackening of segments on the
spectral plate where one of the titanium lines must be present (2r = 3103.8A)
together with that of the internal standard line (2Fe = 3102.87 A).

Table 3. Spectral analytical measurements for titanium detection

No.
(n)

Sample
Results

black for testing (1) for testing (2)
AS0 x io AS1 x iO AS2 x iO

1 —265 —290 —240
2 —262 —227 —236
3 —254 —252 —232 = 258.5
4 —266 —252 —253 = 255.3
5 —225 —272 —222 Y2 = 238.4
6 —246 —251 —243 s = 422.1
7 —298 —227 —210 s = 419.0
8 —251 —239 —241 s = 250.5
9 —248 —250 —243 exp = 0.37

10
11

—287
—292

•

—280
—268

—271
—231

t2exp -=2.58

From Table 3 with the values of the variable t one fmds t(095, 20) = 2.09
so that since tl,exp < t(095,20) and t2exp > t(095,20) the hypothesis of the
presence of titanium may be accepted only for sample 2.

Wilcoxon test29
In order to apply this test belonging to order statistics, a domain of

mathematical statistics, the n0 and n measurements performed, respectively,
on the reference material and on the material under investigation are
arranged according to the magnitude, obtaining a sequence of the form

(33)

If in such a sequence y appears after Yo' we shall say that one has an inver-
sion. Thus sequence (33) contains 16 inversions.

One can show29 that the mean M and the dispersion r of the number
u of inversions, for the case in which the two series of measurements n0 and
n belong to the same distribution, are, respectively,

M = (34)

and

cr = -jn0n(n0 + n1 + 1) (35)

For (n0, n1) 4 and (n0 + n1) 20, the distribution of the variable

z = (u — M)/a (36)

may be considered as normal. If Zexp Zp (tabulated) one accepts the
hypothesis that the component to be detected is present, or, in general, that
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the concentration of the component to be detected has a higher value in
the material under investigation than in the reference sample.

In order to apply the Wilcoxon test to the data of Table 3, the results of
measurements for sample 1 under investigation are arranged in the order
of their magnitude, forming the sequence

YoYiYoYiYiYiYoYoYoYoYiYiYoYiYiYoYoYoYiYiYiYo

with u1 = 63 inversions.

For sample 2 one obtains the sequence:

YOYOY2YOYOYOYOY2YOYOYOY2Y2YOY2Y2Y2Y2Y2YOY2Y2

with u2 = 98 inversions.
For n0 = n1 = n2 in agreement with formulae (34) and (35) there results

M = 60 and cr = 232, and based on formula (36) one obtains Z1 , exp = 0.13
and Z2,exp

= 2.5. From a table with the distribution values of variable z23
one finds z095 = 1.96, so that since Zj,exp < z095 and Z2, exp > Zç.95 the
hypothesis of the presence of titanium may be accepted only for sample 2.

Sequential probabifity ratio test (Wald)3°

The basic feature of sequential tests consists in the fact that the number of
necessary measurements for decision-making depends on the result of
observations itself. In other words, the very number (volume) of measure-
ments is considered as a random variable.

Considering the two hypotheses H1 with P11 and H0 with P00 and,
respectively, the two false detection probabilities P10 (error of the first kind)
and P01 (error of the second kind), one first calculates the ratios

A — P — 1 — P01 ndB — — P01 (37)a

Considering these ratios, the interval in which y will be found without
being able to make a decision will be given by relation

+ + n (38)2 i=1 YiY0 2

where is the dispersion of the analytical signal around the calibration
line (20) (it is calculated by formula 26), j70 is the intercept of the calibration
function (20), and j7 is the value of the analytical signal (calculated from
function 20) for the reference concentration (subjected to decision).

Therefore, in the case of a practical detection problem framed in such a
sequential model, based on the result of the repeated measurement process,
one calculates the consecutive sums of measurement results, comparing
them with the two decision levels in agreement with relation (38):

(1) If <j lnB + + j' .
(39)

i=1 v1— 2
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one accepts hypothesis H0.

(2)If _> TTl11A + n3'1 + J'Ø
(40)2

one accepts hypothesis H1.
(3) If neither hypothesis (39) nor (40) is satisfied, the decision will be made

to continue the experiment.
Further, based on the data listed in Table 4, we give an example of how to

apply the test for the detection of tungsten in steel.

Table 4. Calibration data for tungsten (2,, = 2079.1A) for five steel samples obtained with an
ARL-3 1000 type automatic emission spectrometer

Sample No.

1 2 3 4 5

= 0.053 0.022
Concentration (%W)

0.012 0.006 0.001

222
221
215
223
205
203
227
197
211
196
216
226
222

79
75
68
74
71
83
68
66
91
71
90

103
80

36
53
42
53
59
42
50
59
57
46
60
55
52

20
12
4

24
19
24
19
25
15
20
18
17
29

10
5
3
8
3

13
5
0
1

16
12
2
5

9 = 214.2 78.4 51.1 18.9 6.4

By calculation one finds j = — 1.8 and b = 4025.9, so that the calibra-
tion function will have the form

$5 = — 1.8 + 4025.9c

With cr = 94.7 (since n = 5 x 13 = 65) one considers that the dispersion
does characterize the general collectivity.

Under similar analytical conditions to those in which the calibration
data of Table 4 were obtained, a steel sample was subjected to a repeated
measuring process with a view to establishing the significance of its tungsten
content, in relation to hypotheses: the sample does not contain tungsten
(H0) and the concentration of tungsten is equal to or higher than 0.002 per
cent (the sample contains tungsten). From the calibration function (41)
obtained from the data of Table 4, for c, = 0.002 per cent, there results
j7 = 6.25 digits. Considering P10 = 0.025 (P00 = 0.975), P01 = 0.05 (P11 =
0.95), there results A = 38, B = 0.0513. In conclusion, in agreement with
equation (39), if

i1 j7
— 34.9 + 2.23 n (42)
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Table 5. Formulating of decisions by means of the sequential probability ratio test for a black
sample of steel in relation to hypotheses H0 (c <0.002 per cent W) and H1 (c 0.002 per cent)

No. of
measurements

(n)

Result of
measurements Z

i='

Decision
level for

H0 hypothesis

Decision
level for

H1 hypothesis

0 0 0 —34.9 42.7
1 8 8 —32.7 44.9
2 6 14 —30.4 47.2
3 9 23 —28.2 49.4
4 5 28 —26.0 51.6
5 9 37 —23.8 53.9
6 8 45 —21.5 56.1
7 7 52 —19.3 58.3
8 9 61 —17.1 60.5
9 6 67 —14.8 62.8

10 2 69 —12.6 65.0
11 13 82 —10.4 67.2

one accepts hypothesis H0 (C 0.002 per cent) and, in agreement with
(40), if

42.7 + 2.23 n (43)

one accepts hypothesis H1 (c> 0.002 per cent). If

— 34.9 + 2.23 n < j71 < 42.7 + 2.23 n (44)

the experiment will continue (indifference zone).
Table 5 illustrates that beginning with the eighth measurement, inequality

(43) is fulfilled and therefore hypothesis H1 must be accepted, i.e. C> 0.002
per cent.

The manner in which detection decisions could be formulated by means
of the sequential probability ratio test is shown in a graphical form in
Figure 10.

It follows from Figure 10 that, starting with the eighth measurement, the
sums of values of consecutive results leave the domain where one decides
on the continuation of the experiment and enter the domain in which one
decides on acceptance of hypothesis H1 (c ? 0.002 per cent). A correct
estimation of the detection limit is based on a mechanism presented in
Figure 11.

Since, as has already been shown (equation 1), each measurement depends
on a very large number of variables, the analytical signal, like the background
signal, in fact, will always have a random character with a distribution
described by a certain limit theorem. In conclusion, as a result of the action
of perturbations, the passage from the space of the sample under investigation
(space of hypotheses) to the space of measurement results (process 1) takes
place by a mechanism governed by probabilistic laws. Under such conditions,
the passage from the space of measurement results to the decisions space
(process 2) must necessarily involve certain decision rules based on statistical
criteria, as shown previously.
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I.0 /
,• Experiment continues
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-20
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Figure 10. Detection by means of the sequential probability ratio test

Figure 11 Mechanism of the analytical detection process

The statistical theory of the detection of signals, largely developed in recent
times because of its scientific implications (spatial, in particular), in com-
munication, in transportation and also in other domains, actually constitutes
the base of the defmition for estimating and making decisions in the field
regarding both detection limit and determination limit.

As shown before, the result of the estimation of the detection limit, and
in fact the expression of any results, depends on the accepted probabilities.
A standardization is therefore necessary in this domain and it could be organ-
ized by the IUPAC.

In conclusion, taking into account the statistical theory of detection limit
with all its implications and also the tremendous importance of trace analysis
in the most varied fields of science, technology and biology, it can be stated
that the problem as a whole should be reconsidered by the IUPAC Analytical
Chemistry Division.
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