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EFFECTS OF MOLECULAR SIZE AND SHAPE IN
SOLUTION THERMODYNAMICS
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Abstract—The one-fluid corresponding states theory is used to predict excess thermodynamic quantities of a mixture
of spherical molecules of different and cr Two prescriptions of 'van der Waals type', and a third used by Flory, give
the parameters €, and o,, of the solution. Comparison of the results is made with Monte Carlo calculations of Singer
and Singer and the Snider—Herrington theory, and also with experimental features of simple and polyatomic spherical
molecule mixtures. For each prescription an intuitive discussion is given of contributions to the excess quantities
arising from (a) the energetic weakness of (1—2) contacts relative to (1—1) and (2—2) and (b) dissimilarity of free
volume between the components. Two free volume contributions are distinguished. One depends on the second
derivative with respect to T of the energy, volume, etc. of the reference liquid. The other occurs only in V'° where it
is of major importance and depends on dV/dT and a dissimilarity of molecular energy/volume parameters of the
components. Recent experiments indicate two effects outside current theory. For systems containing anisotropic
molecules, there is a third contribution to excess quantities (c), due to short-range orientational order or correlations
of molecular orientations in one or both components. Mixing liquids of differing degrees of order usually brings about
a net decrease of order, and hence positive contributions in EHM and aSM. The effect is illustrated by aHM values of
branched and normal alkane mixtures at 25°, the temperature dependence of IHM for such systems, and the widely
different IXHM of cis and trans dimethylcyclohexanes mixed with the orientationally ordered n-C16. The properties
of systems containing a nematic liquid crystal (MBBA) and an alkane are sensitive to the alkane shape and indicate
that MBBA molecules correlate their orientations with normal, but not with highly branched alkanes. The fourth
contribution (d) is seen in systems involving alkanes of the same molecular shape but different degrees of steric
hindrance of torsional oscillations. Heats of mixing point to a thermodynamic effect associated with a coupling of the
molecular motions of the components.

INTRODUCTION

The corresponding states theory developed by Prigogine
and collaborators1 and by Scott2 and Brown3 was the
dominant influence in solution thermodynamics during the
1960's. The starting point of the corresponding states
theory was the strictly regular solution theory1 of
Guggenheim, extended in addition to polymer solutions
by Flory, Huggins and others. However, these earlier
theories were mainly concerned with the combinatorial
entropy of mixing and so were based on a rigid lattice
model for the liquid state. As a consequence they could
not predict the volume of mixing, or the effect on the
excess heat and entropy due to the volume changes
undergone by the components during the mixing process.
The missing factor was the equation of state, and this was
introduced for spherical molecule mixtures, first in a cell
model,4 and then in the corresponding states theory.
Through the use of an equation of state for polymeric
liquids, the theory was extended from spherical molecule
mixtures to polymer solutions.5'6 For both of these classes
of mixtures the theory has had notable successes in
interpreting experiment and in predicting new effects.

Recently, theoretical interest has turned to the rapidly
evolving molecular distribution function theories and
computer calculations of the excess thermodynamic
quantities. These developments,7'8 together with experi-
ment, have shown that one element of the usual corres-
ponding states approach, namely the average potential or
random mixture prescription (see below), over-estimates
effects of size difference between the component
molecules. A major improvement is obtained through a
different prescription of 'van der Waals' type, suggested
by Leland, Rowlinson and Sather,9 and in fact several
improved prescriptions are available, each leading to a
form of the corresponding states theory with its predic-
tion of the excess thermodynamic quantities. The first
objective of this article is to assess the physical signifi-

cance of the prescriptions, and to compare the predictions
with the results of Monte Carlo calculations in the litera-
ture'0 and also with predictions of the Snider—Herrington
theory1' which is based on a simple distribution function
approach. The corresponding states theory gives good
results and may be used to lend physical insight into the
origin of the excess functions for spheres of different size.
However, a new effect not treated by current theory
arises when dealing with mixtures of molecules of differ-
ent shape. This effect is due to the presence of short-range
orientational order in a liquid composed of highly anisot-
ropic molecules such as the normal alkanes. Two liquids
of different molecular shape, e.g. a branched and a normal
alkane or two n -C, of different n, will have different
degrees of orientational order. When they are mixed there
is a net decrease of order and corresponding positive
contributions in LHM and LaSM. These contributions are
also of importance in the thermodynamics of systems
containing liquid crystals or lipids. Another effect is
revealed by studying systems where one component is
taken from a series of alkane isomers of the same
molecular shape but differing degrees of steric hindrance
to internal motion. It appears that a thermodynamic
contribution arises from a coupling between the motions
of interacting molecules.

The present article is restricted in scope, but there are
several excellent general reviews of the current situation
in simple mixtures, e.g. by Scott and Fenby,'2 particularly
for the corresponding states theory, and by Henderson
and Leonard7 and by McDonald,8 especially for the dis-
tribution function theories and machine calculations.

MIXTURES OF SPHERES OF UNEQUAL SIZE

The review by Scott and Fenby emphasizes that a
corresponding states theory consists of three steps:

(a) the establishment of the equation of state of the
pure liquids in a corresponding states, i.e. reduced form,
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giving the dependence of the thermodynamic quantities
on V and T. This may be done using experimental data for
the pure liquids, or results of a machine calculation with
an assumed intermolecular potential, or through a theoret-
ical model. This last can be the cell model which, perhaps
surprisingly, is still very useful in work on mixtures, as
indicated by the success of the Flory theory.6

(b) combining rules for passing from the parameters
characterizing the potentials for interactions between like
molecules in the pure liquids to the corresponding
parameters for unlike molecules. The Lorentz—Berthelot
rules have been generally used:

ff12 = (cr+ ff22)

€12 = (€11 . €22)

where the o and are respectively the intermolecular
distance at which the potential is zero, and the depth of
the potential well. Theoretical and experimental evidence
exists for deviations from the Berthelot geometric mean
rule in the direction of lower cohesion of the (1—2) pair,
i.e.

€12 = (1 — k12)(€11 €22); k12 >0. (3)

(c) a prescription for the extension of the equation of
state and the thermodynamic properties from the pure
components to the mixture. The simplest prescription is
the one-fluid model where the mixture is taken to be
equivalent to a single fluid with molecular parameters Urn
and Em. More complex two- and three-fluid models are
available, but it is probable1° that they give no better
results than the one-fluid. According to the one-fluid
scheme, the excess thermodynamic quantities are given
by:

VEIN = ffm3V(Tm)XiffiV(Ti)X2ff2V(T2) (4)

and at zero pressure,

HEIN UE/N = €mU(tm)— x1€11 U(i'1) — x2€22UçD2)

(5)

with the reduced temperatures given by equations of
form:

i'=kTI€. (6)

The Urn and Em are averages of the molecular parameters
of the pure liquids, and it is in the averaging prescriptions
that the differences appear between various theories with
corresponding differences in the calculated excess proper-
ties.

One-fluid prescriptions for Urn and Em
Van der Waals prescriptions. It is now agreed7'8 that the

most successful prescriptions are those of 'van der Waals'
type,9 actually proposed by van der Waals'3 in 1890 for
passing from the constants a EU and b o3 of pure
fluids to equivalent parameters for the mixture. Thus, we
have

a €mffm3 = (7)

Van der Waals proposed two prescriptions for b. The first
was a linear combination of the co-volumes of the

components, so that

b UmXjOz (8)

and hence in eqn (7),

3

(9):3Xff

This 'linear' van der Waals prescription has been used by
(1) Scott and van Konynenburg14 for alkane mixtures.

(2)
The second prescription for b comes from a quadratic

averaging of the distances between centres of contacting
molecules,

b ° Urn3 = XXff4 (10)

leading to
3

(11)

XX1O

The quadratic van der Waals prescription is the usual
vdW-I prescription of Leland, Rowlinson and Sather9 and
widely used for comparison7'8 with experiments on simple
mixtures and with Monte Carlo calculations. It is clear
that both formulae for Em correspond to molecular vol-
ume fraction averages of the €, but the two prescriptions
give rather different results for the excess thermodynamic
quantities. It is therefore convenient to discuss im-
mediately the two prescriptions in terms of parameters
expressing the differences between the quantities UJ and
€. These difference parameters may directly compare U
and of the pure components, as do for instance p and 6
in the work of Prigogine and collaborators. However, in
their Monte Carlo calculations, Singer and Singer com-
pare one of the components, 1, with an intermediate
reference liquid characterized by ff12 and €12 as given by
the Lorentz—Berthelot rules, i.e. they introduce

— Uii 1Uii 1
0.5(U11+ Cr22) ff12

6= ()_l =#-1. (12)
€22 €12

We shall be concerned below with expansions of excess
quantities in powers of difference parameters, and the
above choice gives a more rapid convergence than do the
more usual parameters.

We now determine for each prescription a molecular
volume change on mixing,

3 3 3 3
L&ff Um X1U11X2ff22 (13)

and the corresponding change of molecular cohesion,

=Em — Xi€ii — X2€22. (14)

It may be seen in eqns (4) and (5) that these quantities
would give VE and HE if the reduced temperatures of the
liquids were all the same, i.e. if one were to ignore effects
associated with their free volume. It is of interest to note
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that in the strictly regular solution theory where effects of
size differences and free volumes are omitted,

L1J =

&/€?2X1X2 = — — 2k12. (15)

Here only the second order of 6 is kept, and the first order
of the very small k12 parameter. The normalizing factor €?2
in the denominator of the left-hand side can to this
approximation be any c, or Cm itself. In eqn (15), Ac is
negative corresponding to a decrease in molecular cohe-
sion during mixing. The negative sign comes first from a
term —2 which is associated with the dissimilarity of the
'contact energies' €ii and €22 arising from the difference in
chemical nature of the two components. Secondly, there
is an obvious extra contribution —2k12 from any deviation
from the Berthelot rule. The heat of mixing is positive.
Introducing for comparison the lattice coordination
number and interchange energy of the strictly regular
solution theory,

HE/N = —Ac = ZAW12X1X2.

Table 1 gives Acr3/o,2xix2 and Ac/c?2xix2 for the vari-
ous prescriptions under discussion. For the linear v d W,
Ao3 =0 and, as in the strictly regular solution theory, Ac
indicates a decrease of cohesion during mixing. However,
the important dissimilarity is no longer between contact
energies as such, but between contact energies per unit
molecular volume, i.e. c/o, entering the prescription
through [(c,i/ol,)'° — (c22/o32)112}2 and resulting in the fac-
tor — ( — 3)2 It is of interest to note that the well-
known solubiity parameter theory also stresses this dif-
ference in cohesive energy densities of the components.
The linear v d W corresponding states theory and the
solubiity parameter theory are remarkably similar and
differ from the strictly regular solution theory in having an
ri-dependence of Ac. This is intuitively reasonable. Given
two spherical molecules of identical chemical nature, but
very different u, such as two highly branched alkanes,
then the c's will also be very different, and both t5 and
will be large. However, due to the chemical similarity of
the components, we would expect Ac and HE to be small
instead of large as predicted by strictly regular solution
theory. The statement that Ac depends on a dissimilarity
of c/oS", where n = 3, or n = 2 as in the Flory theory
(below), is thus an advance over putting n =0 as in the
strictly regular solution theory.

Again in Table 1, one notices that for the quadratic
v d W prescription Ao!3 is no longer zero, but negative.
Dissimilarity of molecular size causes the solution to be
more compact than the pure components. This effect has

Table 1. Parameters for the corresponding states expansions
(19—21)

-p--
€12X1X2

—-
O,2X1X2

B

Strictly regular — ö2 —2k,2 0
Linear v dW
Quadratic vdW

(5 —3)2 —2k,2

—(—3)2+92—2k,2
—(5—6ii) —2k,2

0
—92

182
122

Flory —2k,2 0 18fl2
Average
potential model —(ö2 + 722) —2k12 132 + 2&q57fl2 + 6&ri

been compared with the contraction observed during the
mixing of small and large ball bearings,'5 the small spheres
tending to enter the voids between the large. (However,
the quadratic v dW prescription applied to ball bearings
of widely different diameter predicts effects considerably
larger than found experimentally, and there is even evi-
dence that a small size-difference brings about an expan-
sion on mixing.'6) In Ac we again see the —3)2 term
due to contact energy dissimilarity giving decreased cohe-
sion in the mixture, but there is a new term + 2 of
opposite sign. This is the counterpart of the contraction
just mentioned. It becomes dominant for molecules which
are similar in molecular energy/volume ratios, so that Ac
is then positive and the predicted HE is negative.

The Flory prescription. The Flory theory,17 which may
be regarded as a corresponding states theory, also uses
the linear prescription for ifm3, so that Aff3 =0. The theory
makes the assumption that interaction takes place be-
tween the surfaces of molecules, a view taken in several
approaches.'8'19 Thus, the Berthelot geometric mean
should be applied to contact energies between surfaces of
molecules rather than the molecules themselves. Follow-

(16) ing the review of Henderson and Leonard,7 one can write
the Flory prescription in a form similar to eqn (9) for the
linear v d W prescription:

ffmXiO, (17)

2
x,x1c,r,2x,ou

Here, to reproduce the Flory prescription exactly, we
must use a geometric mean rule for ff12 = (oS,, . cr22).
However, in calculations there is little difference in using
the Lorentz eqn (1), and so either could be put in the Flory
prescription. It is clear that this prescription corresponds
to a surface fraction averaging of the c,, to obtain Cm. Thus
the weight accorded the sphere diameter in the averaging
procedure is less than in the v dW scheme,.but more than
in the strictly regular solution theory where it was zero. In
Table 1, Ao and Ac are the same as with the linear v dW
but with (6 — 271)2 replacing (6 — 371)2, indicating that the
decrease of molecular cohesion in mixing now reflects the
dissimilarity of the components in molecular
energy/surface, i.e. c/cr2 or P */ in the Flory-type ter-
minology. The linear v dW and Flory prescriptions give
almost identical predictions of excess quantities as seen
below.

Average potential prescription. The oldest prescrip-
tion"20 is the random mixing or average potential (crude
model). Bellemans, Mathot and Simon2° have reviewed
the application to simple mixtures of the refined or
two-fluid form of the prescription. Table 1 shows that the
prescription gives great weight to the effect of size
difference, but it is now7'8 agreed that this constitutes an
over-estimate.

Corresponding states equations for the excess ther-
modynamic quantities

The excess quantities are given by eqns (4) and (5), but
expansions in terms of p and 6 have also been made by
Prigogine1 and by Rowlinson and collaborators.9 Similar
expansions of the Monte Carlo excess quantities have
been given by Singer and Singer.'° All of these are useful

(18)
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Here the quantities and Ac are as given by the
different prescriptions in Table 1, and the U, C,,, V, etc.
are the reference thermodynamic functions which may be
taken from theory or a pure component, but which we
take below as generated'° for an argon-like liquid by the
Monte Carlo method. The relative magnitudes of the
terms may be sensed from the values of these reference
functions at 91°K, as indicated in eqns (19—21).

the temperature dependence of VE is sensitive to the
equation of state assumed for the reference liquid since it
involves the third derivative of V. This free volume term
is well-known in polymer solution thermodynamics where
it leads typically to negative V' for these systems and a
considerable negative HE contribution. However, ac-
cording to eqn (20), the contribution to GE is positive and,
at sufficiently high temperature, phase separation occurs
at the lower critical solution temperature which is a
general feature of polymer solutions.21

Equation (21) shows a second free volume contribution

(19) to VE, in — 46(6 — 3i) which is of major importance. Its
origin may be found by returning to eqn (4) for VE:

This equation compares the function at the reduced
temperature of the solution, Tm, with an average of the V
values at T1 and T2 for the pure components. This latter
average may be approximated by V evaluated at a 'pure
component' T1+2 intermediate between T1 and T2, corres-
ponding to a 'molecular volume fraction average' of T1
and T2:

be

= (Dm - T,+2).
Nm dT

(23)

It is clear that Tm — T1+2 requires: (a) inequality of 1i and
T2 and (b) a difference between the molecular volume
fraction and contact energy fractions, i.e. €ii/oi e22/cr22
or in the Prigogine—Flory nomenclature, P1' P. In eqn
(21) for VE the term 6(6 — 3i) factors into 6 correspond-
ing to requirement (a) and (6 — 3i)corresponding to (b).

Comparison of the corresponding states predictions with
Monte Carlo and Snider—Herrington results

Figures 1 and 2 compare the corresponding states
predictions with Monte Carlo results of Singer and
Singer.1° These are for mixtures of Lennard—Jones 12—6
spheres obeying the Lorentz—Berthelot combining rules
and with 012 =3.596 A and €?2/k = 133.5°K. These
parameters were chosen to be in the middle of the range
for simple fluids, e.g. Ar, Kr, Xe, N2, 02, CO, CCII and
CF4. Differences of sizes and potential depths lie in the
range 0 � � 0.12 and —0.190 � 8 � 0.235. The largest
size difference for a simple system where H", VE and GE
are known corresponds to = 0.047 for Ar + CH4. Most
simple mixtures have much smaller size differences, even
though the force field differences can be large as in
Ar + Kr where 6 = 0.18. All of the prescriptions become
the same for component molecules of the same size. Thus,
real simple mixtures are not as useful as the Monte Carlo
calculations for differentiating between the prescriptions,
or alternatively, all the prescriptions should give reason-

in calculating the excess quantities, but of course not
completely accurate. However, the original purpose of the
expansions was instead to facilitate qualitative discussion,
and for this they are indispensible. (The discussion below
is analogous to that made in ref s. 1 and 9b.) The expan-
sions to squares of the difference parameters can be put in
the form:

Contact energy
dissimilarity Free volume dissimilarity

L( )_U+TC)_262(T2-cL)X1X2 X1X2€12 dT
(12.54RT) (1.14RT)

—BRT+ ( (- U)+262(TC)
X1X2 \X1X2€ 12/

(11.O9RT) (l.4SRT)

V' Ao3 f—A€\f d—= V+i
X1X2 Oi2XiX2 \X1X2€12/\ dT

(33.41 cm3) (13.43 cm3)

—46(6 _3l)Tg_282(T2).
(19.58 cm3)

[xiui - - x2o2 - -

(20)
V(i'm) _vV(Ti)+—_vV(T2)]. (22)

(21)

3 3
— X1T1I — X2022
11+2 T1 1 +—1—1 2.

(Ym (Fm

However, fm of the mixture corresponds to a different,
'contact energy fraction average' of T1 and T2,

= ! + X2E22 (24)

The effect on V' due to the difference between the f will

(25)

Effects of Au3 and Ac
The different prescriptions affect the excess properties

onlythroughthe changes of compactness andcohesion, Au3
and Ac. These lead firstlyto contributions in HE, GE and VE
which are directly proportional to, respectively, U, G and V
of the reference liquid. (The term — U in the expression for
GE may be replaced by —G + T(9G/3T)p.) These
contributions arise because Au3 and Ac represent net
changes in the reduction parameters which appear in eqns
(4) and (5). However, in addition, the usual negative Ac or
decrease of cohesion in mixing leads to a relatively higher
value of T for the mixture than for the components, and
hence Ac causes supplementary contributions in G", HE
and VE. As seen in the equations, these extra terms are
proportional to the temperature derivatives of the
corresponding functions of the reference liquid, i.e. C,
(0G/3T) and dV/dT.

Effect of free volume dissimilarity between components
Apart from the entropic term —BRT in GE, the remain-

ing terms in eqns (19—21) are associated with the dissimi-
larity of the component liquids in free volume. They do
not involve Au3 and Ac and are independent of the
particular one-fluid prescription.

In each of H", GE and VE there occurs a term
containing the second derivative with respect to tempera-
ture of U, G or V of the reference liquid. The factor 62
corresponds to the difference in c between the compo-
nents and hence to the difference in reduced temperatures
(T = kT/e) and free volumes of the two liquids. Thisterm
is more important in VE than in HE or GE. In particular,
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Fig. 1. The molar excess heat at 97°K of a mixture of spherical Lorentz—Berthelot molecules with 011/012 = 1.12 as a
function of = 1. Monte Carlo results of Singer and Singer (MC). Corresponding states theory prescriptions:
Flory, eqns (17, 18), (F): linear van der Waals, eqns (8, 9), (LN); quadratic van der Waals, eqns (10, 11), (QD).

Snider—Herringtontheory(SH).

0
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Fig. 2. The molar excess volume at 97°K of a mixture of spherical Lorentz—Berthelot molecules with oiihri2 = 1.12as a
function of & = 1. Monte Carlo results of Singer and Singer (MC). Corresponding states theory prescriptions:
Flory, eqns (17, 18), (F); linear van der Waals, eqns (8, 9), (LN); quadratic van der Waals, eqns (10, 11), (QD).

Snider—Herringtontheory(SH).

able results for simple mixtures. In Figs. land 2 attention is
confined to the maximum value of i, viz. 0.12, and
equimolar values10 of VE and HE/RT at 97°K are plotted
as functions of & The Monte Carlo results follow a
corresponding states principle so that those in Figs. 1 and
2 will also apply to polyatomic systems with higher €12 at
higher T but the same value of T. The easiest way to
'scale up' is through critical data. Using a simple
Lennard—Jones approach, the reference liquid with c/k
133.5°K and u =3.596 should have T = l71°K and V =

79.4 cm3/mol, and at 97°K, t = 0.727. This value of the
reduced temperature would be found for cyclohexane,
with T = 554°K, at 40°C. The corresponding values of
HE/RT at 40°C may be obtained directly from the ordi-
nate of Fig. 2, but to obtain VE one must multiply up the
ordinate in Fig. 1 by V (cyclohexane)/ V (reference) =
3.9.

Figures 1 and 2 also show the excess thermodynamic
functions from the linear and quadratic v dW and Flory
prescriptions and the Snider—Herrington theory. For the

F-
cc

I

-0.2 0 0.2 0.4

8
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corresponding states calculations we have used eqns (4)
and (5). The reduced thermodynamic properties of the
reference liquid are as given by the Monte Carlo calcula-
tions,'° and they furnish the energy volume, and free
energy of the mixture and the two components once the o
and are specified by the prescription. The expansions,
eqns (19—21) may also be used to give accurate predic-
tions, indicating that terms containing cubes of and
are not important in this range of size differences. In the
case of the Snider—Herrington theory the equation of state
is of course already present in the theory, and was merely
fitted to the present values of ff12 and €?2 to make the
predictions in Figs. 1 and 2. The dependence of GE on 6
has also been calculated analogously to HE and VE. The
results show much the same qualitative effects as H' and
hence are not given.

The main result of the comparison is that the corres-
ponding predictions and the Snider—Herrington theory are
all close to the Monte Carlo results and differ only in
detail. Thus the corresponding states expansions may be
used to assess the origin of the main trends of H' and VIE.
Figure 1, for instance, shows how H' may be interpreted
as the sum of contributions arising from dissimilarity of
the components in contact energy and in free volume. A
parabolic dependence of HE/NkT against 6 comes from
the contact energy dissimilarity contribution in the linear
v d W and Flory prescriptions proportional to respec-
tively (6 —3)2 and (6 —2i)2. With r =0.12, the minima
of the parabolas would occur at 6 = 0.36 and 0.24 respec-
tively. However, the small negative free volume contribu -
tion increases in magnitude as 6 increases and hence
displaces the minima of the curves to higher 6. The
quadratic v dW prescription repeats the linear v dW
curve but it is translated to lower HE since z€ includes
the extra 9,2 term. From IX€ in Table lit is clear that H'
should change sign with 6, and this behaviour is seen in
Fig. 1. The difference between the prescriptions is appar-
ent only at higher 6 where the quadratic v dW seems in
better agreement with the Monte Carlo calculations than
the other prescriptions. On the other hand, the Snider—
Herrington theory for positive 6 is in very good agree-
ment with the Monte Carlo results, and at very high values
of 6 where there are no Monte Carlo results, this theory is
in better agreement with the linear than the quadratic
vdW.

Figure 2 for VE against 6 shows that the shape of VE is
also parabolic but, contrary to intuition, is almost the
negative of HE. This occurs because HE is dominated by
the contact energy effect and V' by free volume effects.
A positive parabolic contribution again occurs propor-
tional to (6 — 3ij)2 and (6 —2)2 for the linear v dW and
Flory prescriptions. However, for VE this positive con-
tribution is overcome by two free volume terms. First, for
6 <0 the molecular energy/volume effect in — 6(6 —3r)
gives a large negative VE contribution leading to increas-
ingly negative V' values in Fig. 2 as 6 becomes more
negative. This is just the region in Fig. 1 where H? is
becoming increasingly positive. This interesting predic-
tion of negative VE and positive HE was originally made
by Prigogine and collaborators, and this behaviour is in
fact common particularly for polymer solutions. For
6 <0, the energy/volume effect is positive but becomes
zero at 6 =3 and eventually the negative free volume
term in d2V/dT2 becomes dominant giving increasingly
negative VE as 6 increases. The quadratic v dW pre-
scription gives values of VE which are the same as the
linear v dW but translated downwards due to the negative

1o.3 term proportional to V of the reference liquid.
Comparing V' from this prescription with the Monte
Carlo results, it seems that V' is too negative and
experimental systems confirm this.

Comparison with experiment
Simple mixtures. Some nine simple mixtures of Ar, Kr,

methane, CO, etc. have been intensively studied and used
by Henderson and Leonard7 to test predictions of the
quadratic v dW and average potential model prescrip-
tions, as well as the Barker—Henderson perturbation
theory and the 2-fluid v dW prescription. The reference
liquid was argon whose thermodynamic properties are
given in ref. 20, rather than the present Monte Carlo
thermodynamic properties. However, the predictions are
not very sensitive to the exact equation of state of the
reference liquid, and similar results are obtained using the
Monte Carlo results. The theories were fitted to GE
through adjustment of k12, and HE and VE were calcu-
lated. The average potential model predictions are excel-
lent, but call for k12 < 0 and hence must be considered
unsatisfactory. The quadratic v dW predictions are good
but usually HE and VE are predicted too low. Repeating
the procedure with the linear v dW and Flory prescrip-
tions we find identical predictions which are marginally
better for HE but improved for VE. By fitting k12 to GE,
Ac becomes an adjustable parameter. In eqn (2) for GE
the term —BRT is small and varies little between the
prescriptions. Thus, i€ is adjusted to essentially the same
value in all prescriptions, leading to HE values which are
only marginally higher in the linear v dW and Flory
prescriptions than in the quadratic v dW. On the other
hand, the quadratic v dW with a significant negative value
of io3 in VE gives V' predictions which are more
negative than those of the other prescriptions, which it
appears are closer to experiment. Liu and Miller22a have
measured VE of the Ar +CH4 system between 97 and
120°K, finding that it changes sign from positive to
negative. If the Snider—Herrington theory is fitted to V'
at 97°K through adjustment of k12 the temperature varia-
tion of VE is 'satisfactorily predicted. On the other hand,
if the quadratic v dW theory is similarly fitted at 97°K the
temperature dependence is found incorrectly to be ex-
tremely positive. This result is consistent with the — 9'q2V
term in the quadratic v d W prescription being incorrect,
but compensated by the highly temperature dependent
+k12T dV/dT term. But the superiority of the Snider—
Herrington theory may only reflect an equation of state
which is better than the empirical representation of argon
data given in ref. 20, and which was used in the v dW
prediction. The temperature dependence of VE is in fact
sensitive not only to the second derivative of V against T,
but also to the third which is missing from the empirical
equation of state. Perhaps an improved equation of state
is the reason for the greater success of the quadratic v d W
in light hydrocarbon systems.22 However, the difficulty
of choosing between the prescriptions points to the need
for data on systems where r rather than 6 is large.

Polyatomic mixtures. Two main groups of spherical
molecule mixtures have been studied: (a) mixtures of
cyclopentane, benzene, and CC14 with octamethylcyc-
lotetrasiloxane (OMCTS),23 (b) systems containing
branched globular alkanes, cyclic alkanes and tetra-
alkyltin compounds. One should note in particular the
very extensive series of papers by Ewing and Marsh24 on
mixtures of cyclic alkanes with other cyclic alkanes or
with branched alkanes; the authors will use these results
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Fig. 3. The temperature dependence of the molar hE of
squalane + n-alkane systems. The squalane mole fractions,
segment fractions are respectively as follows: n-C16, 0.587, 0.720;
n-C14, 0.558, 0.723; n-C12, 0.531, 0.728; n-C10, 0.493, 0.731; n-C8,
0.548, 0.804; n-C6, 0.491, 0.808. The dashed lines give theoretical
AIiM using the Flory theory with X12 parameters fitted to the
experimental values at 25°C. (For squalane + n-C6 the theoretical

curve coincided with the experimental and is not shown.)

to test the theories. Also interesting are mixtures of
branched alkanes amongst themselves or with tetra-
alkyltin compounds.25 Here typical systems would be
2,2-dimethylbutane + Sn(C4H10)4 or heptamethylnonane.
The value of r can be very large for such systems. The
parameter 6, as found empirically from the critical temp-
eratures or thermal expansion cOefficients of the compo-
nents, is almost always of the same sign as r but
considerably smaller. In Fig. 1, this would correspond to 6
lying between zero and 0.1. The excess heats of these
systems will be dominated by the contact energy dissimi-
larity term in eqn (19). For the Flory or linear v dW
prescriptions, HE will be positive and large due to the
factor (6 — 2r)2 of (6 —3)2. On the other hand, the
quadratic v dW prescription bringing in 6(6 — 3) pre-
dicts strongly negative HE. In practice the heats are
usually small and often negative. This would seem to
indicate the superiority of the quadratic v dW prescrip-
tion, since any deviation from the Berthelot rule will
furnish a positive contribution to HE. However, the
quadratic v d W prescription again gives values of VE
which are usually much too negative, as seen in ref. 23.
The conclusion to be drawn is, we believe, that these
polyatomic molecules cannot be treated as spheres with
only three degrees-of-freedom. One must take into
account Other external degrees arising from rotations and
torsional oscillations within the molecule, making a total

of 3c external degrees-of-freedom. This is the approach
taken by the Prigogine—Flory theory5'6 which has been
applied to polymer solutions, and Marsh has shown23 it to
be successful with the OMCTS solutions. However, in
polyatomic systems it now appears that other effects
connected with molecular shape are of importance, and it
is to these that we now turn.

EFFECTS OF MOLECULAR SHAPE IN

SOLUTION THERMODYNAMICS

Two thermodynamic effects have been indicated so far,
associated with dissimilarities between the contact ener-
gies and free volumes of the spherical molecule compo-
nents. In the case of molecules of anisotropic shape, such
as the normal alkanes there is now thermodynamic evi-
dence for another contribution associated with the pres-
ence of orientational order, or a correlation of molecular
orientations, in one or both of the components. In the
cases investigated, having a dissimilarity in orientational
order between components, there is a net destruction of
order during mixing, with positive contributions in IHM
and ESM. Work has been mainly on mixtures of alkanes of
different size and shape,25'26 and mixtures of these alkanes
with tetra-alkyltin compounds and also with a nematic
liquid crystal,27 p-methoxybenzylidene-p-n-butylalinine,
(MBBA) where long-range order undoubtedly exists.

N-alkane mixtures have received much attention be-
cause of their apparent simplicity and also because they
serve as models of polymer solutions. The heats of mixing
are quite large and positive, e.g. for n-C6 + n-C16 at 25°C,
the equimolar value of the molar h' =111 J moV1. The
values of the hE were explained by the older lattice
theories, due to a weakness of contacts between sup-
posedly dissimilar methyl chain-ends and methylene in-
theories, as due to a weakness of contacts between sup-
requires the assumed contact energy contribution to be
increased further to fit the experimental H's, and in fact it
appears unreally large when analysed2Sa in terms of the
methyl-methylene interaction. A new interpretation is
required for the positive IXhM of n -alkane systems.

Orientational order or correlation of molecular orienta-
tions

Bothorel and collaborators28 have established depolar-
ized Rayleigh scattering as a technique for studying the
orientational order of liquids. They obtained apparent
optical anisQtropy values, 2 for the n -alkanes" in the
pure state and also in dilute solution amongst molecules of
spherical shape, e.g. CCL1, 2,2-dimethylbutane, cyclohex-
ane, etc. For short n -alkanes, n <7, the pure liquid and
dilute solution 2 values are similar, but as the n -alkane
chains become longer, there is a rapidly increasing differ-
ence. The lower dilute solution value could be interpreted
in terms of the conformation of the n -alkane chains, but
not the higher pure n -alkane value. Bothorel,2° and
independently Nagai,28e suggested the value of 2 is
enhanced due to orientational order in the pure liquids, i.e.
a correlation of the molecular orientations (CMO) be-
tween neighbouring long n-C8 chains. This correlation
should not occur between n-C8 and a spherical solvent
molecule, so that the CMO in the pure liquid will corres-
pond to the difference between the pure state and dilute
solution values of 2 Bothorel and collaborators propose
a measure of orientational order in the pure state given by

— y2(pure)
1 26

72(dil. soin. in spherical solvent)
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Alkane molecules with large n, but which are highly
branched and hence globular in shape have28d similar 2
values in the pure state and in dilute solution in CC14 or
shorter n-alkanes. This indicates that the globular shape
hinders the CMO of the molecules in the pure state and
also in mixtures with n -alkanes.

From these experiments it appears that on mixing
liquids of differing degrees of orientational order there is
an overall decrease of order. Accompanying this there
should be positive contributions to AHM and 11SM. (An
increase of order during mixing is possible but is probably
not common.) Table 1 shows equimolar EthM at 25° for
some systems made up of normal and branched C6 and C16
isomers together with an estimate based on the Prigogine—
Flory theory of the contribution to hE from free volume
dissimilarity of the components. Values of the orienta-
tional order parameters J of the pure component liquids
are also listed as obtained through eqn (26), the spherical-
molecule solvent being CCLI. Inspection shows the values
cannot be interpreted by the free volume effect plus a
conventional methyl—methylene interactional term. In-
stead, the results follow by assuming the interactional
term to be negligible, the effect of branching being to
change the molecular shape and thus the orientational
order in the liquid. The system n-C6 + br-C6gives essen-
tially zero value of IXhM, the free volume difference being
--O, and neither liquid having significant orientational
order. Both n-C6 + br-C16 and br-C6 + br-C16 have nega-
tive heats due to the free volume difference between the
components. This contribution is outweighed for n-C6 +
n-C16 and br-C6 + n-C16 by the endothermic destruction
of orientational order in n-C16. Finally, orientational order
constitutes the only contribution in br-C16 + n-C16.

Effect of temperature on orientational order
It is intuitively evident that the orientational order in a

liquid should decrease with increase of temperature,
bringing a corresponding decrease of that contribution in

AhM. Furthermore, one might expect the decrease to be
rapid at low T, but to slow down at higher T. This effect
can be seen in the heats of mixing26 of squalane (a C24 with
six methyl branches) with various n -alkanes
shown in Fig. 2 as a function of T. In the case of
squalane +n-C8 there is little or no order in either of the
components, but the free volume difference is large. The
heat is thus negative, increasing in magnitude with T, and
more rapidly the higher the temperature. On the other
hand, the free volume difference between squalane and
n-C,6 is small, and there is a large difference of orienta-
tional order. The heat is now positive, decreasing rapidly
with temperature but more slowly at high T. The IhM of
squalane + n-C,2 constitutes an intermediate case, the
orientational order contribution prevailing at low T and
the free volume contribution at high, so that an S-shaped
curve results. In the case of squalane + br-C,6, (not shown
in Fig. 3) the free volume contribution is small and the
orientational order effect absent. Thus the heat is small,
negative and independent of temperature. In each case,
one can fit the X,2 parameter of the Prigogine—Flory theory
to the heat at 25°, and keeping it constant, predict ihM(T).
The prediction is good for squalane + n-C8 and
squalane + br-C16, but fails for the other systems since it
associates the temperature dependence of tthm (T) with
only the increasing dissimilarity of the free volumes of the
components.

Molecular shape is clearly an important and sensitive
parameter in determining the excess thermodynamic
quantities. As an example, in Table 3, we give equimolar
EhM values29 at 25° for n-C6 and br-C6 mixed with C,6
isomers including three methylpentadecanes and the
globular 6-pentylundecane. It is clear that only one methyl
branch on the long alkane chain greatly reduces IXhM and
the orientational order prevailing in the C,6 liquid. Furth-
ermore, as the methyl branch is moved toward the middle
of the chain, there is a striking decrease of AhM. This
indicates that 2-methylpentadecane with thirteen carbons
between the methyl branch and the chain extremity is

Table 2. Contributions to hE in alkane systems

Equimolar hE
(J mo!')

Free volume
contribution

(J mo!') J(1) J(2)

n-C6+ 2,2-dimethyl-
butane (br-C6) +7 —1 0.19 0
n-C6+ 2,2,4,4,6,8,8-
heptamethylnonane
(br-C,6) —67 —69 0.19 0.12

br-C6+ br-C,6 —55 —85 0 0.12

n-C6+ n-C16 +110 —57 0.19 1.32

br-C6+ n-C16 +230 —71 0 1.32

br-C,6+ n-C,6
(at x2=0.718) +238 —1 0.12 1.32

Tab!e 3. Equimo!ar hE (J mo!')withC,6isomers

n-C6 2,2-DMB Jt (C,6)

n-C,6 110 230 1.32
2-methy! C,5 47 154 1.04

4-methyl C,5 25 0.85
6-methyl C,5 6 80 0.73
6-pentyl C1, —42 —27 0.42

br-C,6 —67 —55 0.12

tDilute solution measurement in CC!,29.

significantly more ordered than 6-methylpentadecane
where the corresponding number of carbons is nine.

Small differences of shape connected with
stereochemistry are important, as seen in the heats of
mixing of C16 isomers with dimethylcyclohexanes3° in
Table 4. The equatorial-axial arrangement of the methyls
leads to a greater disruption of the order in n-C,6 than
does the equatorial—equatorial, an effect which is missing
for mixtures containing the br-C,6. The heat of mixing 1,
trans 4-dimethylcyclohexane with n-C,6 is S-shaped,
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Table 4. Equimolar hE (J mo!') for dimethylcyclohexane isomers + C,6 at
25°C

Dimethylcyclohexane
isomer

Conformation
of methyls

hE(nCi6)
(J/mol)

hE(brC,6)
(Jimol)

1, cis 2 ea 152 —30
1, trans 2 ee 54 —60
1, cis 3 cc 99 +14.5
1, trans 3 ea 235 +7.0
!,cis4 ca 182 —6

1, trans 4 cc +7 —5!

being endothermic/exothermic at high/low n -C16 concent-
ration, thus indicating that a small amount of the di-
methylcyclohexane is destroying a relatively large amount
of order.

The excess heats of a large number of systems have
been rationalized in terms of the contribution from orien-
tational order, and more quantitatively, a correlation may
be established between hE and the difference of the J
parameters for the two components.25a So far there has
not been much recent theory on mixtures of non-spherical
molecules. Chambers and McDonald,3' however, have
given a perturbation theory for polar fluids interacting
through a Stockmayer potential, i.e. Lennard—Jones po-
tentialplus a point dipole term. A mixture of a polar with a
non-polar component gives a positive contribution to GE
and a small positive effect in V's. Qualitatively similar
effects are to be found in the older theories of Cook and
Rowlinson32 and Pople,33 and are seen in the experimental
data on mixtures of branched and normal alkanes.

Liquid crystals + solutes of different molecular size and
shape27

Thermodynamic data, nematic order parameters and
the nematic—isotropic transition temperature all attest to
the importance of molecular shape in influencing the
interaction between nematogenic molecules and those of
another component. Thus, heats may be obtained for the
transfer of MBBA molecules from a reference solvent.
2,2,4,4,6,8,8-heptamethylnonane (br-C,6) into a second
alkane. When the second alkane is another highly branched
alkane or a normal alkane of low carbon number, the heat
of transfer is zero, indicating all these alkanes are similar to
the br-C,6 in not allowing correlation of molecular
orientations with the MBBA. However, as the carbon
number of the n -alkane is increased, the heat of transfer
becomes increasingly negative due to the possibility of
CMO between the MBBA and the n -alkane.

The order parameter, S, has been obtained from wide-
line NMR measurements for pure MBBA and with MBBA
containing small quantities (5%) of alkane solute. It has
been found that for equal quantities of isomeric alkanes,
the branched isomer decreases S to a greater extent than
the corresponding normal isomer. In the same way, the
nematic-isotropic transition temperature is depressed to a
much greater degree by a highly-branched globular alkane
than by the normal isomer. Again, the heats of transfer of
normal alkane molecules from a reference solvent, tol-
uene, into nematic MBBA are much less endothermic
than for the branched isomers and for high n become
exothermic. All of these results are consistent with the
idea of a correlation of orientations taking place between
long-chain normal alkanes and the MBBA.

Effects associated with coupling oftorsional oscillations
The great variety of alkane isomers makes them conve-

nient systems for investigating thermodynamic effects
associated with molecular structure. Interesting differ-
enes occur between HE values34 of systems which
contain branched alkanes of the same external molecular
shape, but with different degrees of steric hindrance.
Thus, Table 5 gives heats of mixing of n-C8 and n-C,6 with
n-C9 and with five highly branched isomeric nonanes.
Depolarized Rayleigh scattering studies34 show the
nonanes to be of essentially the same quasi-spherical
shape, not to have any orientational order in the pure
state, and also indicate that n-C8 and n-C9 molecules do
not correlate their orientations with these highly branched
nonanes, whereas there is a correlation of the orientations
of these molecules with the normal C9. One would thus
expect that the heats of mixing of n-C8 or n-C,6 with the
branched nonanes would all be similar and much larger
than with normal nonane. Instead, a wide range of HE
values is found, depending on the degree of steric hindr-
ance in the nonane. A consideration of molecular models
shows that 2,3,3,4-tetramethylpentane, for instance, and
2,2,4,4-tetramethylpentane are both spheres. However,
whereas the former nonane is essentially hindered and
rigid, the latter allows a torsional oscillation of the two
isobutyl hemispheres. This motion is reflected in the
larger molar volume (and thermal expansion coefficient)
of this alkane due to increased free volume, as seen in
Table 4. The shape of the vibrational—rotational band35 of
a DC! solute in these nonanes varies in a completely
analogous manner with the steric hindrance of the nonane
and indicates a coupling of the DC! motion with the
torsional modes of the nonanes. We believe that a similar
coupling of motion between the two alkane components
must be responsible for the variation of heats seen in
Table 5, and suggest that negative heat, entropy and
volume contributions occur when sterically-hindered
molecules come into contact with molecules freer in
motion, similar to a condensation of the latter onto the
former.

TableS. Equimolar hE for n-C8 and n-C,6 + quasi-spherical C9
isomers

Nonane
hE(nCg)
J mol'

hE(nC,6)
J mol'

V(25°)
cm3 mo!'

n-C9 0 60
2,2,5-trimethylhexane 94 315 181.4

2,2,4,4-tetramethylpentane 38 237 178.3

2,2,3,4-tetramethylpentane —3 150 173.6

2,3,3,4-tetramethylpentane —57 72 169.9

3,3-diethylpentane —83 16 170.2
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It is most interesting that Mathot and Prigogine36 in
1950 studied the n-C8 + 3,3-diethylpentane system in de-
tail at 50°C, finding the equimolar h' and TsE to be
respectively —83 and —134 J moV'. The unexpected nega-
tive sign led the authors to suggest an effect involving the
vibrational and rotational modes of interacting molecules
which could be accessible to spectroscopic investigation.
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