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MECHANISM OF ENANTIOFACE DIFFERENTIATING HYDROGENATION ON
MODIFIED NICKEL SURFACES
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Ookayama, Meguro-ku, Tokyo 152, Japan

Abstract - Recent studies on the mechanism of enantioface
differentiation are described for the hydrogenation of methyl
acetoacetate (MAA) over nickel surfaces modified with optically
active molecules. Detailed investigations of the reaction
using MAA vapor and tartaric acid as a modifier prove that the
differentiation is controlled by the oriented adsorption of

MAA which is caused by the attractive interaction between MAA
and the modifier molecules. The influence of the conditions of
reaction and the added poisons on the asymmetric yield is
discussed on the basis of the proposed mechanism.

INTRODUCTION

The enantioface differentiating activity of nickel catalyst, when the surface
is modified with optically active molecules such as hydroxy acids or amino
acids, was discovered by Izumi and his collaborators for the asymmetric
hydrogenation of methyl acetoacetate (MAA) to give methyl 3-hydroxybutyrate
(MHB) (Ref. 1).
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After this pioneering work in 1963, the subject has been extensively studied
to accumulate information about the catalytic properties of the modified
surfaces, and some empirical rules on the functions of the modifiers have been
derived from the results (Ref. 2). The precise pathway of the reaction and
the mechanism of this enantioselective control, however, have not been
verified yet though several models of the modified surface have been proposed
to interpret the activity. Such functions of the modifiers or, in general,
preadsorbed species as surface templates have become an important subject of
recent research in heterogeneous catalysis, since the development of
analytical technique has enabled us to reveal the structures of catalyst
surfaces and the states of adsorbed species (Ref. 3 & 4).

The purpose of this paper is to show new approaches to revealing the mechanism
of enantioface differentiating hydrogenation and to point out the problems to
be solved before the complete understanding and control of this fine catalysis
can be obtained.

MECHANISM OF THE HYDROGENATION OF METHYL ACETOACETATE IN VAPOR
PHASE

The hydrogenation has been studied conventionally by using the reactant, MAA,
in the liquid phase with suspended catalyst under hydrogen of high pressure

such as 1O7Pa. These reaction conditions are not convenient for the



972 IWAO YASUMORI

physicochemical analysis of the mechanism. Accordingly, the mixture of MAA
vapor and hydrogen was used as the reactant and a nickel powder catalyst was
chosen instead of Raney nickel in order to reduce the complexities of the
reaction conditions (Ref. 5).

Adsorbed states of reactants
The nickel powder catalyst was prepared by decomposing nickel formate at 573 K
3

and was reduced with hydrogen of 2.7x10 Pa at the same temperature for 3 h.

The surface area of the catalyst was estimated at 17.3m2g_lby means of BET
method using nitrogen at 77 K. The catalyst was modified by immersing it into
an aqueous solution of Ds-tartaric acid (TA) of which pH was varied from 2.0

to 7.0. After the modification, the surface area decreased to 16.61n2g—land

the maximum number of adsorbed acid molecules was 30% of that of surface
nickel atoms.

The adsorption of hydrogen was studied in a pressure range of lx102— 3x103Pa
at 300 K. The obtained isotherm fitted with the Langmuir equation for
dissociative adsorption and the monolayer capacity was estimated at 2x1018
moleculenfz. The capacity was not much altered in the case of the modified
surface. The state of MAA adsorbed on nickel dispersed on silica at 5 wt. %
was investigated at 300K by infrared spectroscopy. The observed strong bands

at 3450, 1600 and 1530 cm_l'were assigned to O-H, C=0 and C=0 or C=C stretching
vibrational frequencies respectively and these results indicate that the
adsorbed MAA molecule takes partly an enol form.

Kinetics of the reaction

The kinetics of the reaction was studied by use of an apparatus consisting of
an MAA evaporator, a reaction cell containing the catalyst and a trap cooled
at 77K in order to collect product, MHB, and unreacted MAA. Hydrogen of

1x104— 5xlO4Pa bubbled up through the evaporator to carry MAA vapor of 25- 150

Pa, passed on the catalyst heated at 310- 373K, entered the trap and then
circulated again. The reaction was followed by the decrease in the hydrogen
pressure. The asymmetric yield of the product was evaluated from the
concentration of the product and the angle of rotation measured with a Zeiss
polarimeter. The results of the kinetic studies are summarized in Table 1.

TABLE 1. Kinetic parameters for the hydrogenation of MAA and
MDA on nickel catalyst at 323K

Modified with

Catalyst Unmodified Aqueous solution Alkoholic
of TA (pH=5.0) solution of TA

Reactant MAA MAA Mpa? MAAP MAA

Number of 18 17

adsorbed TAQ 0 3.0x10 6.0x10

(moleculem “)

Activation

energy _; 44.3+2.5 43.942.0 26.9+2.0 44.0+2.0 43.1+42.0

(kJ mol ™)

MAA or MDA 1.0+40.1 0.840.1 1.1+0.1 0.2-0.3 1.1+0.1

order

Hydrogen 0.0+0.1 0.0+0.1 0.1+0.1 1.0+0.1 0.040.1

order

Asymmetric 0 17.841.0 0.341.0 36.7+1.0 2.8+1.0

yield (%)

a: MDA represents methyl 2,2-dimethylacetoacetate.
b: The liquid phase or methanolic solution of MAA.

The orders of the reaction with respect to MAA vapor and hydrogen and the
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values of activation energy are respectively much the same in both cases of
the modified and unmodified catalysts. However, the slight decrease in the
MAA order for the modified catalyst suggests that MAA is adsorbed more
strongly on the modified surface than on the unmodified one.

The results of the reaction of MAA with gaseous deuterium and the hydrogen
exchange reaction between the product, MHB, and deuterium molecules showed
that the addition of deuterium to the carbonyl group at 3-position of MAA was
accompanied by the replacement of hydrogen atoms in the methylene group at
2-position of MAA by deuterium, while those atoms in the methylene group of
MHB were not exchanged with deuterium.

By using catalysts modified with TA under various conditions, it was found
that the observed asymmetric yield was proportional to the amount of adsorbed
TA in the form of divalent tartrate anion.

Interaction between adsorbed MAA and TA on the catalyst surface

In order to obtain information about the interaction between MAA and TA on the
surface, the thermal desorption technique was applied to the catalysts which
adsorbed MAA. For this study, an apparatus consisting of an adsorption cell,
a pressure gauge and a mass spectrometer was used and was evacuated
continuously so that the partial pressure of desorbed molecules on heating was
proportional to the rate of desorption. MAA vapor was introduced into the
cell containing the catalyst in a pressure range of 25- 150 Pa at 297K and

the cell was cooled to 273K and was evacuated for 0.3 h. The saturated
amount of adsorbed MAA was estimated at 2.4x1018moleculenf2. The heating
rate was 0.21I<s_1. Figure 1 shows the desorption spectra of MAA. No

desorbed molecules were observed up to 373 K on the modified surface without
adsorbed MAA.

(a) (b)

273 313 353 393

Fig. 1. Thermal desorption spectra of methyl acetoacetate. The
plots of the partial pressure, p, versus the catalyst tempera-
ture, T. (a) Unmodified catalyst. The temperature at the

peak maximum, Tm= 349+1 K. (b) Modified catalyst. Tm= 364+1 K

(Curves 1 and 2), Tm= 348+1 K (Curves 3 and 4).

In the case of the unmodified catalyst, the temperature at the peak maximum
did not shift irrespective of the adsorbed amount of MAA in the range of 1.2-

3.8xlOl7moleculenf2. This finding shows that the desorption is a first order
process, that is, the adsorbed species is in a molecular form. The results of
mass spectroscopic analysis support this view by indicating that the desorbed
molecule is only MAA. In the case of the modified catalyst, however, the
position of peak maximum was shifted to higher temperature by 16 K and

did not change until the adsorbed amount increased to 1.7x10l7molecule m~2,
This shift shows that the adsorbed MAA is stabilized to some extent by TA
coordinated on the surface. For the amount of adsorption above this
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value, the position of peak maximum became the same as that for the unmodified
catalyst. 1In both regions, the desorption was of first order. By assuming

the frequency factor of desorption rate constant to be lx1013s—l, this shift

was found to be equivalent to an increase in the heat of adsorption by
4%kImol™ L,

Electronic state of the catalyst surface

The electronic states of the catalyst surfaces were examined by X-ray
photoelectron spectroscopy. The spectra were measured with a Hewlett-Packard
5950A spectrometer and the observed values of binding energies were calibrated
with those of 4f5/2 and 4f7/2 peaks of gold taken as standard. Figure 2

illustrates the 2p3/2 spectra of nickel for various catalyst surfaces.
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Fig. 2. X-ray photoelectron spectra of nickel 2p3/2. The plots
of the intensity, I, versus the binding energy,EI’ “(a) Modified
nickel, (b) Unmodified nickel, (c) Nickel tartrate, (d) Nickel

oxide modified with TA, (e) Nickel oxide.

The spectrum (a) for the modified surface exhibits a characteristic peak 1 at
852.7 eV which is close to that for a sputtered nickel film, 852.5eV (Ref. 6).
Peaks 2 and 4 in the spectrum correspond to those in the spectrum of dinickel
trioxide and peak 3 at 858.5eV 1is the same as the satellite peak appearing in
that of the nickel film. None of the nickel surfaces covered with adsorbed
oxygen and oxides such as dinickel trioxide and nickel oxide gave rise to any
peak near the positions of peaks 1 and 3. When the modified surface was
exposed to air, the intensity of peak 1 remained almost unchanged. A new peak
of higher binding energy appeared at 853.1 eV in the spectrum of a fresh
unmodified surface (b) and was attributed to the presence of adsorbed oxygen.
This peak vanished quickly in open air because of the formation of oxide layer.

In the spectra of nickel tartrate (c) and nickel oxide coated with TA (4),
peak 1 did not appear. The valence band spectrum of the modified surface was
also examined. Two peak maxima were observed at the binding energies of 1.1
and 3.2 eV below Fermi level. The former peak corresponds to the emission
from the characteristic d-band of metallic nickel and the latter is like that
from the d-band of nickel oxide and was also observed in the spectrum of
unmodified nickel surface exposed to air. Therefore, it is apparent that the
modified surface is protected from oxidation to some extent by the presence of
the modifier (Ref. 7).

Reaction scheme of the hydrogenation

By taking the adsorbed states of MAA and hydrogen as described above into
consideration, a reaction scheme of the hydrogenation is proposed as shown in
Fig. 3. Since deuterium atoms on the surface cannot replace the hydrogen
atoms in the methylene group at 2-position of MHB, it is easily concluded that
step 2 is rate controlling. Accordingly, it is possible to derive a rate




Mechanism of enantioface differentiating hydrogenation 975

equation which agrees with the observed one, on the assumption that the strong
dissociative adsorption of hydrogen is not competitive with the weak
adsorption of MAA on the catalyst surface. This scheme also predicts that the
enantioface differentiating step lies prior to step (2).
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Fig. 3. Reaction scheme of the hydrogenation of MAA.

Mechanism of enantioface differentiation

The results of the above-mentioned studies lead to the conclusions that the
enantioface differentiation occurs at the step of the oriented adsorption of
MAA before the addition of hydrogen and that the attractive interaction such
as hydrogen bond between MAA and the divalent tartrate anion is responsible
for this orientation control. Subsequently, it seems reasonable to assume a
model of the interaction as shown in Fig. 4. This model conforms with the
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Fig. 4. Configuration for the enantioselective control.

observed trend of asymmetric hydrogenation: thus formed, two hydrogen bonds
fix the orientation of adsorbed MAA molecule uniquely with the result that the
surface hydrogen atoms are added to the carbon atoms of MAA to give the
product having correct optical activity, (R)-(-)-MHB. Alternative orienta-
tions of the modifier lead to the results contradicted to the observed one:

if the tartrate anion adsorbed with both the carboxyl groups, the adsorbed MAA
molecule would give an oppositely asymmetrized product by the interaction with
the modifier. Similarly, when the catalyst surface is modified with Ls-

tartaric acid instead of Ds—isomer, a large steric hindrance by the remaining

part of the anion may occur on the surface in order to obtain the product
molecule having the observed optical activity.

As is shown above, the oriented adsorption of MAA should take an enol form on
the surface. Therefore, the enantioface differentiation is not expected for
the hydrogenation of 2,2-dimethyl derivative of MAA (MDA) which can hardly
take the form. 1In fact, the hydrogenation of this compound gave a negligibly
small asymmetric yield as shown in Table 1. The activation energy is lower
than that for the hydrogenation of MAA and the hydrogen exchange of the
product with gaseous deuterium accurs only at the hydroxyl hydrogen of the
molecule. Accordingly, the reaction path of this hydrogenation is different
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from that of MAA and the addition of hydrogen to the carbon atom at 3-position
of adsorbed MDA is the rate determining process.

A recent electron diffraction study of amino acids adsorbed on a nickel (100)
surface has shown that L-glutamic acid molecule is adsorbed on the surface
with a carboxyl oxygen atom close to the amino group, leaving the other
carboxyl group far from the surface. The carboxyl oxygen and the amino
nitrogen atoms near the surface are used to form two hydrogen bonds with the
neighboring molecules and to fix the orientation of the acid molecule(Ref. 8).
This configuration of glutamic acid is similar to that of tartaric acid
assumed in the present study and gives a support on the proposed mechanism of
the enantioface differentiation.

Several other models have been proposed to interpret the mechanism of the
asymmetric hydrogenation by the modified catalysts. One of these models
assumes that the imcompletely reduced nickel surface is effective for the
activity by forming the pairs of nickel cations coordinated properly with the
TA modifier, the reactant MAA and hydrogen atoms (Ref. 9). The validity of
this model was examined by using a nickel oxide catalyst modified with TA and
a nickel catalyst covered with nickel tartrate. It was found that the rates
of hydrogenation by these catalysts were quite low and the asymmetric yields
were also negligible. 1In addition, this model includes the difficulty that
the pair of nickel cations must be removed from the surface to bring the
reactant and the modifier molecules in their proper positions of coordination.

Another model is based on the infrared spectroscopic studies of adsorbed
reactant and modifier molecules (Ref. 10). The adsorbed MAA molecule is
assumed to coordinate to a surface nickel atom with two carbonyl oxygen atoms
making a six-membered ring such as that of coordinated acetylacetone. Alpha-
amino acid molecule is supposed to form a five-membered ring consisting of a
carbonyl group, the carbon atom at 2-position, the amino nitrogen atom and a
surface nickel atom, while hydroxy acid molecules form surface carboxylates.
Since both MAA and the modifier molecules stand side by side on the surface,
the preferred orientation of MAA for the enantioface differentiation is one of
four possible configurations. This orientation may be brought about by
forming a hydrogen bond between the hydroxyl group of the adsorbed hydroxy
acid and the methoxy oxygen of MAA or by the steric hindrance occurring
between the methyl group of MAA and the bulky substituted group attached to
the carbon atom at 2-position of the coordinated amino acid. This model is
similar to the present one in some points such as the assumption of hydrogen
bond formation. However, the adsorbed hydrogen atoms in this model must be
added to the carbon atoms of MAA at 2- and 3-positions, therefore, far from
the nickel surface. It is necessary to assume the presence of the vertical
hydrogen spill-over in order to avoid this difficulty and the validity of this
assumption will be the subject of further investigation.

EFFECT OF POISONING ON THE ASYMMETRIC YIELD

According to the proposed model of the modified surface, the hydrogenation of
MAA takes place simultaneously on the sites controlled by the modifier and on
the uncontrolled sites which are distant from those of adsorbed modifiers.
Therefore, it will be possible to improve the asymmetric yield, if the
uncontrolled sites are selectively poisoned, while the controlled sites are
protected by the preadsorbed reactant or product molecules from poisoning.

The choice of the poison suitable for the purpose depends on the adsorption
strength of the poison relative to that of the reactant or product molecule.
The results of trials using various kinds of poisons are shown in Fig. 5.
Though all of the used poisons decreased the hydrogenation activity linearly
with increasing adsorption, the poisoning by amines was effective for the
purpose and butylamine exhibited the most excellent effect of increasing the
yield: The detailed analysis of the obtained curves shows, however, that such
a simple idea of preferential poisoning as described above cannot explain the
initial high increase in the yield. Some additional roles of the poisons
should be taken into consideration. Recently, it was found that the
introduction of amine ligand to bis(acetylacetonato)palladium(II) complex
turned over the orientation of one of the acetylacetonate ligands by breaking
the chelate bonds between oxygen atoms and the metal cation and by forming the
carbon-metal bond (Ref. 11). As is already shown, the oriented adsorption of
MAA with the carbon atom at 2-position is important to the enantioface
differentiation and therefore this fact is encouraging in order to understand
the functions of the poisons.
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Fig. 5. The effect of poisoning on the asymmetric yield. The
plots of the relative yield, XXB% versus the relative rate of
hydrogenation, ££6'

nation and the asymmetric yield for the unpoisoned catalyst
modified with TA respectively. Reaction temperature, T= 353K
and Yo= 11%. (a) Butylamine, (b) Triethylamine, (c) Ammonia,

I and Yo represent the rate of hydroge-

(d) Pyridine.

FEATURE OF THE REACTION IN LIQUID PHASE

It is pointed out that the feature of the reaction in liquid phase is quite
different from that in vapor phase. The obtained kinetic parameters listed in
Table 1 show evidently that the catalyst surface is almost saturated with MAA
but scarcely covered with adsorbed hydrogen because of the virtual high
concentration of MAA and the poor solubility of hydrogen in the ligquid phase.
The asymmetric yields in the liquid phase reactions are generally higher than
those in the vapor phase ones and the yield increases to 50 % as the pressure

of hydrogen is raised from lxlO5 to 2x106Pa in the case of reaction using the
modified catalyst with TA. The decrease in the activation volume due to the
attractive interaction between the modifier and MAA molecules may partly
contribute to the positive pressure dependence of the asymmetric yield. It
seems that the rearrangements in the positions and orientations of the
modifier and reactant molecules on the surface are more important in this
situation of the reaction.

The temperature dependence of the asymmetric yield in the liquid phase
reaction is also remarkable: in the case of the modified catalyst with TA,
the yield shows a maximum at 333 K, while the yields change their signs with
increasing temperature for the catalysts modified with optically active amino
acids (Ref. 12). These findings may reflect the variety of interactions
between the modifiers and the adsorbed MAA: as temperature increases, MAA
molecules on the surface modified with TA will be agitated to take easily the
suitable orientation for the enantioface differentiation, but this preferred
orientation will be disturbed at higher temperature. The modified surfaces
with amino acids may give two different orientations of adsorbed MAA which
lead to the respective products having opposite optical activities and the
fractions of molecules in these states will be relatively changed with
increasing temperature. It was found that the asymmetric yield in the liquid
phase reaction depends on the extent of conversion and the procedures of
development and modification of Raney nickel as the catalyst (Ref. 13 and 14).
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It will be noted that the asymmetric yield of 20- 30 ¢ observed on the
hydrogenation of methyl 2,2-dimethylacetoacetate (MDA) in liquid phase
presents a striking contrast to the case of vapor phase reaction using the
same catalyst modified with TA (Ref. 15). This finding also suggests that the
orientation of reactant molecule on the surface is different from that in the
vapor phase reaction.

Aside from these studies on the mechanism, there have been several attempts to
improve the asymmetric yield of the reaction by the use of liquid reactant
suspending the catalyst modified with Ds-tartaric acid. The products of more

than 85 % excess in (R)-isomer of MHB have been obtained by using nickel
powder catalyst prepared from nickel oxide instead of Raney nickel (Ref. 16)
and a nickel- 1 wt.% palladium mixed catalyst dispersed on kieselguhr (Ref. 17).
A recent study has proved that the latter catalyst is the most effective one
for the enantioface differentiating hydrogenation of MAA dissolved in a liquid
mixture of tetrahydrofuran and organic acids (Ref. 18).

CONCLUDING REMARKS

The present situation of research in the mechanism of enantioface differentia-
ting hydrogenation on nickel surface modified with optically active molecules
has been briefly outlined. It is expected that research concerning the
mechanism of the catalysis for the reaction in vapor phase will be extended to
examine the microscopic structures of catalyst surfaces where the suitably
oriented adsorption of reactant and modifier molecules occurs. As for the
liquid phase reaction, the analysis of the mechanism is rather in a primitive
stage of investigating the kinetic behavior of adsorbed reactants which may be
strongly influenced by the reactant and solvent molecules in bulk phase.

Since the simple analogy of the vapor phase reaction is not valid for this
case, new techniques must be developed in order to get insight into the
complicated nature of liquid phase reaction under high pressure. Thus
obtained understanding on the mechanism of this catalysis will surely provide
a good approach to simulating the functions of enzyme.
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