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Abstract - Chemistry has played a central role in improving living conditions
and therefore contributing to the increased population of the last century,
with its concomitant drain on natural resources, particularly energy. It

will be achemical task to help provide the means of supporting that in-
creased population and particularly the energy it needs in the future.

INTRODUCTION

Chemistry plays a dominant role in the development of modern human societies over the entire
globe. It has done so by virtue of the central position it has occupied in improving the
health and nutrition of people, as well as by improving their physical environment by
providing the new and necessary amounts of materials for clothing, shelter, transportation,
and other such amenities of the modern organized world. As you will see in a few moments,
this double role has both its merits and its demerits. As a result, at least in part, of
the contributions of chemistry to the improvement of the food and nutrition of the global
population (Ref. 1), as well as a contribution to the improvement of the public health and
the health of individuals, the population of the globe has been rising very rapidly, as
shown in Fig. 1.
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POPULATION

The projection here is that the population will rise to about seven billion by the year 2000
from a present value of about 3.5 billion. Most of that rise in numbers will clearly take
place in Asia, in Africa, and in Latin America. Part of the reason for this differential,
of course, is the fact that the rest of the world has already reached some new equilibrium,
with the better living conditions which chemistry has helped to produce, whereas the afore-
mentioned countries are just now reaching it.

One of the ways in which one can evaluate that differential is to note what has happened to
the life expectancy at birth in the Western countries, such as the United States and Western
Europe, in the last hundred years. This enormous increase in life expectancy from forty to
about seventy years in the one hundred years just past, shown in Fig. 2, appears now to have
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Fig. 2. Average expectation of life at birth: Europe and the U.S.

reached some kind of new level. The life expectancy in the less developed countries, in
which the population growth is expected to take place, is at present some twenty to thirty
years less than that shown for the Western world; as these less developed countries improve
their public health, nutrition, and medical facilities, they too can expect an increased
life expectancy, and therefore have a much higher impact on the population of the world.

One of the factors which has been of major influence on the growth rate of population has
been the increased food supply and the better nutrition that has resulted therefrom.

Chemistry has played an enormous role in this development by helping to produce the fertil-
izers that were necessary for the higher production, as well as in playing a role in the
food processing and the preservation of food after it is grown. We can expect molecular
biology, a specific branch of chemistry, to have an even greater impact on the quality of
the crops that will be grown in the coming years; and therefore again we can expect that the
productivity of the acreage that we have available will actually increase even more.

AGRICULTURE

The contributions of chemistry to worldwide agriculture and to the increased productivity in
all parts of the world is made clear in Fig. 3. Here one can see that in all of the four
groups of countries shown, the absolute rate of production of food is increasing at very
nearly the same rate throughout the world. However, when we look at it in terms of the per
capita availability of food, we see that only in the developed countries such as the United
States and Western Europe is the actual amount of food per person increasing, whereas in
most of the other countries the amount of food per person is barely remaining constant over
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Fig. 3. Food production indices: total and per capita, 1950-1976.

the last twenty-five years. The reason for this is now clear. The food production capabil-
ity is increasing in all parts of the world at about the same rate, due to the improved
technologies. However, the population increase in the less developed countried is increasing
even more rapidly, with a consequence that the per capita food available in these places has
remained very nearly the same for the last twenty—five years. Thus it is clear that the
problem is not so much in improving the rate of food production as it is in reducing the rate
of population growth. This, also, is a problem to which chemistry will help and contribute.
However, chemistry cannot solve the problem by itself. Nevertheless, one can expect that
chemistry will play an important role in helping to provide a feasible and useful means by
which various societies will not only be able, but willing, to help in the control of their
own populations, thus allowing the increased food productivity which chemistry has also pro-
vided to increase the available food per person in those countries, thereby also contributing
to the increased life expectancy and the health and well-being of the people in them.

One of the ways in which chemistry has been able to improve the productivity of the agri-
cultural community has been to provide it with the necessary fertilizers and other energy-
consuming assistants, to improve the yields. This has led to a high energy consumption in
those countries in which there is a high food production, and consequently a high gross
national product, however one measures it.

ENERGY AND MATERIALS — PRESENT USE

There are various ways to examine this relationship between energy consumption and social
values. One way is shown in Fig. 4, in which the energy consumption per capita is indicated.
Here one sees that the energy consumption per capita is highest in those countries in which
the standard of living is highest, such as North America, Western Europe, and Japan, whereas
in those countries in which the standard of living (however it may be measured) is low, the

energy consumption is low.

Another, and perhaps even more realistic, way of looking at it is to examine Fig. 5, in which
we show the relationship (at least in the United States) between the value of the gross
national product produced by the country per million BTU's (a unit of energy) that it uses.
It is clear that, in general, the increased value produced per unit of energy used means a
more efficient organizational and structural entity, and this has been the case over the last
twenty—five years, as is evident in this figure. In fact, part of the reason why the agri-
cultural productivity in the United States has been so bounteous as to be able to be an
important aid to the rest of the world has been because of the large input of energy into our
agricultural activities. This energy has had its source primarily in the form of fossil
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energy - namely coal, oil and gas. In recent years, however, it has been dominated by oil
and gas, which are more convenient, and more environmentally acceptable energy sources than
coal. However, there is a limit to how much of this fossilized photosynthetic carbon is
available, and the limits are already visible — especially in the oil and gas areas.
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The next figure (Fig. 6) shows the rate of discovery of new oil in the United States as a
function of the number of feet of well drilled. It is evident that there has been a sharp
decrease in the rate of new discoveries, even though the drilling rate has increased. This
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Fig. 6. Cumulative U.S. crude oil discoveries per foot

decrease began in about 1950, and it is now leading to a total decrease in the net available
oil on the American mainland. It can only mean that the available oil to be found in this
geographical area has now passed its peak, and that we can only look forward to a decrease in
the total amount that we will have available from this source. In fact, we believe that the
peak production capability in the continental United States was reached several years ago.
It also appears to have been reached on a global scale as well, as shown in Fig. 7.

COSTS AND AVAILABILITY

Another different way of making an estimate of the availability of resources is to look at
the history of the costs that have been attributed or laid down to a particular resource. In
this case, we are considering now the fossilized photosynthetic materials: coal, oil, and gas.

In Fig. 8, I have shown a price history of these three materials in the United States over
the last fifteen years, with a projection of what that price might be in the next four or
five years. As you can see, it was fairly constant for a period of about ten years, and then

began to rise very sharply — partly for political reasons, and partly for technical reasons

of shortage.

The separation of these two factors is not possible for me. In any case, as the price rises
the result of that price rise will be a more limited use of the materials, so that we must
find other ways of fulfilling our needs. We can hardly expect that the price of oil or gas
will ever fall again to anything approaching the values shown in the first ten years of this
illustrated period. There is not much question that at least part of the reason for this is
the real and total depletion of the stores of such materials that are presently in the Earth.
If we accept for the moment the basic premise that most of this oil and gas (if not all of
it) was once the product of a living organism, using the sunshine as a source of energy, we
can be sure that the amount of it available to us stored in the ground is a limited amount by
the standards that we are now using for the rate of its use. In fact, there have been a
number of historical analyses of other resources going through a similar use and depletion
cycle, and it has been suggested that we are already on the decayirg side of the oil deple-
tion curve. Therefore, we can expect it to be truly used up within a relatively short period

of history.

Cumulative exploratory footage (108 ft)
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Fig. 8. Average fossil fuel prices in the U.S. at point of production.
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The amounts of available coal, however, are globally believed to be much higher. In Fig. 9,
the two resource use curves are superimposed on each other, and it is clear that the coal
resource use curve extends far beyond any limits of technology which we can now perceive.
It is for this reason that many of our political leaders, both domestically and internation-
ally, have supposed that we could go forward with a much larger expectation for coal use
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I
we know that when coal is burned in a boiler (or any kind of combustion process, for that
matter), a much larger amount of aromatic emissions results from such a combustion process.

A somewhat easier way of expressing the hazards involved in the use of coal is to be found in
an examination of the oil which is produced by coal liquifaction (a process which was first
used as early as World War I, used again in World War II, and which is now being proposed for
renewal). Figure 11 shows an example of one such oil produced from coal, in an experimental
plant in the United States. These plants have been designed at a level of about 25,000
tons/day of coal, and it is made clear in this figure that the amount of aromatics that will
be in such an oil is very high indeed. In particular, such a plant would produce about ten
pounds of benzopyrene per day. When we remember that benzopyrene is one of the most potent
carcinogens produced in any combustion process, and that it is effective at the milligram
level in producing lung cancer, we can easily visualize the enormous problems which such an
enhanced production of benzopyrene spread into the atmosphere might entail. As a comparison,
I have given the analysis of ordinary petroleum, which is not so rich in aromatics compared
with this particular coal oil. You can see that there is ten to twenty times as much benzo—
pyrene in the coal oil as there is in petroleum. Of course, the benzopyrene can be removed
from this coal oil, and I daresay it will be; but the costs of doing this will affect the
uses to which that oil may be expected to be put.

These are only two of the constraints that the environmental problems of coal use will place
upon us. The particulate matter that issues from a coal combustion process, and the various
kinds of other toxic materials which would issue in the water effluent from a coal liqui-
faction or gasification plant, are also problems which will have to be considered.

SOLAR RESOURCES

Thus, we are left with the only other alternative which would neither increase the carbon
dioxide level nor enhance the carcinogen level (nor produce any other environmental hazard
that we are aware of at the moment). This alternative is the use of sunshine, directly as it
comes to us, rather than using up the fossilized sunshine which constitutes the petroleum,
natural gas, and coal, and which took several hundred million years to produce. We are thus,
in a sense, living on our capital account of fossilized sunshine; and the time has now come
when we must learn how to live on the annual income of energy from the sun, which is repre-

sented by the photosynthetic process.

As an introduction to this, I would like to have you look at a map of the world (Fig. 12)
showing where the natural photosynthetic carbon fixation actually occurs. In this figure you
will see that most of it occurs in the humid tropic regions around the equator: in the Amazon
valley, the Congo Valley, and Southeast Asia. Here the fixation rate is of the order of one

Fig. 10. Atmospheric CO2 concentration at Mauna Loa Observatory (2500m).
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MG qo I(UOM 9 äooq P! 9p0f11 JOM fiG äLGGU bJ9u c9b4nLG2 fiG dn9u9 9Uq fl2G2 fi91 GUGLÔA o

bHOIO2AMIHE2 I 2

MG C9U pobGr1J]A JO0 92 9 bo22!pJG 2flp2fl4flG !U qLGc1 bpo1o2AufiG!c C9LOU LGqflcfOU'
2OflLCG L9fJGL fi9U 9U GuGLaA 2011LCG 9uq ! 12 fi9 IGU bGLCGU w94GL!9J2 2OIILCG IOM9Lq MIJ!cp
04 fiG 0221J pAqLoc9Lpou fl2G oq9A !2 f12G !U fiG bGLocpGw!c9J uqn21LA 92 9 W9GL!9J2
W91GL9J2 LG20f1LCG Mp!cp MG UGG 40L 20 W9UA OfJGL 9bbJ!c9!ou2 onäpjA 9pon IGU bGLCGUI
UOUG AG fi91 cu fl2G ffl2 GUGLÔA 40 LGflCG C9L0U qLGcflA 9Uq fJfl2 W91<G ! fl2G1f1J 92 9

JJJGLG 9LG OfJGL M9A2 !U Mp!cp fiG GuGLaA 0 fiG 2flU w!ä1i4 G c9blflLGq qLGcflA pfl4 fJGLG !2
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ALCOHOL

A more important use for alcohol, perhaps, is as a raw material or a beginning feedstock for
the petrochemical industry. This intercalation is shown in Fig. 16, in which the present
route to ethylene from naptha is illustrated, as well as the corresponding route from sugar
to ethylene, as the crossing point or point of entry, into the petrochemical industry. The
availability of a substantial pool of alcohol in the large sugar growing countries of the
world (such as Brazil, and perhaps the Philippines) may very well induce a number of chemical
companies to build alcohol crackers to make ethylene, in place of their naptha crackers from

petroleum, which is becoming increasingly unavailable.

Refining
- NAPTHA

PETROLEUM 0p0
HEAVIER

OILS
Ethylene

H2CCH2 CHEMICALS,
POLYMERS,

DehYdrator—AI2O/
etc.
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Extraction CANE Yeast / HCICANE

JUICE Fermentation CH3—CH2—OH > CH3—CH2—Cl —k

BAGASSE ETHANOL ETHYL

!7ELLULOSE1 LBUTANOL "IO% Aq. CHLORIDE

H. LIGNIN 5 I
I GLYCERINE

CHEMICALS II
I F—'CITRIC,ACONITIC ACIDS, etc.
—*POWER

FOOD L4.OTHERS

Fig. 16. Renewable resource for chemicals

Thus, we have a route from the carbohydrate (the primary storage product of most plants) to
the hydrocarbon material, which is the raw material of the petrochemical industry. However,
this route is limited to those places in which fermentable sugars can be readily and cheaply
produced. In many parts of the world this cannot be done. Instead, the storage product is
in the form of cellulose. This would require a preliminary hydrolysis of cellulose to fer-
mentable glucose before the alcohol fermentation could occur. There is a great deal of work
going on in the United States and Western Europe (and probably in Northern Europe, as well)
toward this end. It is very likely that this work will meet with considerable success, and
thus present a new resource for the temperate regions of the world in the form of the ability
of these regions to produce cellulosic materials, as a starting point for the kind of petro-
chemical industry to which we have become accustomed. However, those plants, as a general
rule, which are very competent carbohydrate producers also require the kind of land that can
also be used for food production; therefore, the competition between food production and
materials production by these routes might begin. This seems to me to be an undesirable com-
petition, in view of the food requirements of the world. Therefore, we have set about to
find other ways than this one to fill the need for hydrocarbon.

HYDROCARBONS

Let me remind you of the photosynthetic carbon cycle, which I showed you in Fig. 13. While
it is true, as shown in that figure, that most of the plants with which we are normally
familiar store their solar energy in the form of reduced carbon (carbohydrate), there do
exist a number of plants which can store this energy, in substantial amounts, in the form of
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E!ä' OY EflbPOLP!9 2poM!ua JOM O J9GX
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(poJ u wouGA uq !u J9uq) C9U MG 0p19!U 1P!2 W91GL!9J flU4OI4nU91GJA JG GXbGLWGU12 O
MOM JG dnG24!ou !2 91W021 CGL9!U O pG !U AonL WLJq2 92 O }JOM WnCp OL 9 M91 C0212

9LOflU JG GU JOfl29Uq WOJGCI1J9L MG!äp L9uäG'
jbpOLp92 (O 1JG obGu_cp9!u boJA!2obLGuG2) !2 COU2qGL9pJA. 2W9JJGL 9uq JGA bG9 2OWGMGLG
COUJjGUCG 9Ofl J!2 CflLAG !2 flJ91 JG WOJGCI1J9L MG!aJ1 q2Lpn1ou !U W021 O 1JG OJGL
IMGUIA flJOfl29U uq !2 2!äu!4!C9uCG pGAOUq J91 !2 WOO1 .LPG oujA J!uä MG C9U 29A M!J
Op19UGq 4L0W 9UOflJGL EflbFJ0LP!9 HGLG Aon 2GG 4IiG bG9< !2 2OWGMGLG !U WG A!C!U!4A ø;
b9LGq o 2!w!19L äGJ bGLwG9I!ou C}JLOW9IOäL9W OU JG JOM WOJGCflJ9L MG!äP1 O pAqLOC9LpOU2
!2 2OMU O pG pwoq9J M!IJ 9 bG9tc 91 9J_9 W!JJ!OU 9Uq 9UOJGL OUG 9j 4M0 W!JJ!OU 92 COW—
bouGu 04 9 äGUn!UG LflGL bJ9u 211C 92 HGAG9 U HGAG9 flJG WOJGCIIJ9L MG!äpl q21Lpfl4OU
E!U9JJ !U E!ä' Sy M9U 10 2OM cowb9L!2ou 04 1}JG WOJGCflJ9L MG!äIJ42 Ot IIJG LflGL COW

4ZOL JGW
W024 O4 JG2G J9GXG2 9J20 COU9!U 9 U11WGL O IGLbGUG2 92 MGJJ fl4 MG 9AG uo 9U9JAGq
9LG 9J20 2OMU !U 9 MqGL 2GJGCflOUa MP!CP 9J20 uCJnqG2 9U 9U9JA2!2 O än9AI1JG uq HGAG9
qG2âu9jGq 92 LflGL 9LG cowb9LGq M!flJ JG 2IGLOJ C01J1GU1 luG LGJ9I!AG 9WOflU12 OJ 21GL0J2
A9L!GIA O jbpOLp!92 I9PJG j 1}JG LG191!AG 9WOflU12 ot obGu_cp9!u boJA!2obLGuG GLG
CLpGq MG 9AG pGänu i0 qo IP!2 uq E!ä 5 2OM2 9U 9U9jA2!2 OJ JG 2GLOJ coulGul2 O4 9
cpGw!c9J cowbo2!!ou o 4pG JAqLoc9Lpou W!XP1LG2 04 flJG2G EflbuOLp!92 9AG 1fl21 qG2—
CPGW!C9J 4GGq2OC<2 L9JGL 44J9U 2OJGJA 9 JflGJ fl2G MG Wfl24 UOM JG9LU wncp WOLG 9p0fl1 4[JG
BG9L!Ud !U wuq J9 MG 9LG 2GGquä !u UL24 !u29ucG 9 LGbJ9CGWGUI 40L JG bGLo-

ou o bju 91 9JJ' 4 COWG2 4L0W 9 MJ 2GG 9Uq 1P!2 !2 JG t!L2 bJ9ui!uä O
9Ofl 4!GGU P9LLGJ2\PGCI9LG\AG9L lP!2 !2' 04 COflL2G MlJOfl uA 9aLOuOW!C C9LG OL 2GJGC-
GXbGCI 10 0p19!U M!flJ COU4GUCG Uo1 JG22 J9U 2!x P9LLGJ2 o o!J\9cLG\AG9L' JjJ2 MOflJq pG
IPG äLOMJ q919 ou JG EflbPOLP!9 J9cuALJ2 !2 2OMU ! E!a' 9uq ! Uqc9G2 flJ94 MG

J9LAG2IGq pA 9 49bb!Ud (OL 91 JG AGLA JG924 9 WOM!Uä) obGL9!ou
LGG2 (EnbpoLp!92 JGIG 9Uq 1!LflC9JJ!) q2Cn22Gq G9LJ!GL 1'-' MuICu JG OJ MOI1Jq 9AG 10 pG
4LOW 2GG uq 9LAG21Gq U WI1C}J JG 29WG M9A 14J9_2flä9L C9UG !2 JJ9LAG21Gq 92 ObbO2Gq 10 JG
40 qGGLWUG JG äLOM4p L94G 04 1P!2 bj9ur jjJG b}JOLpf9 J9JAL2 C9U G aLoMu 9UUfl9JJA

E!ä 5J jbJoLp!9 f91pALi2 20n11J C0921 GJq 29!OU

b!CIflLG 04 ! !2 2OMU !U E!ä' SJ' I !2 fUOMU 92 EflbP0LP!9 J9I4JAL],2 MG 9AG UqGGq pGäflU
MG onuq 9 WGWGL 04 JG aGun2 Eflbu0LP!9 IJ9 aLOM2 AGLA MGJJ !U MOL4PGLU C9JR0LU!9 9J 9
2GGua bJ9u2 M!C w!ap G aLOMU !U JG 2OWGM9 9L2GL CJ!W9G 9L1GL MOLJ' JU 49CI
qGAGJObGq 92 9 J94GX_bLOqnCua ILGG 92 MGJJ HOMGAGL pG!ua 9 MOL44JGLU C9JHOLU!9Ua M92

MGJJ—t(UOMU VL!C9U WJ<pn2pa aLOM2 AGLA MGJJ !U 2OIUPGLU C9JR0LU!9 9uq COflJq AGLA J!GJA G
W9UA OJGL bJ9u2 O JG 29WG äGUn2 aLoM !U 2!W!J9L C!LCnW249UCG2 EflbP0LP!9 1!LflC9JJ! WG
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Fig. 22. Growth rate, Euphorbia lathyrus, 1977.
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Fig. 23. GLC of Euphorbiaceae steroids.
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planting and measuring are still underway. We have planted an annual, which I have mentioned
earlier (Euphorbia lathyris), and this plant is giving us at least a clue as to the amount of
oil we can expect from this particular Euphorbia. We have also put in a planting of
Euphorbia tirucalli, which will grow to be a tree, and of yphorbia lactea, which will also
be a tree, or bush—like plant. he harvesting time for these two is consTderably longer,
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TABLE 1. Sterols and polyisoprenes from Euphorbiacae latex

SPECIES

I of Dry Latex (w/w)

Rubber Sterol (R/S)

RELATIVE AMOUNTS OF STEROLS

A B C D E F C H I J

Eupitorbia aphylla .37 .10 .82 1.0 .46

Euphorbia arbuscula 1.0 .19

Euphorbia balsamifera 4 93 0.04 1.0

Euphorbia bupleurifolia

, Euphorbia characias .13 1.0 .68 .27

Euphorbia coerulescens 75 0.01 1.0 .10 .20

Euphorbia cylindrifolia 1.0 .25 .50

Euphorbia globosa .30 1.0

Euphorbia ingens 8 78 0. 10

Euphorbia lathyria 3 50 0.06 .12 .80 .50 .30 1.0

Euphorbia marlothii .41 .32 1.0

Euphorbia misera .69 .32 .66 1.0

Euphorbia obtusifolia .05 1.0 1.0 .50

Euphorbia sp. (American) 1.0 .34

Euphorbia stenoclada 1.0 .16 .29 .17

Euphorbia tirucalli 1 50 0.02 1.0 .10

Euphorbia lactea 1.5 76 0.02 1.0 .61

Elaeophorbia drupifera 1.0 .16 .20

Achras sapote 14 66 0.21 1.0 .20

Asciepias sp. (USA) (12) (72) 0.17 1.0 .20

Asciepias sp. (Brazil) 3.5 31 0.11 1.0 .20

Guayule 1.0 .20 .35

Hevea brasiliensis2 87 1 87.0

Synadenium grantii 1.0

KEY: A Euphol B Tirucallol C Euphorbol D Lanosterol K Lanosterol isomer F Cycloartenol
C 24—Methylene cycloartonol H ts—Amyrin I 9—Amyrin J Other pentacyclics

I These numbers were estimated on the basis of NMR spectra (60 m Hz, CDCI ) of the benzene and

acetone extracts.

2 Identified sterols are —sitosterol, fucosterol and stigmasterol (1.0, .50 and .25 respectively)

— Sitosterol St ig masterol Fucosterol

HO,c;:t:;I4:I:::J1IIE
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HO HO
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HO
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Fig. 24. Molecular weight distributions of polyisoprenes isolated from
H. brasiliensis and E. tirucalli.

and therefore I cannot really give you any substantial information yet about the yields we
may expect from these tree-like plants.

However, using what data we have on the Euphorbia lathyris, the annual plant, we do come out
with some yield numbers which I have already given you, and also with some cost numbers,
which are very rough, to be sure. But it looks as though we could make this complex mixture
of hydrocarbons (as obtained from Euphorbia lathyris or the other Euphorbias) at. a price of
about $10.00 to $15.00 per barrel of oil in the field; and another $10.00 per barrel would be
required to take the oil from the plant and put it in the barrel. So we are talking about a
price of crude oil, a mixture of hydrocarbons, of the order of $20.00 per barrel. This price
is not far from our present one of $13.00 or $14.00, and we know that this present price, for
crude oil from the ground, will rise. Thus, it seems to me to be entirely possible that we
may indeed be able to return to a current income account for our hydrocarbons needed for
materials, as a resource. It may even be possible in some cases to use them as a fuel, as
well. And this, in turn, will help solve the problems we indicated earlier which are limit-
ing our productivity, both in agriculture (2) and in materials for the welfare of mankind.
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