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Abstract — The natural distribution and stereochemical feature of S-methyl—L—methionine are
discussed. By means of doubly labelled substrates evidence is provided for the stereochemical
course of the transmethylation reaction, catalyzed by a transferase from jack bean seeds, and
proceeding with S—methyl—L—methionine as the donor, homocysteine as the acceptor. The pro—R
methyl group of the former is transferred with a stereoselectivity of 90 % or more.

INTRODUCTION

In 1954, Shive and co—workers demonstrated the occurrence of S—methylmethionine (!) (MMT) in

cabbage and several other vegetables.1 Subsequently, ! has been reported as a constituent of

asparagus,23 jack beans, pelargonium and mint leaves,5 reen tea,3,6 soybean meal,7 celery,3
tomatoes,3'8 sweet corn,9 potatoes,10 apples,11 and milk.'2 The amazingly wide distribution

of! justifies inquiries into its chemistry, biosynthesis, metabolism, and biological signif-
icance.

Even before its discovery as a natural product, NNT (!) had been shown to support the
growth of rats on a methionine—free diet,13 a finding later modified to obtain only when cy—
stine was present in the diet.

+ + — + + —

(Me)2S(CH2)2CH(NH3 )C02 R(Me)S(CH2)2CH(NH3 )CO2

2 R = Adenosyl

Other early reports list NNT (!) as a methyl donor in the biosynthesis of creatine in rat
liver slices,-' though not in homogenates,'6 and as a methionine—replacing factor, in some
cases superior to methionine itself, in a number of microorganisms.'7

Early studies on yeast18 and bacteria,19 in which the combined administration of homo—
cysteine and MMT, but neither of the two alone, was shown to support the production of 5—aden—
osylmethionine (2) (SJj)18 or methionine,19 led to the working hypothesis that the enzyme—
catalyzed—reaction:

+ +
(Me)2S'R + H5R—- .2 MeS'R + H

(R = L-(CH2)2CH(NH3)CO2)

may be operating in living cells and hence possess biological significance.2° This assumption
was subsequently substantiated through more detailed studies of the ability of several cell—
free extracts to catalyze the above reaction. Thus, homocysteine methyltransferases, accept-
ing SAN and NMT as methyl donors, have been described from rat liver,2'23 microorgan—

isms,202327 and plant seeds, including pea, cabbage, and jack bean.283° Growing plants of
the last species contain NNT,' rendering the methyltransferase from jack bean mealL9
particularly apposite in a functional context. This enzyme, obviously different from homo—
cysteine methyltransferase of animal or microbiological provenance, has been purified 250—fold
and accepts other donors, such as dimethylpropiothetin and SAN, the latter though with only one
tenth of the activity.29

STEREOCHEMICAL STUDIES

The monochiral S—methyl—L—methionine (!) contains prochiral, diastereotopic methyl groups
which must, in principle, be transferable to a chiral or achiral acceptor molecule with dif f—
erent rates. An exploratory study, recently conducted in our laboratory, with (RS)—2—butyl—
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dimethylsuiphonium ion (3) as the donor and 4—methylbenzenethiolate ion (4) as the acceptor
molecule, revealed a virtually indiscriminative methyl group transfer insofar as a substan—
tial, observed rate difference could be accounted for exclusively in terms of a remarkably
large 12C/C—isotope effect.31

+ —

(Me)25•CH(Me)Et '

+(p)—Me•C6H S

(1)

MeSCH(Me)Et +(p)—Me•C6H'SMe

We have extended this stereochemical exercise to the methyl group transfer from S—methyl—L—

methionine to homocysteine,29 catalyzed by the enzyme from jack bean meal; we report our res-
ults in the sequel.

Synthesis of Enzyme Substrates

n—2H—L—Methionine (5) (95 % 2j), produced by resolution32 of the corresponding racemate
(Stohler Isotope Chem. Inc.), was converted, upon treatment with 2—13C—enriched brotnoacetic
acid (Stohler Isotope Chem. Inc.), into an approximately 1:1 mixture of diastereomeric salts
of S—(carboxy—13methyl)—ct—2H—L—methionine, (6) and (7) (Fig. 1.) Separation of these was
accompli3hed by recrystallization of their polyiodides, essentially following the procedure
recently described by Cornforth et al.33 The least soluble of these gives a mono—2,4,6—tri—
nitrobenzenesulphonate (mono—TNBS—salt) which, on analytical amino acid chromatography, pos-
sesses the longest retention titne.33, By x—ray diffraction, this isomer was recently demon-
strated to possess the C5S—configuration (7) in its cationic moiety.33 It was found conven-
ient in our hands to convert the two diastereomeric polyiodides into the corresponding, spar-

ingly soluble bis—TNBS salts of (6) and (7). By 1H 270 MHz n.m.r. analysis the 13C—enrichment
in 6 and 7 was found to be about 79 % and 73 %, respectively; analytical amino acid chromato-
graphy revealed a content of about 7 % of 7 in 6, and about 3 % of 6 in 7, both analyzed as
bis—TNBS—salts; these values, however, are to be taken as only approximate.

cO
HN'°C."2H () H3N'-CH H3PcjJH

[HJ +
S Me "S '3CH2002H HQ2C CH'°SMe

Me

CSSR

Fig. 1. (i) Br13CH2.CO2H(70.3 % 13C); (c—2H—L—methionine (95 % H)
(985 mg), 1120 (7 ml); 42 h, 20°. H20 ad 40 ml; KI(I.20g),
K13 (1.0 M, 3.3 ml); 72 hat 4°; 5 x K13 (1.0 M, 0.66 ml)
in the course of 48 h; filtration; 2.34 g (84.5 %) (least
soluble isomer) (CSSR)33 (7). Filtrate: K13 (1 N, 1.0 ml);
12 h at 40; 3 x KI3 (1 .0 N, 1 .0 ml) in the course of 8 h;

filtration; 1.15 g (41.4 %) (most soluble isomer)
(CSS)33 (6).

The anhydrous bis—TNBS—salts of andl were subsequently subjected to decarboxylation as
outlined in Fig. 2. Reaction conditions were mild enough to exclude significant epimerization
due to pyramidal inversion of the sulphoniuin center. The resulting CSSR— and C5S5—S—(13C—
methyl)—n—211—methionine diastereotners, (8) and (9), were converted into their crystalline bis—
TNBS—salts through a series of ion—exchange operations. 1H n.ni.r. analyses revealed 13C con-
tents of 69 % in 8, 76 % in 9; the specimen of 8 contained about 3.5—4 % of 9, that of 9 about
4.5—5 % of 8. Before being subjected to enzymic transfer reactions, the ions (8) and (9) were
converted into their monochiorides, again by ion exchange column technique.
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CO CO÷ 2 +12
H3N°CH H3NøcH

[èH2j2 [çH2]2
MeS?CH2 CO2 H Me S'Me

C5Sg CSSR

CO. CO
2 + 12

H3 H (j) H3 H

{CH2]2 [CH2J2

HO2 C'3CH2atSøMe 'Me'Me

CSSR Csss

Fig. 2. (i) Anhydrous bis—TNBS—salt (400 mg), HMPTA (3 ml), 200, 1 h;
addition o pyridine (1 .2 ml), 60°, 15—17 mm; ion—exchange
(IR—120/Na ), elut. with NH3; (a) HCl (b) TNBSE, 4H20, 0°;
8 (222 mg, 53 %); 9 (202 mg, 48 %).

The monochlorides of 8 and 9, respectively, served as substrates for the transmethylation

to homocysteine, catalyzed by an enzyme preparation from jack bean meal, prepared and partially
purified according to literature directions.29

Enzymic Transmethylation

Incubations were set up as specified in Fig. 3, resulting in the consumption of more than
90 % of the substrates according to n.m.r. analysis of suitable model compounds; the methionine
produced was isolated by ion exchange technique and subsequently converted into its bis—tri—

methylsilyl (bis—TMS) derivatives upon reaction with N—(trimethylsilyl) diethylamine. Control
experiments, in which the substrates, or homocysteine, were omitted from the incubations, gave
no trace of methionine. A non—catalyzed methionine formation, detectable in the absence of
the enzyme preparation, proceeded with a rate too low to seriously compete with the enzyme—
catalyzed reaction.

Reagents Concentrat ion

RI: (RS)—Homocysteine lactone,
hydroiodide 30.1 imol/I00 tl

R2:
R3:

8, or 9, as monochlorides

7.5 M NaOH

2.43
1500

itmol/50 iil

Mmol/200 il
R4: I M KH2P0 2000 1mol/2000 p1
R5: Enzyme solution

/
Fig. 3. (i) Ri + R3, N2, 20°, 5 mm; R4 added. (ii) To this solUtion

(575 p1), addition of R2 (50 p1) and R5 (625 p1), N2, 38—39 ,
200 mm.

The bis—TMS derivatives of methionine, arising from enzymic transmethylation of the dia—

stereomeric substrates, (8) and (9), Fig. 4, were separately analyzed by GLC—MS—technique.,
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c;o ÷co
H3 N-çH Enzyme H3Nç'2H H3 N-ç'H

. [cH2]2 L—Hc [cH2}2 + [cH2}2

'2MeMe 2MeS MeS

CSSR bis-TMS bis-TMS
M:294 M:294

+o
H N"C"2H . H3 NC H H3Nç-H

[H2]2 Enzyme [H2]2 + [OH2 12

I3Me+$I2Me
L-Hcy Me I2Me

CsSs bis-TMS bis-TMS
M:295 M:293

9

Fig. 4. Enzymic transfer of a methyl group from diastereomeric S—13C—methyl—
c—2H—L—methionines to —homocysteine.

Mass Spectrometric Analysis

The mass spectrum of the bis—TMS—derivative of methioninè exhibits a molecular ion at m/e
293 with an intensity of about 5 % of that of the base peak at nile 176, the latter arising by
fission of the C1—C2—bond:

MeS.(CH2)2CH(NH.Si(Me)3)CO.O.5i(Me)3

rule 293 (5 %)
+

Me.S.(CH2)2CH:NH.Si(Me)3

rule 176 (100 %)

The bis—TMS—derivatives of ci—2H—methionine, 13C—methyl—methionine, and 13C—methyl—ci—2H--methio—
nine gave the expected mass spectra, with the same isotope ratios in the rn/e 177 and 178
region as in the rule 294 and 295 region. Consequently, seco'ndary isotope effects in the f rag—
mentation can be neglected and MS—analyses can confidently be conducted on the high—intensity
fragment ions at rule 176, 177 and 178.

All bis—TMS derivatives were introduced into the mass spectrometer through a gas chromato—

graph with fast, repetitive scanning. Intensity determinations were performed by integration
over 45 individual recordings along the gaschromatographic profile in order to compensate for
an observable tendency to separation of the various isotopic species. The measured intensities,
corrected for natural abundances, are schematically reproduced in Fig. 5.

In order to express the intensities in terms of per cent stereoselectivity, the rela-
tions in Fig. 6 were derived for the bis—TMS methionine fragment ions arising from the methio—
nine produced in the enzyme—catalyzed transfer from (8) and its congeners (2x denotes the frac-
tion, in per cent, of (8) donating the '3Me group). A similar scheme can easily be derived
for the diastereomer (9).

When the enrichmit factors for 2H and 13C are designated h and c, respectively, the three
equations (A)—(C) in Fig. 7 obtain. From any two of these., the sum h + c can be expressed
as shown and assumes the value 1.62 on insertion of the relative intensities (cf Fig. 5) for
the CSSR—diastereomer (8). From the known value, 0.95, for h, a 1C enrichment factor of
0.67 follows. Inserting these values in any one of the equations (A)—(C), one finds a value
for 2x of 90.3. It was previously established, however, that the CSSR—isomer (8) employed
contained about 5 % of the C55—isomer (9). When corrected for this content, the value of 2x
increases to 95. Analogous calculations, performed on the isomer (9), gave the pleasingly
consistent value 2x = 95.
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Molecular Ions Fragment Ions % Intensity of Fragment Ions*

m/e m/e

From CSSR(8) From CS(9)

m/e m/e

293 176 22.1 47.6
294 177 74.9 22.2
295 178 3.0 30.2

1L __
76 77 76 76 77 78

*corrected for natural abundance contributions

Fig. 5. Fragment ion intensities from enzymically produced bis—TMS
derivatives of methionine.

Reactants Z Fragment Ions
m/e

Hcy_(H)a+l3clzc(D)b XC
50—x

x
50—x

13C(H)
12C(H)
12c(D)
13C(D)

177

176
177

178

HCy—(H) -i-12C12C(D) 50
50

12C(H)
12C(D)

176

177

HCy—(H) +13C12C(H) •

.

x
50—x

x
50—x

13C(H)
12C(H)
12c(H)
13C(H)

177

176
176
177

HCy—(H) +12C12C(H) 100 12C(H) 176

aDenotes homdcysteine; bdenotes NMT with specified isotope contents in the
two methyl groups and at the ct—carbon; C2x is the fraction, in per cent,

of (8), denoting the 13Me group.

Fig. 6 Distribution of the bis—TMS fragment ions arising from
L—methionine produced in the enzymically catalyzed
transfer from CS—S—(13methyl)—ct—2H—methionine (8),
and its congeners, to homocysteine.
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