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Abstract—Recent advances in the statistical-mechanical theory of wormlike chains are summarized. The basic
physical assumptions in the Kratky-Porod model and some other modifications for stiff chain molecules are
discussed, based on the “Lagrangian” of the chain by analogy with quantal motion of a particle. In the belief that
among these the Kratky-Porod wormlike chain affords the best approximation, a statistical-mechanical analysis of
its distribution functions and moments is then made rather in detail. It is shown that the analysis is facilitated by an
application of operational and diagrammatic techniques with the use of a digital computer. A brief summary of some
aspects of the application of the model to various observables is also given.

INTRODUCTION

There have been so far proposed a number of models
for chain molecules. What model should be used depends
on what property or behavior of a system is studied, and
also on what molecular level it is treated. Among these,
rotational-isomeric models' take an important place in the
study of various configuration-dependent properties, be-
cause they take account of the details of the molecular
structure. However, such details are often unnecessary to
consider in the treatment of the equilibrium and dynamic
properties of, for instance, dilute solutions of flexible
chain polymers. Thus, rotational-isomeric models have
long been replaced by random flight models.> On about the
same molecular level, there are also a wide variety of
models, such as wormlike chains,>® for semiflexible or
stiff chain molecules. However, there has been much less
investigation of them.

The main purposes of this paper are twofold: (1) to
make a comparison of various continuous models for stiff
chains from a statistical-mechanical point of view, and (2)
to make an analysis of the fundamental statistical proper-
ties of the Kratky-Porod wormlike chain.* Although the
Kratky-Porod model cannot mimic exactly the dimen-
sional behavior of real chains, it does often afford a rather
good approximation, and it has therefore retained a valid
place for many years. On the other hand, however, there
have been various modifications of this model because of
difficulties in its rigorous mathematical treatment. In order
to clarify the mutual relations among these models, we
first discuss the basic physical assumptions in them, based
on the “Lagrangian” of the chain by analogy with quantal
motion of a particle. In the belief that the Kratky-Porod
model is the most satisfactory, we then study the distribu-
tion functions and moments for this model chain by an
application of operational and diagrammatic techniques
together with a path-integral formulation. It is pointed out
that necessary diagrams may be generated effectively on a
digital computer. Finally, a brief summary of some aspects
of the application of the model to various observables is
given.

COMPARISON OF VARIOUS STIFF CHAIN MODELS
The Kratky-Porod wormlike chain
Consider a freely rotating chain composed of n bonds
of length | jointed with bond angle 7 —6. The
Kratky-Porod wormlike chain is defined as a limiting
continuous chain formed from this discrete chain by
letting n >, [ >0, and 6 -0 under the restriction that
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nl = L, the total contour length, and //(1 - cos8)=(2A)™",
the persistence length, remain constant. The Kuhn
segment length is equal to A~'. For this model, the
mean-square end-to-end distance (R?) becomes propor-
tional to L as AL approaches infinity, and becomes equal
to L? as AL decreases to zero. The ratio (R%)/L increases
monotonically with increasing L. Thus, the Kratky-Porod
chain enables one to interpolate to any degree of stiffness
or flexibility from the two extremes, random coil and rigid
rod. In what follows, this chain is simply referred to as the
wormlike chain.

The statistical mechanics of the wormlike chain may be
developed by regarding it as a differentiable space curve
of fixed length. Let r(s) be the radius vector of an
arbitrary point of the curve as a function of the contour
distance s from one end to that point. The unit vector u(s)
tangential to the curve at the point s is given by

u(s) = dr/ds (6]
with

w=1 (V)]
The above definition of the wormlike chain

yields the relation, ((Au)’)=4AAs. This implies that
the generation of the curve may be described by a simple
Markov process, and therefore that there is a Fokker—
Planck equation for the distribution function. Indeed,
such a differential equation was derived first by Daniels’
and subsequently by Hermans and Ullman® It is
convenient to introduce the Green’s function
G(R, ulu,; t); it is the conditional distribution function of
r(t)=R and u(¢t)=u when r(0)=0 and u(0)=u, (With
G =0for t <0). The Fokker-Planck equation then reads

(813t = AV,2 +u - V)G (R, uug; 1) = 8(t)5(R)S (u - ug).
3

The characteristic. function I(k,uluy; t), which is the
Fourier transform of G and also the Green’s function,
therefore satisfies

3/t — AV, — ik - u)I(k, ufuy; t) = 5(¢) 8 (u—up)
)]

with i the imaginary unit. Note that eqns 3 and 4 are
subject to the condition given by eqn 2.
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Now, there is a close analogy between the wormlike
chain and a quantal trajectory of a particle, the chain
contour length being regarded as “time”. Such an
approach was first introduced by Saito, Takahashi and
Yunoki,” and subsequently elaborated by Freed.®® In this
formalism, the Green’s functions may be represented in
terms of the Feynman path integrals.”® For example, the
“quantum-mechanical amplitude” I(k, ulu,; ) may be
written in the form,

Ik, uluo; 1) = f ™ exp (i L t.‘é’ds)@[u(s)], )

where £ is the “Langrangian” (in units of #),

2——— (g‘s‘) +k-u, ©)
subject to the condition given by eqn 2. The first term on
the right of eqn 6 is the free-particle Lagrangian or
“kinetic energy”, and the second term is the negative of
the “potential energy” of the “particle,” which in this case
is a rigid dipole in an electric field k. The true potential
energy of the wormlike chain arises from its bending
elastic energy, the first term of £ divided by i being this
energy per unit length. If the energy is measured in units
of kT with k the Boltzmann constant and T the absolute
temperature, the bending force constant a of the
wormlike chain is related to the Kuhn segment length by

a=02A)" )]

The path integral form of eqn 5 may be transformed to the
“Schrodinger” eqn 4 in a well-established manner.'

Modified wormlike chains

Since it is impossible to find the exact solution of eqn
3 or 4 in a closed form, various attempts have been made
to relax the constraint of eqn 2. For these modified
wormlike chains, the unnormalized and unconditional
characteristic function I(k, u, u,; ¢) may be written in the
path integral form of eqn 5 with the Lagrangian,
ia (du
x——(d—) FiU+k-u, ®

where U is an additional true potential energy (in units of
kT) of the chain associated with the relaxation of the
constraint, so that — (iU +Kk - u) is the “potential energy”
of the “particle.” Then, the Schrodinger equation is of the
form,

[8/6t—(2a) W2+ V-ik-ull(k,u,u;t)=56(t)(u—uy),
O]

where V is determinable from U. Note that eqns 8 and 9 are
no longer subject to the condition of eqn 2.

Harris and Hearst (HH)" have permitted Rouse-type
stretching as well as bending of the chain, so that their U
and V are given by

U(Hl-l) = V(HH) = % ﬁll2 (10)

with B the stretching force constant. For this model, « is
equated to 3/4 A, and B is determined as a function of ¢
and A; and ¢ should be regarded as the contour length in
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the unstretched state. The differential eqn 9 with
V = V™ was first derived by Freed,® and his model is
therefore the same as that of Harris and Hearst except the
equations determining @ and B. This model becomes
invalid for high stiffness; near the rod limit, it cannot give
the correct wormlike moments except (R?). In particular,
the contour length increases indefinitely if an external
force is applied and increased. Noda and Hearst” have
attempted to remedy this defect by forcing B to depend
on, for instance, rate of shear.

Fixman and Kovac (FK)" have considered a more
general modification by introducing an external potential
—R-f acting on the end-to-end vector, so that

U = YEO = % Buz —f-u (1)

For this model, & is again equated to 3/4 A, and B is
determined as a function of ¢, A, and also the force f, so
that ¢ and (R) do not increase indefinitely with f. When
=0, this model reduces to the Harris—-Hearst model.
Now, eqn 9 with V=V s just the Schrédinger
equation for a harmonic oscillator in an external force
field k — if, and its solution is well known.'® Thus we have
for the normalized but unconditional characteriestic
function I(k, u, uo; ¢t) for finite f

I(k,u,up;f,t) = P(u, u; £, t) exp { 213 (l —ltanh a)

+ik- [Et (1 —%tanh a)t+ﬁ(tanh a)(u+uo)]},
(12

where

P(u,u;f,t)= ( ) exp{ nh2a ————[(cosh 2a)(u®+ u?)

—2u- uo]+%(tanh a)f-(@+u) (13)
t
55 (tanh ot}
t 3 12
a=5(<),
21 (a) (14)
b =§(aﬂ)"2-

When f =0, the I given by eqn 12 is identical with that of
Freed® except the normalization constant. By Fourier
inversion of eqn 12, we obtain for the normalized
trivariate distribution function P(R,u, u,; f, t)

312
PR, u,u;;f, t)=P(u,uy;f, t) [Wﬁ_'tanha)]

_ B _t
X °"p{ 21(1—a 'tanh a) [R 74 (tanh @)

x (u+uo)—3f (1 —%tanh a)f]z}.

The distribution function P(R, u, u,; t) given by eqn 15
with £ =0 may also be obtained from the formulation of
Harris and Hearst. If the radius vector r(s) is expanded in
terms of the eigenfunctions ¢, for the equation of motion,
and if € are the expansion coefficients, then the

%)



Statistical mechanics of wormlike chains 137

instantaneous distribution function for the entire free
Harris-Hearst chain may be expressed as a product of
Gaussian distributions of €."' From this, we can therefore
derive the trivariate Gaussian distribution P(R,u, u;t)
by the use of the Wang-Uhlenbeck theorem.? Thus, it is
explicitly recognized that the Freed model is exactly
equivalent to the Harris-Hearst model. However, their
expressions for the moments, e.g. (R?) as functions of «
and B are different. This arises from the fact that Freed
has regarded the above P(R,u, uy; t) erroneously as the
conditional distribution P(R, uluy; ), and evaluated aver-
ages with P(R,u, u,; t)P(up;t). -

Further, we consider two other models. Tagami (T)"
has assumed G(R, uluy; t) to be the same as the Green’s
function for a free Brownian particle with R the position
and u the velocity. Then the Fokker-Planck equation
satisfied by this G and also its closed-form solution are
well known."” The Lagrangian of this system has already
been given by Saito and co-workers,'¢” and we have

U(T) - % B“2+ (aB)”zu . (g%)’

o= - (g)mvu v

with @ =3/4 A and B =3 A. It is seen that the stretching
energy is still of the Rouse type, but that there is coupling
between bending and stretching. However, it is not clear
what physical property of the real chain this coupling
reflects. Further, we note that this model gives the correct
rod limits of the moments, but not the correct first-order
corrections to these limits.

Inall of these modified wormlike chains, the minimum of
the stretching energy is located u = 0. Saito, Takahashi,
and Yunoki (STY)’ have instead introduced the stretching
energy whose minimum is at |u| =1, so that

(16)

U(s'[v) - V(STY) = % B(Iul - 1)2. (17)

Although the determination of a and B is not yet explicit,
we must have @ =(2A)™" for B -, since this model
reduces to the wormlike chain in this limit. Its mathemati-
cal treatment is not always easier than that of the latter.

DISTRIBUTION FUNCTIONS AND MOMENTS

Having made a comparison of various stiff chain
models, we still believe that the Kratky-Porod wormlike
chain is the most satisfactory. In the present and next
sections, therefore, it is further studied. In this section, we
examine the mathematical structure of its distribution
functions and moments. Two types of expansions of the
characteristic function I, which are closely related to each
other, are obtained from an integral equation'® and the
differential eqn 4" by operational methods. The former
leads to operational expressions for the moments'** and
the moment-based distribution function G(R; t),” and the
latter the Daniels-type  distribution  functions
G (R, ulu,; £).”*' Near the rod limit where these distribu-
tions become invalid, the “WKB” distribution functions®
are useful. Throughout this section, the condition of eqn 2
is imposed, and all lengths are measured in units of A",
f04r simplicity. Then, for example, the expression for (R?)
is

(R)=t —%(1 —e, (18)

Even moments for the end-to-end distance

By analogy with quantum mechanics, an integral
equation for I may readily be derived from the path
integral form given by eqn 5,

I(k, ulu,; t) = G (uluy; t)+ik-f‘fn,G(u|ul;t—s,)
(]

X I(k, u;|up; s,) ds, du,, (19)
where G (ujuy; t) = I(0, uuy; t) is identical with the well-
known Green'’s function for a free rigid dipole (dumbbell
rotor). Integrating both sides of eqn (19) over u, and
dividing by 47, we have also an integral equation for
I(k, u; t), but the result is omitted.

We choose u, in the direction of the z axis of a
Cartesian coordinate system, and use spherical polar
coordinates, u=(1,6,¢) and k=(k x,»). Both
I(k, ulu,; t) and I(k, u; t), which we simply designate by
I(t), may then be expanded in terms of the normalized
spherical harmonics Y;" (8, ¢) such that Y, ™ is equal to
the complex conjugate of Y/",

10=5 3 KrOYr6e, @

where K" (t) stands for K" (k|uo; t) or K" (k; t), as the
case may be. The scalar product k - u; may be expressed
in terms of Y,"(y, w). Thus, substitution of eqn 20 into
eqn 19 and integration over u, leads to the integral
equations for K™ (t),

K™ = fm + ikf, * K", 1)

where the asterisk indicates a convolution integration,

fre=[ fa-9g0as @)

and
k=@ w[3)"k, (23)
fi=exp[-1(1 + 1], 24

fr=1Ql+1)/4 7] 8,ef; for K =K/ (kluo; t)
=4 7r)"”28,08,,,0f0 for K" =K"(k;t) (25)

with. 8,, the Kronecker delta. £ is an operator (not
Lagrangian) defined by

L=2"Ya+a%)+ Y. (@' —al) + YN a, " - a:(}z)é)

where the arguments of the spherical harmonics are y and

o; and a,” (p==%1; »=0, *1) are creation and
annihilation operators which operate on f;, as

au”ﬁ =f +u 27

and on K™ and f" as

0 — 'm
a, ﬁm - All’:h/z)(u—ﬂ flﬂu

a,f" = 2h(vm) - NEZGBCER* " [y (v#0)
(28)
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with h the unit step function such that k(x) =1 or 0 for
x=0or <0, and

AP =[(l+m+1)(-m+1D/Q21+1)21+3)]"
Er=[(l-m+1)(-m+2/Q1+1D)Q21+3)]"~

29
The solution for K, may then be expressed as
K" = Eo(ik-)"(fz * L)frm (30)

In particular, integration of eqn 20 over u leads to

Ikjuo; 1) = (4 ar)‘“E:o(iE)" G070, 6

=@ )" 3 OB (2P, ()

where f,’ in eqns 31 and 32 are givén by the first and
second lines of eqn 25, respectively.
Now we expand (f, * £)"f,’ in eqn 31 to obtain

I(juo; 1) = %(ik)"pg @+ 3 T, 3 (-1

©-p)

X270 C ¥ cos "’y sin® "%, (33)
where
Co =0 "anar...aza"f), (34
To..,()=3 z (1) (35)
with z(t) the residue of the function Q(z),
Q@)=elzl 2+ +DL, (6
i=
and
b=2m=0 (=0h=w=1L=p). G
> v =0. (38)

i=1

Equation 38 must hold because of the first line of eqn 25,
and C,” is a constant independent of ¢. In eqn 33, n° and x
are the numbers of a4 and a’, (v#0) in C.,
respectively, the third sum is taken over all possible paths
011,...1,_;p) from 0 to p, and the fourth sum is taken
over v,...,v, compatible with eqn 38. The paths
(014,...1,.,p) may be conveniently represented by
“stone-fence” diagrams in an (i, /;)-plane, as shown in Fig.
1, where two paths I (0101212) and IT (0123434) for n =6
are depicted as examples. The figure is equivalent to the
two-dimensional representation of one-dimensional ran-
dom walks with a reflecting barrier at the origin."

If we choose k in the direction of u,, i.e.y = 0, we obtain
the expansion of I(kju;¢t) in terms of (R - wy)") with

(R u)") = nlg Qp+1)"™ 3 T ,(CS, (39

paths
©-p)

5 fommanid

4--

0 3 4 5 6
Fig. 1. Stone-fence diagram for the paths (0-p). Two paths
1(0101212) and II (0123434) for n = 6 are depicted as examples.

where only the paths from 0 to p with v, =v,=---=
v, = 0 contribute.

Similarly, eqn 32 is reduced to the expansion in
terms of (R®™). The result is

I6;0)= 3 (- Ik R™)Qm+D! (@D)
with
(R™=Cm+1)!' S Ty o(t)C, . @n

paths
(0-0)

In this case, only the paths from 0 to 0 with » =0
contribute because of the second line of eqn 25, and C,’ is
explicitly given by

2m
C'= }}l Al +(12) (i -1) “2)

with u;=1 and p,, =-1. If p; is the number of the
factors with /; =j in the denominator of eqn 36, the
formula for residues gives

S 1 p,v-l 161 P; alz
w0 .I:IO[Z Fii + )0 I
“3)
Thus, the final expression for (R*") is
(RPm)= 3 > A el )
j=0 i=j

where A{" are numerical constants independent of ¢, and
may be expressed in terms of C,° and p;, the result being
omitted. For m = 1, 2, and 3, eqn 44 gives the well-known
results.*32

The coefficients A{™ may be evaluated effectively by
the use of a digital computer; it consists of generating all
possible (0— 0) paths and counting the number p;. Thus,
their values for m < 11 have already been obtained.” The
whole calculation from m =1 to m = 6 has been finished
in less than 2 min, and the case of m = 11 has taken about
8 min. We note that the analytical expressions for (R*")
may also be obtained from the recurrence formula of
Hermans and Ullman,® but that the evaluation becomes
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extremely laborious as m is increased. Thus, Nagai®® has
obtained numerical values of (R*") as a function of ¢ for
m =< 20 from their formula by the use of a computer. His
results for m < 6 are in good agreement with ours (to order
107%) for all values of ¢, but for higher m are much less
accurate, especially at small ¢.

In general, the correction to the Gaussian distribution
G(R; t) for t>» may be expanded in terms of the
moments (R>"), or of the Hermite polynomials,"” it
giving the so-called moment-based distribution function
of R. The successive approximations to this distribution
have been obtained by taking account of (R*") with m <1
to 11 successively.”

Daniels-type distribution functions

The correction to the Gaussian distribution may also be
expanded in inverse powers of ¢ to give the so-called
Daniels-type distribution functions. Daniels® first solved
the differential eqn 3 to derive the asymptotic expansion
of G(RJuy; t) of this kind to terms of order ¢t™*?. Many
years later, Gobush et al." attempted to solve the
differential equation for the Laplace transform
I(k, ujuy; p) of I with respect to ¢ by an application of
operational techniques developed by Prigogine and
co-workers®? in attacking the Liouville equation, and
obztained the expansion of G(R, uluy;t) to terms of order
.

Now we reformulate the Gobush expansion along our
line of the preceding section. As before, we choose u, in
the direction of the z axis, and express u and k in
spherical polar coordinates, the azimuthal angle of k being
¢ — ¢ instead of w. In our notation, the Gobush operator
8L = ik6L may be written as

8L = (cos x)a,*+ a‘l,)+%(sin x)a,'—aly)

+%(sin @ —a). @5)

a,” operate on f; and g™ (instead of £") in the same way
as in eqns 27 and 28, where g™ is defined by

&" = fY" (6, ¢).

By Laplace inversion of the Gobush solution for I, we
then have

- (46)

Ik, uluo; ) = 2 2 ()" 1L + 1)/4 w](f, + SLY'g?.
@)

The structure of the cascade of the successive a,”
operations involved in eqn 47 seems different from that in
eqn 20 with 30, but both are equivalent. This is observed
more explicitly by considering I(k|u,; ). From eqn 47, we
have

I(kuo; 1) = }jog(ik)"(z 1+ 1) f g(f, * SLY"g? du.
(48)

It can be seen that if the integrand of eqn 48 is expanded,
there is one-to-one correspondence between the terms in
eqns 33 and 48; each path of the stone-fence diagram in
the latter is just the reversal of the corresponding (0— 1)
path in the former.

Similarly, the Gobush expansion gives
IG&; 1) =2, (- D)"k™ (@) '(fo* SLY"gs’,  (49)
m=0

where only the (0 0) paths with » =0 contribute as in
eqn 40. Of course, eqns 40 and 49 equivalent.

By Fourier inversion of any of these I(k;t), we can
obtain Daniels-type distribution function G(R;t). It
includes no terms of order of inverse half-integer powers
of t; the sth approximation retains terms to order ¢ *. The
first® and second” approximations have been derived
analytically, and the expansion coefficients in the third to
tenth approximations have been evaluated numerically
from eqn 49 by generating all possible paths on a
computer.’ Although the convergence of both the
moment-based and Daniels distributions is poor at small ¢,
the convergence of the ring-closure probability G(0; t)
and the mean reciprocal distance (R ") from the latter is
better than that from the former. In particular, the second
Daniels approximation to (R") is valid for ¢ = 3.

WKB distribution functions

In order to obtain the distribution functions valid near
the rod limit (¢ - 0), we must resort to a different method.
The problem is to find the WKB solution of the
Schrédinger eqn 4 in the “classical” limit k - (corres-
ponding to the limit # —0). If we let k approach infinity
and suppress the Laplacian operator in eqn 4, it gives the
distribution function for the rod that is a delta function. If
we adopt the path integral approach, this limit is obtained
from the “classical” path @(s) which satisfies the
extremum condition,

5] Lds =0 (50)
0

with # the Lagrangian given by eqn 6. Then, the WKB
approximation consists of taking into account the
deviation of the “potential energy” part —k - u of £ from
its classical value to second order.”® Thus, eqn 5 is
reduced to the form,

t
I(k, ujuy; t) = F(k, t) exp (lf $ds), (51)
0
where £ is the classical value of £ with u =u, and F(k, t)
is the normalization factor.
The distribution functions thus obtained” give the
correct first-order corrections to the rod limits of all the
moments,

(R -up)"y=t"[1-nt +0(t7)],
(R™) =t [1 —% mt +0(t’)],

(R = t"[l +% t +0(t2)].

(52)

However, we note that the ring-closure probability
G(0, uluy; t) for t >0 cannot be obtained from the WKB
solution; it requires a more direct treatment.”

APPLICATION TO VARIOUS OBSERVABLES
Earlier work on the application of the wormlike chain
has been reviewed elsewhere,>® and in this section, we
discuss only some aspects of the recent study. In general,
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the excluded volume effect in stiff chains is rather small;
when it is necessary to take it into account, the first-order
perturbation theory will suffice. Indeed, the excluded-
volume expansion factor and the second virial coefficient
have been evaluated in this approximation for wormlike
bead models.* Throughout the remainder of this section,
however, we ignore this effect. All lengths are again
reduced by A",

First, we consider the light-scattering form factor P(6)
for the chain of total contour length L. It is related to the
characteristic function by

L
P(0)=2Lsz (L = t)I(k; t)dt, (%3)

where k has just the meaning of the scattering vector. In
this case, the I(k; t) from the moment-based distribution
function G(R; t) gives a more rapid convergence of P(8)
than does that from the Daniels distribution. Indeed,
values of P(#) have been obtained for various values of L
over the important range of k?=< 10, taking account of
(R*™) with m = 1-11.° On the other hand, Peterlin* and
Hearst and Harris*? have adopted the Gaussian approxi-
mation; Benoit and Doty*® have used the first three terms
of eqn 40, including only (R?) and (R*); and Sharp and
Bloomfield* have used the first Daniels approximation.
Necessarily, all of these P(6) break down at small L, or in
the typical stiff chain region. However, we note that for
L =10 and k*=< 10, the closed-form expression of Sharp
and Bloomfield gives a good approximation.

The steady-state transport coefficients such as the
sedimentation coefficient and the intrinsic viscosity may
be evaluated using wormlike bead models*~* or wormlike
cylinder models.** In any case, if the hydrodynamic
interaction is taken into account through the Oseen
formula,> we need the mean reciprocal distance (R™")
between two contour points separated by contour
distance t. However, we cannot derive an exact expression
for it valid for all values of ¢, and an approximation is
required. For example, Hearst and Stockmayer”’ have
made an interpolation from the Daniels and WKB
approximations. If the second Daniels approximation is
adopted, it is given by

6 12 1 73
== ————
(R )‘(m) (1 201 4480t’) fort>o
=t 1+t + axt* +ast?) for t <o.
(54

The constants o, a,, and a; are determined in such a way
that the two (R™') have the same first and second
derivatives at their intersection t = o; the results are
o =2278, a,=0.1130, and a, = —0.02447.*' The accuracy
of eqn 54 has been verified by a Monte Carlo study*' of
freely rotating chains with such small complementary
bond angles that they are nearly wormlike. As for the
method of classical hydrodynamics, we believe that the
Oseen-Burgers procedure**> may be applied reasonably
to cylinder models, in the sense that the final result may be
expressed in terms of only the dimensional parameters L,
A, and the diameter d of the cylinder. Note that an
additional phenomenological parameter appears if the
Kirkwood-Riseman procedure® is applied to bead models,
followed by taking the continuous limit.**

If the properties cited above are important, one of the
experimental problems is to determine L, A, and also d.
The determination of L is equivalent to determining a
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shift factor M;, or the molecular weight M per unit
contour length,

M, =M|L. (55)
For chains having rigid local conformations, M, is
estimated from crystallographic data. For example, it is
known that M, = 195 daltons/A for DNA; and analyses of
light scattering, sedimentation, and viscosity data for
DNA lead to good values of M; on the assumption of the
wormlike chain model.”* For chains having no rigid local
conformations, there arises an interesting question:*
What value is to be assigned to M, for a given chain in
dilute solution? The analyses made so far*>* show that its
best value is close to that obtained by taking L as the
length of the real chain fully extended to the all trans
conformation except for a few cases, but it requires
further study. If there is not a unique value of M, for a
given chain, it cannot be represented by the wormlike chain
model.

There have been very few investigations of the dynamic
properties. For the Harris-Hearst model, for example, the
storage and loss moduli have been evaluated,” and some
analysis of its Brownian motion has been made.’
However, the theory breaks down for typical stiff
chains,* as expected. This field also requires further study.
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