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Abstract. — The three known varieties of FeS are described and some peculiar
features of iron sulfide chnistry are discussed. One introduces the new
tool of "similarity operators" for the study of the displacive transitions
of FeS (Ta transition) and of MnAs (MnP NiAs type). In pnictides the tran—
sitions magnetic -'- non magnetic (MnP type) are first order in conformity
with observed changes of volumes and of transition temperatures versus pres—
sure and/or concentration.

INTRODUCTION

All of you know the joke that "chemists are living in direct space, physicists in impulsion —
or reciprocal space and that they should meet more frequently". Not only this is the case here,
but fortunately we have some crystallographers present who connect both spaces by a Fourier*
transform. When I had chosen the title which you see in the program, my intention was to give
a general survey. But in view of the very abundant (and often contradictory) literature in
that broad field —and this introduces already the lecture of Professor Kjekshus— I have res-
tricted my talk to the study of some examples which in spite of the simple chemical formulae
show already the complexity of the physical situation. The presence of a magnetic structure
will turn out to be as significant as its absence and a newcomer in modern physics and crys-

tallography, the charge density wave, will show its importance.

1. FeS VARIETIES

There is an incredible richness hidden in a chemical formula like FeS and for its interpreta-
tion we shall first rely on the simple Lewis—Kossel rules, say on rare gas like or full shell

configuration.

1.1. Ionic case. In the ionic case, electron transfer takes place from a neutral atom 1 which
becomes a cation to another neutral atom 2 which becomes an anion with well separated ions
and no charge accumulation in between. When we write Fe2+X2wemean that we have transferred
from Fe(3d64s2) the two outer s electrons to the X(ns2np4) atom in order to produce a rare
gas configuration X2(ns2np6). Here we meet already with a difficulty. Whilst a cation is
always stable, a separate anion X2 is unstable in a quantum mechanical calculation. Before-
hand one must stabilize the anion X' by the positive potential produced by the ions of the
lattice which is of cause the physical situation. Inversely the d—electrons of the cation
feel the negative potential contribution of the neighbour anions. Ligand field theory is
applicable : the degeneracy of the d electrons will be lifted partially or totally and the
IODq effect will play an important role in an octahedral environment. The so—called "ionic"
radii of the crystallographer will explain the interatomic distances.

1.2. Covalent case. When approaching two atoms, I and 2, again transfer of one electron takes
place from atom I to atom 2, but also a transfer of one electron from atom 2 to 1. The two
electrons form a spin compensated pair. There is a charge accumulation between the atoms
which stay essentially neutral. (Only in the extreme case of the 112 molecule there are char-
ges + I on atoms I and 2 with a charge accumulation — 2 between the atoms). Ligand field
theory isno longer applicable. Here the so—called "covalent" radii are used by crystallogra—
phers to explain interatomic distances which turn out to be much shorter than in the ionic
case**. In that case the FeIIXH species would be written Fe = X where = is the standard nota-
tion for a double bond, formed by four electrons, two from the Fe and two from the X atom.

By thi way, Fourier was "Prdfet de Grenoblew
** To the knowledge of the author, there is no quantum mechanical proof, presently available,
why "covalent" distances should be shorter than "ionic" distances.
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The result is a full d1° shell,a spin compensated configuration around Fe.

Whilst figures Ia and b describe the two extreme possibilities of the FeS "molecule", the

figures 2a and b represent the respective formulations Fe2(S2)2 (ionic) and Fe (covalent)
of FeS2 (pyrite, marcasite). Note that in the ionic as well as in the covalent cage the trans-
f erred electrons are localized.

Fig lb

Fig. I FeS
Ia Ionic case
lb Covalent case

Fig. 2 FeS2
2a Ionic case
2b Covalent case

The subtitle of figures 1 and 2 could be as well the "dream of the (molecular) chemist". Not
only is the situation "in between" the extremes a) and b) for molecules but in reality we
have to do with crystals in which Fe—Fe and X—X interactions cannot be neglected. Furthermore
nature gratifies us with crystalline varieties which "in statu nascendi" do not always repre-
sent the most stable form. There are three known varieties of FeS which are tetragonal (mac—
kinawite), cubic (blende) and hexagonal (deformed NiAs type) at room temperature. Table I
summarizes some of their relevant properties. In the tetragonal form (1) e has a tetrahedral
environment, depicted in figure 3 with very short Fe—S distances of 2.23 A and does not show
any magnetic order down to 1.7 K nor any paramagnetic background in neutron diffraction
diagrams (2.). It also has the lowest isomer shift 6* and the highest percentage of 4s elec-
trons (2). This corresponds to a strongly covalent situation so that ligand field theory is
not applicable and a (ionic) etg situation is highly improbable.

57 .* 6 is reported to a Co source imbedded in Rh.

Fig la
Fe24' S'

Fe=S



TABLE 1. FeS
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57* At 4 K and for a Co source in Rh.

S Fe oS

FeS

Fig. 3. FeS tetragonal Fig. 4. Localized and Itinerant Electrons

1.3. Itinerant case and Tetragonal FeS. Time has come to discuss the situation of Fig. 4 (see
also preceding lecture). Here E0 is the energy of a first d electron and E0 + U the energy
of a second d electron. U measures their Coulomb repulsion energy. To simplify one supposes
that there is one d electron per site. At infinite distances of the atoms, the levels are
discrete and only the lowest level (E E0) is occupied. When the atoms approach, two bands
develop progressively, but the d electrons remain localized and order in some magnetic struc-
ture (ferromagnetic or antiferromagnetic Mott insulator) until a critical value of the para-
meter W/U is reached where the two bands merge into a single broad band and the electrons
become itinerant (or de4calized)(3). Actually increasing W/U means decreasing distance. The
very short Fe—Fe = .2.66 A distance in tetragonal FeS is in favour of such an itinerant rIspin
less" situation.

P.A.A.C. 52/1—F
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We consider however that the guestion is not yet definitely settled. A cluter calculation for
the (octahedral complex FeSg'° at distances d(Fe—S) = 2.5, 2.38 and 2.26 A has shown that at
d(Fe—S) = 2.28 A a crossover of the quartet (high spin) and singlet (low spin) state (4) oc—
curs or, expressed otherwise, sufficiently small metal chalcogenide distances are associated
with highly covalent bonding and with spin pairing of d spins on the metal.

Thus we suggest a cluster calculation to be undertaken for the (tetrahedral) FeS6 complex at
various d(Fe—S) distances.

1.4. The formblende. In the form blende (space group F3ii—T), Fe has again a tetrahedral
environment. The Fe—Fe distances areconsiderable, 3.78 A, and a localized high spin situa—
tion takes place. An antiferromagnetic collinear order (5) sets in at TN = 234 K, accompanied
by an orthorhombic (pseudo—tetragonal) distorsion (space group F222). The transition is first
order*, as shown bya discontinuous jump of the hyperfine field at TN (6) from 100 KOe to
zero. The value at .0 K is 145 KOe. An analogous temperature variation is reported for the
magnetic intensities (5). The magnetic structure is that of ferromagnetic 'ayers stacked in
a +—+—... sequence alog the pseudo—tetragonal c—axis. The spins are along the longest axis
a = 5.54 A (b = 5.487 A, c = 5.195 A).. The magnetic space group is Fc22'2'. As well in the
blende as in the hexagonal form of FeS the Ndel temperatures are much higher than in FeO
( 180 K). This indicates a high overlap of d orbitals with anion p orbitals and the formation
of antibonding orbitals lj)+ symbolically written

lI)+ = NA(dAp) (1)

say a high value of A. A significant quantity is the overlap integral 5(2)

S = <dip> (2)

Exchange integrals (and Ndel temperatures) are proportional to the fourth power of S. S can
be appreciated by the magnetic moment reduction, measured by neutron diffraction, which goes
as 1 — A2 I —

The reduction is here of about 14 %, but can reach much higher values (30 % in Cr2NiS4 (7),
Cr3S4 (7) and (8). The mechanism of the spin reduction in antiferromagnets (Hubbard—Marshall
(9)) is clear from equation (I). Spin is transferred from the cation to the anion, and.as in
most antiferromagnets the anion has an equal number of cations with plus and with minus
spins as first neighbours, the transferred spins cancelon the anion.

Remark. This mechanism is still valid in ferrimagnets to a certain extent. In ferromagnets
(and metamagnets near to ferromagnets like MnP) the observed spin reduction is not due to (1)
but to either covalent spin paired bonding orbitals p+4

=
NB(p + Bd) (3)

or to the spinless (itinerant) situation mentioned above. In all cases one has

A=B+S and A>S (4)

In (1) and (3), A and B stay for antibonding and bonding respectively ; NA and.NB are norma-
lization constants.

To summarize, overlap has antagonistic effects, increasing the exchange integral J but
decreaSing the magnetic moment p. In the energy expression, J and p2 vary like S4.

I.5.HexagpnalFeS. Many papers have been written on hexagonal FeS which has a high Ndel tem-

perature, TN = 598 K. It is a typical layer antiferromagnet formed of ferromagnetic + and —

spin sheets alternating along the c—axis. The spins are in the c—plane between TN and
T5 = 445 K where they start rotating towards the c—axis in a temperature interval of about
25 degrees (10). Above Ta = 415 K the structure belongs to the NiAs type (space group
G = P63/minc) whilst at Ta a ("poor") metal to (small gap) semiconductor transition takes place

(11)(12), accompanied by a deformation to space group g = P62c (13)(14). At Ta the hyperfine
field changes from 240 KOe in the NiAs phase to 300 KOe in the deformed phase and saturates
at 323 KOe at 0 K (I1)(I5).

*The orthorhombic distorsion belongs to the irreducible representation r3 of the site group
43m—Td of Fe and [r3J3 contains r.1 (Landau criterion).
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Above 600 K(TN) the metallic conductivity drops as in a normal metal and the magnetic moment
seems to be higher than spin only (16) (1-teff = 5.22 1-SB, 1-leff(S = 2) = 4.88 1B). At low tempe-
ratures the moment determined by neutron diffraction is about 3.57 itg (measured on a sample
Fe1—xS with x = 0098 and TN = 600 K) (17).

The last line of table I corresponds to a crude estimation of x in 3d645x, expressed in %,

according to the empirical relation (18)(19)(20) of Vincent and Shannon

x = — 78.7 R + 86.6

where R is the ratio of the volumes of the FeS variety and of NgS, in qualitative agreement
with the Walker and al. (W.W.J.) scale (21).

The tetragonal and blende forms of FeS are metastable and transform by heating irreversibly
to the hexagonal form. The free energy will behave as in Fig. 5, showing a minimum at d1 and
a deeper minimum at d2 > d1. In spite of the increase of the distance Fe—S, the volume of FeS
hexagonal is smallest, due to the increase from 4 to6 of the coordination number.

d

Fig. 5. Stability diagram : F = free energy ; d = distance

1.6. Valency states of Fe and of 5, Se. There is no stable FeS3. Instead
dation from Fe11 to Fe1, the X ions (X = 5, Se, Te) prefer to attain a X
say to have a hole in the valence band (22)(23). If the concentration of X
they may condense to (X2)2 as they do in Fe52.

In a selenide like Fe3Se4 (24) (space group 12/m, a = 6.20 A, b = 3.53 A, c = 11.26 A,
= 91°44 at 350 K), the formula at the temperature of preparation (hydrothermal synthesis

under reducing conditions at 350°C) is probably (25)

2+x 2— — —3x
Fe3 (Se )2(Se )2e

and, at low teuperatures, seems to correspond to

IlL. II 2— —
Fe

Ie2 (Se )3Se

but without attaining

III .11 2—
Fe2 Fe Se4

Neutron diffraction measures a magnetic moment of 3.25 on the site 2c) and 1.94 on the
site 4i)(24) while the hyperfine fields measured by the Mssbauer effect are 240 and 112 KOe
respectively (26) in this ferrimagnet. The Se—Fe0distances are exceedingly short (Sei has
4 neighbours Fe a the average distance of 2.42 A and Se11 has 5 neighbours Fe at the average
distance of 2.52 A) which is in favour of the presence of the Se species. The considerable
reduction of the moment and hyperfine field is in favour of highly covalent effects.

F

F

d1
d2

of allowing oxi—
configuration,
ions is sufficient



78 E. F. BERTAUT

In the same spirit, the pyrrhotite formula could well be near to FeXDS2Se7X (x corres—
ponds to delocalized electrons).

M3ssbauer effect studies see an isomer shift corresponding to Fe2+ (27)(28) in reasonable
agreement with nearly equal average distances Fe in the octahedra around the four present
iron species, say 2.446 ; 2.449 ; 2.456 ; 2.444 A for the species Fe1, Fe2, Fe3, Fe4 (29). We
find however that the S.—Fe distances in the polyhedra around S (j = 1 2, 3, 4) show signi—
ficant differenes. In he normal prismatic Fe60environment of 4, the average distances
d(S—Fe)is 2.57 A, near to the distance of 2.58 A, calculated with the Ahrends radii of Fe2
and S2 whilst theaverage S—Fe distance in the Fe5E environment of 53 is definitely shorter
and equal to 2.37 A. This is in favour of the interpretation that the species 53 is near to a
5— configuration (25).

Stabilization of FeHI. The contributionto the electrostatic energy of a species j is
and a cation j will show its highest valency state qj when the potential V at its location3
is as negative as possible. The stabilization of Felil and more generally of high valency
states of transition metal cations is a "second shell effect". Whilst the first shell formed
by the anions produces a negative potential at the cation location, the secOnd shell formed
by cations counteracts this potential by a positive contribution.

Three factors will favour high valency states.
i) the second shell cation shows a high difference of electronegativity with the

anion so that electron transfer from the second shell cation to the first shell anions will
be complete and enhance lvi I

ii) the second shell cation is big (distance effect in 1/r) and
iii) its valency is small.

Effects ii) and iii) will minimize the positive contribution to the potential at the cation j.

For instance, reasons i) and ii) stabilize Co3 in LaCoO3 ; i), ii) and iii) stabilize tetra-
hedral Fe" in KFeS2 and CuFeS2. It should be added however that in all instances the moments
reported for Fe" are small : 3.85 1-1B in CuFeS2 (30) and 2.43 1JB in KFeS2 (31) at 4.2 K,
which is a one—dimensional antiferromagnet. Also the hyperfine field is small, 215 KOe in
KFeS2 (32) and the isomershift indicates a 0.35 contribution from the ligand to the 4s orbital
so that the total charge on "Fe'11" is 3 — 4 x 0.35 = 1.6. The best fit with a point charge
model is obtained for q(S) = — 1.3 and q(Fe) = 1.6 (32).

Intermediate valency states. In cubanite CuFe2S3 which is a semiconductor (33), the two iron
atoms are equivalent as proven by a unique ?(6ssbauer spectrum (34). The structure contains
iron atom by pairs each iron has a tetrahedrl environment and two tetrahedra share one
edge so that the Fe—Fe distance is small, 2.8 A. The magnetic structure in which there are
plus and minus pairs of spins along the a axis (see figure 6) (35), confirms the model, sug-
gested. in reference (36). This model was also compatible with representation theory and with
the existence of a weak ferromagnetic component along b (37) which extrapolates to 0.04 TJB at
low temperatures. In the antiferrotnagnetic mode the moment value per iron is 3.2 biB. A polari-
zed neutron study (38) eliminates the possibility of any moment on the copper atom which is
in a Cu+ state. A recent study of the spin density, undertaken in our laboratory shows the
form factor of Fe in cubanite to be near to that of Fe3 and far from that of Fe2 (39) (see
figure 7). Thus one must conclude that the valency state is Fe25 and that in a pair of
tetrahedra the Fe atoms share an eg electron (38).

o$
o Fe+• F.-

o Cu

0C..

(• 0

Log f

p b

Fig. 6. Magnetic structure of CuFe2S3 Fig. 7. Magnetic Fe form factor in CuFe2S3
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In view of the lack of neutron and magnetic data we only mention the "infinitely adaptive"
series of iron barium sulfides like Ba1+Fe2S4 and others (40) in which chains of edge sharing
Fe—S tetrahedra run along a crystal axis, barium beingaccominodated between the chains with a
periodicity which may be different from that of the iron chains (chage density waves) (41).

2. SIMILARITY OPERATORS AND PHASE TRANSITIONS

After this short review of some problems of iron sulfide chemistry, let us return to the firm

ground of crystallography.

We shall show that the knowledge of the group G at high temperature on one hand, and of the
relations between the parameters of the unit cells at high and low temperatures on the other
hand restricts considerably the choice of the subgroup g at low temperature.

We shall first recall the theory of similarity operators, a new mathematical tool we have

developed recently (42)(43). Similarity operators connect operators and atomic positions in
the subgroup to those of the group and will show to be useful in phase transitions. We shall
apply this theory to the T transition of FeS and also to the crystallographic high tempera-
ture transition of MnAs from the NiAs to the MnP type structure.

2.1. Theory. Definitions. Let G be a space group described in the reference frame (0, A, , ç).
Here 0 is the origin of the translation lattice and , , are the vectors defining the unit
cell. A symmetry operator in G will be written (Koster—Seitz notation)

=
(cITa) (5)

Let g be a subgroup of G described in the reference frame (o, , ., ç). Here o is the origin
of the translation lattice and , , are the vectors defining the unit cell in g. A symme-
try operator in g will be witten

b= (fT) (6)

One has the "lattice relation"

(, , ) = (4, , )S (7)

Here (4, 1?, c) and (4, , ) are row matrices and S is a 3 x 3 matrix.

We define a similarity operator S by

S = (S(s) (8)

Here T is the vector which separates the origins 0 and o.

Properties of S. The atomic positions in G and in g are related by.

(9)

The homologous symmetry operations a in G and b in g are related by

aS=Sb (10)

2.2. Application to the T transformation of FeS. The unit cell of the deformed hexagonal
structure is defined by te parameters a Av' and c = 2C where A and C are the parameters of
the high temperature, a and c of the low temperature form (13). One has in vector notations

a = 2A + B ; b = - A + ;
= 2 (11)

The matrix S is consequently

2 —1 0
S= 1 1 0 (12)0 02

Its determinant is equal to 6 so that the translation group of g, the low temperature group
is a subgroup of index 6 of the translation group of the high temperature group G =

P63/mmc
(NiAs type).

The inverse of S is
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1 1

S= - 0 (13)

OO
The reciprocal vectors are calculated either directly or by observing that

A*

b* = 5' B* (14)

One finds

= = !( J3Ic+ 13*) = [ , , 0]
= = A*+2B*) = I— , , 0] (15)

C = = C* = [ 0, 0,

2.2.1. Search of the subgroup g of G = P63/mmc. The subgroup g of the deformed FeS structure
must admit the translation lattice, constructed on the vectors , , and have at least
trigonal symmetry. We proceed stepwise by looking for maximal subgroups*.

We start with the non centrosymmetric subgroups of index 2 of G and shall consider later on
the centrosymmetric ones.

Maximal non centrosymmetric subgroups of G. These are P63mc, P6322, P62c and P6m2. The next
step is to find for these four space groups the subgroups which a1mit the unit cell parameters
A/i, A/s, C. They are of index 3 and in the order of the sequence above P63cm, P6322, P6c2
and P62m. The final step is to see if these four groups admit subgroups of index two in which
the dimension along Oz is doubled, say c = 2C. There is none except for P62m which admits two
subgroups : P62m (isosymbolic) and P62c which are of index 2 x 3 x 2 = 12 with respect to G.
We could have inverted the two last steps, by looking first for the subgroups of index two
(C doubling) and second for those of index 3 with the same result.

Maximal centrosymmetric subgroups of G. These are P3m1 and P3 Ic, of index two and admit_them-
selves maximal subgroups of index 3 (with unit cell parameters Av5, AV, C) which are P31m
and P3c1 respectively. Onl! P31m admits C doubling and its final maximal subgroups of index
12 with respect to G are P31m (isosymbolic) and P1c.

The diffraction experiment clearly indicates the existence of a glide plane c so that P62c
and P31c are the only candidates.

The procedure is not unique but the result is. We could have started with the (unique) maxi-
mal subgroup of index 3 of G, having the translation lattice parameters Avg, Av', C which is
P63/mcm. One would then have to choose among the_subgroups of P63/mcm those which allow
doubling in the C—direction. They are P31rn and P62c as in the discussion above.

2.2.2. Homologous symmetry operators and poit positions. In the NiAs type structure one has
Fe in 2a : 0 0 0, 0 0 andSin2c : ; . FeS deformed has the space group g = P62c
in which the generators are the lattice trAnslations a, b, c and the following choice of b

operators

6 = (6JO 0 ) ; 2 = (2'IO 0 0) (16)

Remark. The operator is not independent. One has

c = .2 = (rnTtlO 0 (16a)

Here we have abbreviated

—1 1 0 1 —1 0 —1 0 0
6=—i 0 0 . 2'=O —1 0 ; m"=—1 1 0 (17)z x 0 0 1

* They will be given explicitly in the new edition of International Tables (44)
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The choice of T, say the origin o in g, is by no means trivial. We study here the case (see

figure 8)

(18a)

which means physically that o is taken on the S atom. If the theory, presented here, is cor-
rect, one should find from the operators b above the homologous operators a in G by

a = SbS1 where S1 = (S' I—S'T) (19)

One finds indeed by straightforward calculations the following a operators in G

=Io I ; 2" =. (2"IO I ; in' = (ni'f 1 0 0) (20)

Here we have used the abbreviations

0—1 0 1 0 0
m' —1 0 0 ; 2" 1 —I 0 (21)

O 0 1 0 0—1
As usually 2' indicates a twofold axis of the first kind (along the axis), 2" a twofold axis
of the second kind (orthogonal to the axis) ; m' and in" are mirroraperations of the first and
second kind respectively.

It is easily checked that p1' and 2" keep the point invariant, whilst (see above)
leave invariant the point — ._A glance on the International Tables shows that in P63/ninc
the site symmetry of is 6ni2. Thus it is quite instructive to see that the 6 operator

which keeps invariant, say (6l0 1 ) has disappeared when passing from G to g.

Position vectors in G and g. From (9) one gets

r S1(R - T). (22)

Fe positions. One could choose = 0 0 0. However for convenience we consider the equivalent

point (Fe) = I I so that the coordinates of r become positive in g

r(Fe) = 0 , general position (12i) in g.

S positions. They split into three non equivalent positions

121
R(S) ±r(S1) =000, (2a)

R(S) = + 0 1 0 + r(S2)
= 0, (4f)

R(S) II O+r(S3) (6h) ing.

The R positions have been chosen so that the r positions resemble those given in ref erence

(13).

The reader may check that if one has chosen

T=OOk (18b)

there would be three non equivalent positions of Fe of multiplicity 4 (4f twice and 4e) and
two non equivalent S positions of multiplicity 6 (6g and 6h).

The present author confesses that the choice of the origin was a big problem for him when he
analyzed the structure (13). Only recently one has become aware of the importance of this
choice. The order of a transition may depend on the choice of the origin (45).

Discussion of P31c. Only T = 0 is possible. g has the generators a, b, e and

3= (I000); c= m"IOOi)- z - 2

The homologous operators in G are

= (I 0 0) ; nj' = (m'IO 0 1)

and the correspondence between positions reduces to

= Sh1
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Fe positions would split into five positions 2a, 2b, 2c, 2d and 4f whilst S would occupy the
general positions 12i in P3 Ic.

studies alone prove already the equivalence of all Fe atoms (11). A
displacements of Fe (and S) atoms, alluded to in figure 9 will be

Fig. .8. FeS cells (see text) Fig. 9. Fe displacements below T
O = origin in the reference frame of GP63/mmc

2.3. Application to the high temperature transition NiAs MnP

2.3.1. Determination of the similarity operator.. The geometrical relations between the NiAs
(, , ) and MnP (, , ) structure types have been extensively.described by Kjekshus and
his coworkers (46) so that we shall only restate the main results in terms of the similarity
operators. One has the vector relations .

a=C;b=A;c=A+2B (23)

so that the matrix S and its inverse S are given by

0 1 1 0 0 1

S=00 2 ; S1=1 — 0 (24)

1 00 0 0

The group of MnP is g = Pnma. One has

where

We put

= (mj) ; i= (mI0O) ; = (m0) (25)

m 0x
0

and tabulate the results as follows

In fact, M6ssbauer effect
fuller study of the small

given elsewhere (53).

0

A

a •Fe z1/8 3s z 0±

00
1 0 etc... (26)
0 1

The generators above represent the operators b = (IT) of g. We find the homologous operators
= (IT) in G from (10), say explicitly

a =SS1
(27)

T=ST3+ (1 —a)T

T=X ,Y, Z (28)0 0 0
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TABLE 2. Homologous Operators

Operators in g Operators in G
T (0ITa)

1 0 0
+ 0 1 0 1,1,- + 2Z = (m 1 1

O o —1 2 0 Z 2

—1 1 0
m 0 1 0 2X—Y+,O,O =(m)'IOOO)O 0 1

1 —1 0
a + 0 — 1 0 + Y0, I + 2Y, = (m" 0 0 = c

O 0 1

Here m is a mirror or the first kind, perpendicular to and m" is a mirror of the second
kind, containing A. The last column contains the symbols of the operators (xlTct) so that the
components of are obtained by simple identification (origin o in g) as

X =1 Y =1 Z =0 (29)o 2 o 2 o

The position vectors in g are obtained from

/ rS1R+O
Thus

R = 0 0 0 in G corresponds to r = 0 in g, to be compared to 0.005, , 0.222 for Mn.

121. 117. 1R = in C corresponds to = in g, to be compared to 0.224, , 0.582 for As in
NnAs (7/12 = 0.583) (47) (values extrapolated to 298 K).

2.3.2. Displacement modes by representation analysis. The author has given some ten years ago
a theory of non collinear ferroelectrics and antiferroelectrics which is able to enumerate
all possible displacement modes when the space group G and the wave vector q are known (48).
This theory+ applies of course to the so called "modulated structures" to which presently
much attention is devoted. They are just antiferroelectrics. Here the notion of the wave vec-
tor group Gq is important. By definition only those operators a of the group G survive in the
group Gq for which

/

(30)

Here is a vector of reciprocal space and Q a vector of the reciprocal lattice of G ; ci is
the transpose of c, the rotational part of a (5).

We shall enumerate all displacement modes, possible in Gq and compare them with the small
displacements, inferred from the use of similarity operators. As an example we choose the
MnP structure, considered as a'aisplacement mode" of the NiAs structure. The treatment is
given in full to illustrate the simplicity of the method (48)(49).

Applying (14), the reciprocal lattice vectors of the MnP lattice are

= * ; = A* — ; c* = !B* (31)

Here the wave vector appears

=lB*=[O!O] (32)

One has for instance

1 0 O 0 o
= — I -

1 0 and (2T). = - = q + - 1 (33)x —I —x - -
0

rhe theory is analogous to the representation analysis outlined for magnetic structures (50)
(37). The only difference is that in the magnetic case one has to do with axial vectors
(spins, orbital moments) whilst in the electric counterpart one studies polar vectors, say
moments which are products of a charge by a displacement. Displacements are polar vectors.
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which satisfies (30) (whilst , 6 (6)2 do not). Finally Gq has the following snimetry
operations ainccnimonwith G the twofold rotations 2x the helical rotation 21z = (63), the
inversion I and their products so that the full notation of Gq is P2/rn 2/c 21/rn (= in
the reference frame of G. Thus the x and z axes in the orthorhombic group Gq are along and
Q respectively, the y—axis being along * (orthogonal to and Q).

The matrix representatives of the generators of Gq, say 1z' I commute and have their
squares equal to the matrix unity so that all irreducible representations r (j = I, 2, 3, 4)
of Gq are one—dimensional. On the other hand one finds easily the transformation properties
of the small displacements ul, v, wi of the atom 1 at 0 0 0 and u, v2, W2 of atom 2 at
0 0 under the operations of Gq. Primed letters u', v', w' characterize the displacements of
the anions I' at and 2' at — — — . (When a point differs from the reference points
by a lattice translation , its displacements are those of the reference point multiplied by
exp2lliq.t. For instance the point differs from the reference point 2'(— — — ) by
the translation = I I I so that its displacements are
(u', v', w') exp2vi.t = (— u, — v, — wi)). The following table 3 contains this information
as well as the group characters of

TABLE 3. Representations of Gq and transformation properties of small displacements

Representations

r1

r2

r3

r4

Operators
1 2

x
2
Iz

2 .2x Iz
+1
+1
+1
+1

+1

+1
—1
—I

+1
—1
+1
—1

+1
—1
—1
+1

Displacements

Mn
u1

11

w1

u1

V1

-w1

—u2

V2

w2

-u2

V2

-w2

P(As) u

V

W

u
V
-w

— u

V
w

— u

V

-w

TABLE 4. Basis Vectors belonging to Tj

for Mn and for P(As) displacements

U V W 13
' V' W'

r
lu

r2

r3

r4

u
1

u1

—u
2

+ u2
0

0

0

0

V1
—
V2

v1
+

V2

WI

W1

0

0

÷

— W2

0

u +
u —

0

u
u

v'—v'
1

0

0

+ v

0
2

w —
w +

0

w
w

For saving place we have not listed the symmetry operations resulting from the multiplication
by the inversion I which the reader may complete. It turns out that only the representations
with x(I) = — I, say rju, are to be considered. The basis vectors transforming according to
the listed irreducible representations are obtained by the following summation over the sym-

metry operations Q (projection operator method).

1uI(ç) I I

=Ex 3 (Q)Qv
[wrij Q

IWIJ

(34)

For instance the characters in r3 being + I, — 1, + 1, — I for the respective symmetry opera-
tors Q : 2x' 1z' x2Iz and the corresponding displacements being v1, — v, — v2, +
one has

(35)V(r3) = + I.v1 + (- I)(- v1) + (+ I)(- v2) + (- l)(+ v2) = 2(v1 - v2)
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The basis vectors listed in table 4 define the "displacement modes". For instance, the basis

vectors belonging to r3u are completely determined.by making all other basis vectors (of
with j # 3) equal to zero. In this particular case one has in

r3 : v2 = —v1, w2 =w1 for Mn ;u = —u, w w for P(As) (36)

2.3.3. Small displacements inferred from the similarity operators. We insert in

R=Sr+T . (9)

the r positions 4c) of the space group g = Prima in the order we have adopted in earlier work
(51)

—3' 1 31 1 11
(I) x, , z ; (2) x, , I — z ; (3) — x, , + z ; (4) + x, , — z (37a)

and get the corresponding coordinate triplets of in the (hexagonal) reference frame of G

1 5 3 —
(1) z—, 2z—, x ; (2) —z, —2z, x

3 1 1 1
(37b)

(3) +z, +2z, —x ; (4) —z, —2z, +x.

For Mn we put

ZMn= ;XMnE (38)

and find the following equations

R1 = 0 0 0 + (— , — 2, a) ; R2 = 1 1 0 + (, 2, — a)
(37c)

R3 = I I + (— , — 2E, —a) ; R4 = 0 0 + (, 2, a)

Here we have split R into the equilibrium positions 2a) of G and the "small displacements".
The comparison with the tabulated modes shows that the small displacements of Mn belong to
the representation r3u. The vector — (A + 2B) in atom 1(0 0 0) is perpendicular to A and
equivalent to the v1 coordinate whilst + a iS equivalent to w1.

In the same way we put for P(As)

7 , I

zAs=i ,xAS4a (39)

and find

R + (— ', — 2E', a') ;

—— ._j_ -1 IA IT ')t ?
2 3' 3' 4 a

1 2 1 (37d)
R = + 1 1 0 + (— ', — 2', + a')

R — , — , — + 0 0 1 + (s;', 2', — a')

Here the displacements (— a') of the reference atoms I' and 2' (cf. R and R') are the same
so that w = w which assigns again the representation r3u to the anion dispacements. It is
remarkable that there is no coupling of v' and w' coordinates in r3u. However v displacements
(say F'(A + 2B)) are allowed by the group g. Thus we must conclude that the v' displacements
belong to another representation of Gi . Figure 10 illustrates the displacement modes.

Remark. The displacements are restricted to be in the m plane of Prima so that the u and u'
modes which are orthogonal to m can be neglected altogether.

It has, been brought to the attention of the author that the NiAs—MnP type transformation has
been already discussed in the frame of the Landau theàry of second order transformations (52).

We hope that the conjugation of representation anAlysis and similarity operators will provide
a useful tool for the study of transitions.

Remark. The matrices, constructed for each symmetry operator with the displacements, form a
representation of the group which can be reduced by group theoretical technics. It can be

* If the dis,placements belonged to only one representations, ' would be strictly zero and
'z(P, As) = j'would be a'tructural invariant".
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shown* that

r=rpermxv (40)

where rperm is the permutation representation and V the (polar) vector representation.

Last, but not least, an hamiltonian i-I. can be constructed on the displacement modes. .J-L is
invariant in Gk

.J-L = — [aV2 + bVW + cWW' + dVW'] — a'(V')2 (41)

is to be minimized under the constraints

v2 + = constant = ; (V') + (W')2 = constant = (Z')2 (42)

Fig. 10. MnP type displacement modes. Hexagonal cell A, , origin 0 and
orthorhombic cell , ç, origin o. The arrows indicate the cation displace-
ments in the plane Z = 0. They are reversed in the plane Z =
The displacements along the hexagonal Z axis (= orthorhombic x axis) are
marked by + and — signs. They are the same in th planes Z= 0 and Z =
for the cations and in the planes Z = and Z = for the anions.

2.3.4. Search of the subgroup g. The P subgroup of G must admit an orthorhombic lattice. As
in the case of FeS, we proceed by steps of maximal subgroups. G = P63/mmc admits a maximal
subgroup Cmcm of index 3 which has the orthohexagonal (centred) translation lattice. The full
notation of cmcm is C. There are eight maximal subgroups of class mumi obtained by the loss
of the translation L £ 0. One of them is Pmcn which in the standard notation of the Interna-
tional Tables becoms2g = Pnma. The (orthorhombic) translation — 0 coincides with the
translation B. The index of g in G is 6.

Remark. It is quite interesting to state that the image of = Pnma in G (see table 2) would
c&tncide with Gk = Pmcm if in the glide plane operation (mzII I ) one could suppress the
glide component 1 1 0. We shall investigate this point in another study (53).

2.4. Peierls instability and naive electron gas theory. Peierls (54) has shown that a one
dimensional conductor of equally spaced atoms is unstable arid that a gap is opened near kF,
or expressed otherwise the new "Fermi volume" 2kF will just contain the conduction band and
(on the low temperature side) an insulator or semi—conductor will be created.

In three dimensions one has in the theory of free electrons

N=_Lk (43)
37r

where N is the electron density (= number of electrons per unit volume and kF the Fermi
vector). If we put

kF = (44)

one has the simple formula

N = 2(L q) (45)

*see equation (1.14) in reference (37)

c=A+2B
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Here - q is the "Fermi volume" in the reciprocal space of the crystallographer. If we assume
that the volume v* defined by the wave vectors g, 22' 23 which appear at the Ta ttansition
of FeS just include the "Fermi volume"t

4ir 3 = = v* (46)
one gets

N = 2v*

Nv=2 (47)

Here v = (a x b) .c is the unit cell volume in direct space and v* the unit cell volume in reci-
procal space. Formula (47) just says that there are 2 conduction electrons in th? volume v.
Thus in FeS where v contains I2Fe atoms there would be 2 electrons per I2Fe say conduction
electron per Fe atom so that FeS at high temperatures is a "poor" metal. The figure 11 shows
the drop of the conductivity in FeS at T = Ta (11).

If we conjecture that the transition at 390 K in MnAs from the NiAs type to the InP type is
a metal—semiconductor transition, there would be 2 electrons per 4Mn atoms, say conduction
electron per Mn atom in the metallic phase.

Remark. The cation lattice in NiAs type compounds, with its linear chains of equidistant

atoms along Q seemed to offer a unique opportunity for "pairing effects" a la Peierls, but
as we have seen the situation is more complexe in three dimensions and the cation displace-
ments are mainly perpendicular to as well in FeS (below Ta) as in the NnP type.

2

5

2 t

b5\
2 t ..=..=, ic
0' \ ..

.. IIc
2 , ', . .
2.0 4.0 6.0 8.0 0.0 2.0

IO K'
Fig. 11. Conductivity o(T) versus T1 in FeS (11). One notices the drop at Ta•

3. MAGNETIC ORDER IN PNICTIDES NX

In order to examine the occurrence of magnetic order we consider two species of series, the
series MP where the cation varies : M = V, Cr, Mn, Fe, Co, Ni and the series CrX, MnX, FeX
where the anion varies : X = P, As, Sb.

3.1. The MP series. Table .5 summarizes the information for the MP series, the number of va-
lence and d electrons, theoretical values of the magnetization in the hypothesis of a strong
ligand field (low spin configuration and all p anion orbitals filled) and the magnetization
observed by neutron diffraction.

TABLES. Magnetic moments in MP

Compound Valence electrons dn Spin configuration Moment observed in PB

VP 10 d2 itinerant

CrP '11 d3

MnP 12 d4 1.3

FeP 13 d5 0.41

CoP 14 d6 0.0
NiP 15 d7 unstable

1 this means that the first Brillouin zero identifies with the content of the Fermi surface.
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The absence of any magnetic order in CoP is in favour of a low spin configuration.

The fact that VP and CrP show no magnetic order is ascribed to short metal—metal distances,
producing "spin less" itineracy of d electrons (cf. Fig. 4) and broad metallic bands. All
compounds MP have the MnP type structure witi the exception of VP which is a metal crystalli—
zing in the NiAs type (A 3 . 18 A, C 6 .22 A ; note the high C/A ratio = I .956 , far above
the "ionic" ratio of 1.63) and of NiP which is unstable below 850°C and crystallizes in an
orthorhombic structure type with distortions even stronger than in the MnP type (55) . Let us
mention in this connection that NiAs is weakly paramagnetic and that the very short Ni—Ni dis—
tance of 2.514 A (A = 3.61 A, C = 5.028 A) gives rise to strong metal-metal bonding. NiAs is
metallic, but not superconducting down to 1.25 K (56). NiSb is metallic, diamagnetic, not
superconducting down to 0.35 K (57) while NiBi, still NiAs type, . is a superconductor with

Tc 4.25 K (58). The following molecular formulae give a feeling for the valency schemes

(d6) Ni Ni (d6) (d6) Ni --- Ni (d6)

:As: :As: :Bi —-- Bi:

3.2. Elastic and magnetic energy. The main feature which stabilizes the NiAs structure with
respect to other AB structures (rock salt, wurtzite, etc. . . ) is the presence of short metal—
metal distances (M—M) giving rise to N—N bonding which counteracts theCoulomb repulsion (59).
In the crystallographic high temperature transition from the NiAs to the MnP type not only
this short distance di is conserved (M1—M2 in Kjekshus and co—workers (60a), }11—M4 in our
notation (51)), but a new short distance d2 is introduced (H2—M3 in Kjekshus, M1—N in our
notation). Thus the driving force for the high temperature crystallographic NiAs NnP tran—
sition is the establishment of new metallic bonds which favour sjnnless electron itineracy at
low temperatures.

Inversely, if in a spinless itinerant situation one wants to get magnetic ordering, one must
break the new metal bonds,. say enlarge d2 over a critical distance : one must overcome the
MnP type deformation at least partli. The basis of the Rodbell—Bean theory of first order
transitions (61) is the volume (or distance) dependence .of exchange integrals. Thus we may
expect first order transitions which either conserve the MnP type or even reach the stage of
the NiAs type.

In the energy balance of the transition to magnetic order two factors are to be considered

i) the expense of elastic energy
ii) the gain of magnetic energy

The expense of elastic energy will be roughly proportional to the temperature at which the

crystallographic (high temperature) transition MnP NiAs takes place. The magnetic energy
will be proportional to the square of the magnetic moment.

3.2. 1. The CrX series. In CrP where d1 (2. 768 A) .. d2(2.796 A) the MnP type deformation is
very strong and "there is no sign of a beginning transformation to NiAs type up to 1300 K"
(46). The gain of magnetic energy is not sufficient to overcome the high elastic energy bar-
rier and no magnetic order can take place.

In CrAs the crystallographic MnP - NiAs transition is observed at 1173 K (46) ± 20. The mag-
netic transition at TN 260 K to an ntiferromagnetic d2uble helix is first order (60a) (51)
(62) (63) and d2 increases from 3.01 A at 285 K to 3.14 A (62) at 90 K. There is a large
hysteresis effect so that the parameters of the non magnetic and the magnetic phases may be
compared at the same temperature (62). The moment value is rather small (1.67 p at 4.2 K).
As the low site symmetry rn lifts completely the degeneracy of the d electron levels, one may
speculate that in. the helimagnetic structures of NnP type, part of the d electrons are loca-
lized (or in narrow bands), part are still delocalized. In solid solutions CrPxAsi_x magnetic
ordering breaks already down for x = 0.07. For x = 0.05, 0.10 and 0.20 the crystallographic
NiAs + MnP transitions are at temperatures increased to 1230 K, 1270 K and 1350 K respective—

ly (60b).

If As is replaced by the bigger anion Sb, the structure is of the NiAs type (A = 4.03 A
C = 5.463 A) at any temperature. CrSb has a completely localized behaviour and nearly the
full moment (2.84 TtB at room temperature (64a) is observed in a structure which, as expected,
is a collinear antiferromagnet. The Ndel temperature is quite high TN 720 K (64b) and the
antiferromagnetism is due to the direct Cr—Cr exchange along C (the distance, is 2.78 A here
and 2.68 A in Cr203 in an analogous situation of face sharing octahedra).

One may prepare solid solutions CrAs1_xSbx which, at room temperature, are NnP type as long
as the concentration of CrAs is above 59 %. At 4.2 K this limit moves to 42 % where TN reaches
its minimum value of 175 K.
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Qualitative neutron diffraction studies above TN show the absence of paramagnetic scattering
in the forward direction for CrAs, but strong paramagnetic scattering for CrAsO.5SbO.5 (65).

3.2.2. The MnX series. If in CrP one replaces Cr by a bigger cation like Mn, the spinless
situation is removed. MnP is a ferromagnet between 78.K and 291 K and has a moment of 1.2 to
1.3 iB (extrapolated to 0 K) (66), Below 78 K one finds a nearly ferromagnetic double helix
(67)(68), the magnetic moment remaining small (1.3 UB at 4.2 K). Unfortunatelythe author is
not aware of any crystallographic study above and below Tc, but thinks that the transition at
Tc should be first order. Also there does not seem to exist any crystallographic high tempera—
ture study of MnP itself.

In MnAs the temperature at which the crystallographic transition from the high temperature
NiAs type to the MnP type takes place is only 393 K (47) much lower than in CrAs so that the
elastic energies are in the ratio of 393/1173 1/3 to the effect that in MnAs the gain of
magnetic energy is more tian sufficient to overcome the NnP deformation. Here the Mn—Mn dis—
tance d2 jumps from 3.37 A on the non magnetic side (MnP) to 3.722 A on the ferromagnetic NiAs
side (3.722 A)(47). The magnetic saturationvalue of 3.4 PB (69) is confirmed by neutron dif—
fraction (3.3 1-lB (47) at 4.2 K) and corresponds to a predominantly high spin state. It is also
gratifying to state that above 400 K, one finds normal Curie—Weiss behaviour for the thermal
variation of the inverse of the magnetic susceptibility, corresponding to 3.7 ±0.2 tB (see
fig. 4 in (70)). It is quite surprising that in the interval of 300 to 400 K where the "com-
mensurate charge density wave of the MnP type" breaks in no electric resistivity measurements
have been made. Figure 12 shows the phase equilibrium diagram (47).

100
MnAs

/7 'NiAs
50

NiAsTV,/MflP

TYPE
TY'E

0 250 300 350 400

Fig. 12. Phase diagram of MnAs (field and temperature) after (47). Remark
the large hysteresis region at the magnetic transition.

In MnBi, the ferromagnetic moment in the NiAs type structure is still higher, 4.5 1tB at 5 K
(71), which is ascribed to an orbital contribution (in fact the g—factor measured at — 180 C
is about 2.4 (72)). When heating, there is a first order transition at 360 C to a state with-
out magnetic moment (69). This high temperature structure can be quenched when stabilized by
small amounts of Sb. Andresen et al. (73) could show that MnBiO.95b0.I crystallizes in an
orthorhombic lattice, close to orthohexagonal, as does MnP, but in a different space group
which is P2221. It should be noticed that, as Pmcn (Pnma), P2221 is also a subgroup of Qncm
and thus a subgroup of index 12 of P63/mmc.

To summarize, all transitions from non magnetic to magnetic order, mentioned above, are first
order.

The absence of magnetic order in MnP type compounds is as significant as its presence. For
instance VAs (MnP type) does not show any magnetic ordering until the lowest temperatures
investigated (74). The fact that there is no observable crystallographic transition to NiAs
type at temperatures up to 1300 K indicates a high deformation energy. On the other hand the
magnetic energy gain is too small in view of the small moment of V, compared to Cr or Mn.

One may also speculate that in very high fields CoAs or solid solutions COA5I—xSbx could be
switched to ferromagnetic with considerable volume effects.

3.3. Correlation between pressure, chemical substitution, transition temperatures and volume
effects. In the same order of ideas, given a magnetic order in a MnP type compound, any phy-
sical effect which decreases the metal—metal distances, will bring the d electrons to a more
itinerant situation. High pressure will destroy magnetic order in the sequence : ferromagne—
tism (or collinear antiferromagnetism) - helimagnetism -' itinerant (spinless). The sign of
dT,ranldP, say of the variation of the magnetic transition temperature vs.pressure is that

o(Vuppe.r — Vlower. When the upper state is spinless, this volume difference is negative. In
CrAs one has dTN/dp = — 19°/kilobar (65). When the upper state is paramagnetic, things are
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different. For instance in CrAsO.5SbOS, V per(A5 type) > Viower(MnP type) (see fig. I in
reference (51)) and consequently, one has dN/dp = + 16°/kb (65). These values, calculated in
the frame of a first order transition (61) are in good agreement with experiment.

Substitution by smaller cations or anions produces the same effect as pressure. When FeP is
added to MnP, the volume decreases regularly with the concentration t in MnI_tFetP (75). The
Curie temperature Tc decreasesgradually with t increasing, whereas the temperature of the
transition ferro— to heli—magnetic Tf_k increases, starting from 50 K, until t = 0.12 is rea-
ched where Tc and Tf_h merge at 215 K (76). Assimilating the volume decrease to a pressure
increase we conclude that in the range 0 < t < 0.12 the difference Vnon magn. — Vferro should
be negative so that dTc/dp < 0 whilst the difference Vferro — Vheliman sfiould be positive
so that dTf_h/dp > 0. For t > 0.12, there is only one magnetic phase '(helimagn.) present and
TN, measured by the maximum of the susceptibility plot, decreases from 215 K to 142 K at
t = 0.3 so that here Vupper — Vlower < 0 or Vhelimagn. > Vnon magn.. These conclusions, based
on the first order nature of the transition, have not yet been checked by experiment. (Unf or—
tunately there are no experimental points between t = 0.3 and t = 1.00 where TN = 125 K is

reported (77)).

In the solid solution Mni..cFecAs (70) the effects are even more dramatic and can be checked.
Here too the volume decreases with c increasing so that dTtrans /dc varies as dTtrans/dp. On
the MnAs rich side the solid solution is limited to 0 < t < 0.12 for annealed samples. MnAs
is ferromagnetic down to 0 K at ordinary pressure so that TN (helimagnetism) would be, so to
speak, negative. Here for c = 0.05 one observes at and below room temperature the NnP type
structure and below TN = 211 K a helimagnetic structure. Oe concludes that here0dTN/dc > 0

and Vupper Vlower > 0. One has indeed V (293 K) = 127.7 A3 and V (95 K) 120 A3 (78).. At
the same time the distance d2 has decreased from 3.323 A (293 K) to 3.084 A (95 K) and the
magnetic moment has switched from high to low spin (1.45 -B at 95 K). Thus the addition of a
small percentage of FeAs has considerably increased the deformation of MnP type which fact is
also visible from the increase of the temperature of the crystallographic transition
MnP + NiAs to 673 K in a sample Mn0 gFe0 1As (79), to be compared to 388 K in MnAs. The pro-

pagation vector, "usually" along (see figure 13), is here along The same feature is
found in Mn0.95C0O.O5A5 with TN = 196 K. Here V (293 K) = 131.96 A3 and V (79 K) = 121.80 K.
The d2 distance varies from 3.40 A at 293 K to 3.185 A at 79 K, but the high spin situation
is maintained (i = 4.5 ± 0.3 (80) so tht the transition high ÷ low spin should take place
at a distance d2 between 3.185 A and 3.084 A.

oEø-__-o'o34 A
1 2

"I Q4 3
4 3

y:I/4 y:3/4 y=/4 y:3/4 y:I/4
jç O4c OIc O4c Oc O4c O;c O4c Oft

MnPW,

Fig. 13. Some usual double helix structures (after (51)).

*The interaction matrix procedure, developed in (51) can be easily adapted to this case.
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Neither FeP nor FeAs which crystallize in the NaP type show any tendency to convert to NiAs
type before they melt. Thus one can foresee high deformation energies, low magnetic transition
temperatures (125 K (77) and 77 K (81) respectively), low magnetic energy gains in view of
the smallness of the magnetic moment ( 0.5 1B) and consequently only small volume changes.
Nevertheless let us assume that the transition from magnetic to non magnetic is first order
and see if we find contradictions. In FePiAs a helimagnetic structure is reported for
w = 0.1 with TN 96 K so that the transition temperature decreases with increasing As con—
tent and increasing volume (82). The same reasoning as above shows that dTtraijs/dX and
VupperVlower must be of opposite signs. Here dTNidx < 0 whence Vupper Vlower > 0. With the
parameters indicated in (82) one has V (293 K) = 94.08 A3 and V (80 K) = 93.85 K. The diffe—
rence is small, but significant.

Thus we think that the conclusions and predictions of this paragraph are essentially correct.
They are also in agreement with early high pressure work (83). However careful single crystal
work might be able to transform somewhat our present views on "spinless" itineracy, based on

powder data.

Fig. 14. Spin density map on oxygen in Y3Fe5O12

Before I conclude I want to show you a last figure (Figure 14) obtained in our laboratory (84).
It represents a spin density map in Y3Fe012 where one has subtracted the spin densities
localized on the tetrahedral (T) and octahedral (0) Fe atoms and marked by little stars. What
is seen in the middle is the spin density transferred to the oxygene atom, say part of an
antibonding orbital (cf. relation (I) of text). To visualize bonding and antibonding orbitals
in sulf ides and pnictides by appropriate X—ray and neutron techniques, looks today like a
dream. But the dreams of today will be tomorrow reality.
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