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Abstract- The deconvolution theory of thermal transitions has proven
to be a powerful method with which to analyze the heat capacity
function of macromolecular systems. In this article, the basic
results of the theory will be presented and their application to
multistate transitions and general cooperative transitions of
biopolymers and phospholipid membranes will be discussed.

INTRODUCTION

The development of highly precise differential scanning calorimeters has
made possible the accurate definition of the heat capacity function associ-
ated with thermally-induced transitions of proteins, polypeptides, nucleic
acids, lipid bilayers and other macromolecular systems. The importance of
having experimental access to the exact shape of this function is that it
contains all the information necessary to develop a complete thermodynamic
description of a thermally-induced transition. In fact, it has been
demonstrated that the excess heat capacity function can be appropriately
transformed to yield the partition function of such a system and that this
partition function can be used to deduce the microscopic mechanism of the
transition (Refs. 1-6).

In this article the analytical methods directed to obtaining a detailed
statistical thermodynamic description of complex macromolecular systems
will be presented. These methods constitute the basis of the deconvolution
theory of thermal-transitions in macromolecules and, thus f.ar, have been
applied to the study of protein unfolding reactions, helix-coil transitions
in polynucleotides, thermal-transitions of transfer ribonucleic acids (tRNA)
and biomembrane phase transitions.

MACROMOLECULAR CONFORMATIONAL TRANSITIONS

Most theories directed toward describing the molecular basis of function and
modulation of biochemical systems include structural variations of the
relevant macromolecules. Thus important questions relate to what are the
characteristics of the equilibrium and dynamic fluctuations within an
ensemble of such states.

In general, the accessible structural states of a macromolecular system can
be represented by the following reaction scheme:

A+A A A (1)0+ 1+ 2 n

where the indexing of states is such that the enthalpy of state i (H.) is
greater than the i-l state. (i.e. H>H.,). Thus as temperature i in-
creased the population distribution mohotonically progresses toward state
n. A normalized partition function for this system can be written in terms
of the Gibbs energy differences as:

Q = ei'RT (2)
i=0
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where

(3)

Since the excess enthalpy function

- 2 d(lnQ)
<H> = <H> - H = RT (4)

dT

the partition function for such a system can be evaluated as

Q=exp 2 dT (5)

JT0 RT

where T is a temperature at which Q 1 (i.e. all molecules exist in state
A ). F8r most protein unfolding reactions, the helix-coil transitions of
p8lypeptides and nucleic acids, tRNA unfolding and the gel-liquid crystalline
transitions of model bilayer membranes, the latter condition exists in the
temperature range of 0 to l000C. Thus the partition function related to
changes in the conformational state of such systems can be obtained directly
from differential scanning calorimetric data.

The simplest question to ask concerns the existence of intermediate states
during a conformational change of a macromolecule. The probability of the
initial state, F0, is related to Q as

F0 = Q1 (6)

Similarly, giving the final state a statistical weight equal to one, another
partition function can be defined such that

(LIHt -
Z = exp( 2 dT (7)

/Tf RT

where H = H - H and T is a temperature at which F = . Therefore the
probabilty o the0existece of the final state is Ff Z . This immedi--

ately leads to the result that the Gibbs energy change for the transition
A +A0 n

= - RT ln (Q/A) (8)

Further, the probability of the existence of intermediate states is,

n-l
E F. = l—Q—Z1 (9)i=l 1

n=l
For most globular proteins it has been found that i F. < 0.05 at all
degrees of transition. This result is consistent with uch reactions being
approximately two state in nature. The results of this type of analysis
for Ribonuclease A are shown in Fig. 1.

MULTISTATE TRANSITIONS

Many biological macromolecules, such as transfer ribonucleic acids, do not
undergo two-state transitions. In this case, the unfolding reaction is
characterized by the presence of stable intermediate states and a general
description of the transition requires the identification and enumeration
of the various enthalpically distinct states, and their transition tempera-
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tures. The heat capacity function of these multistate transitions is
generally very complex. However, these curves can be deconvoluted by
noting the following.

3 4 50

TEMP °C

Fig. 1. The experimentally calculated relative population of states
associated with the thermal unfolding of Ribonuclease A. F0 and F
are the fraction of molecules populating the initial and final states,
respectively. F1 is the summed population of all intermediates.
(From Freire, E. and Biltonen, R., Biopolymers 17, 463 (1978) with
permission).

The quantity

<tH> n iH. ei1'T
'1 F

= E ÷ h1 (lOa)- 0' i=l eih'RT
i=l

=
<tiH1> + 1h1 (lOb)

The function <tH > defines a new, average excess enthalpy, which is averaged
over all energy tates except the. first. In this sense, <LH1> can be used
to define a second partition function, Q1, which is obtained by summing over
the statistical weights of all energy states except the first. Q1 and <LH1>
are related by the integral equation,

fT <EH1>
01xp 1T 2

dT ) (11)Jo RT

Q, can then be used to define a subfraction (Fl =Q3) of molecules in the
first intermediate state. It must be noted that Fj is not an average over
all the accessible energy states of the system but only over those states
included in Q1. The above mathematical procedure is equivalent to elim-
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mating the contributions of the initial state to the thermodynamic
parameters describing the transition. From a mathematical standpoint,
we have reduced the number of energy states by one, and all remaining
functions are analogous to those that one would find if the first
intermediate state (state 1) was the lowest enthalpy state and the initial
state (state 0) did not exist.

This procedure can be successively repeated to yield a set of recursion
relations from which all the th cH-4H1, F', and can be estimated.

<H>
<EH. 1> = ___________ — th.

1 (12)1 1—F' 1+
1

-l fT <H.>
= Q = exp NI 2 dT) (13)

i IT RT

from which all the thermodynamic parameters describing each transition of
the unfolding reaction can be evaluate. Each T . is the temperature at
which F. = F., so that 1s. = th./T .. Each o'he equilibrium constants
K, can1E ca1ulated by 1 1 m,].

Mi. Lis.

K. = exp (
— 1 + 1

(14)1 RT R

or by use of the relation:

—l

K = (15)

Absolute fractions of molecules in each particular state i, can be expressed
in a recursive form as

F. = F. K. (16a)1 11 1

(Q.
= —i 1

(16b)

from which the relative population of each state as a continuous function of
the temperature is obtained. In this form, a complete characterization of a
multistate transition can be obtained, as it has been demonstrated for the
cause of tRNA (Ref. 4).

CONFORMATIONAL TRANSITIONS COUPLED TO ASSOCIATION REACTIONS

Many biological macromolecules consist of two or more molecular subunits
and their conformational transitions are often coupled to association-
dissociation reactions. One example of this type of process is the double
stranded - single stranded transition of nucleic acids and synthetic
polynucleotides. DNA and synthetic polynucleotides of complimentary
sequence form well defined double-helical structures in aqueous solution.
Disruption of these helical structures occurs upon increasing the tempera-
ture, giving rise to anomalous heat capacity curves such as that shown in
Figure 2.

The strand separation reaction occurs abruptly near the maximum in the heat
capacity function. The gradual increase in C prior to strand separation is
due to the partial unraveling at the ends of €he double strand and the
formation of non-base-paired loops within the helical duplex.



Fig. 2. C vs. temperature (Solid line) for the elix-coil transi-
tion of poy (A) . Poly (U) at neutral pH and [Na I = 0.Ol6M. The
dashed line (<LH>) is the average excess enthalpy calculated by
direct integration of C after subtraction of C . (From Suurkuusk,
J., Alvarex, J., Freire E., and Biltonen, R., i8polymers, 16, 2641,
(1977) with permission.)

In general, a double—stranded to single—stranded transition can be repre-
sented as,

K1 K2

210 211 212 '2'n—l

where all the species up to 21 - inclusive are double-stranded forms
characterized by different degPes of base pairing and 11 representing all
the possible forms of the single-stranded conformation. Here I refers to
a species of x strands with y broken base pairs. The partitio unction,
Q, of this system is represented by

Q = 1 + Z o exp (-G/RT) (18)
i=l

the concentration dependence for double-strand formation being included in
the last term of the summation, i.e.,

tGn ________________
RT

PXY(A)•PO1Y(U)

Excess heat capacity function of macromolecular systems 423

$200

I00

A

4:
6O

I
40 2

200

0
0 20 30 40 50

TEMP °C

K

21in (17)

n

(H — TtS
2RT

+ in (210) + ln 2 (19)

where ( I ) is the concentration of molecules in the initial state expressed
in molJ 8f double-stranded polymers. tG. is the Gibb's energy difference
between states i and 0. The fraction of io1ecules in the ith state, defined

I.
= 2i

(20a)
i#n (210) + (211) +. .
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I
P = in

(20b)

2{(2I0) ÷ (211) + (lIn)/2}

is given by

F = exp (-LG/RT)/Q (21)

and together with the partition function can be calculated with the de-
convolution equations.

The overall fraction, °ht' of base pairs can be written as

= (tH—<1H>)/1H (22)

and the fraction °h of base pairs among the double-stranded molecules is
equal to

= (23)

DOUBLE-STRANDED PARTITION FUNCTION

The average excess enthalpy of the system <tH> can be written as

n-i
<H> = E F.tH. + F H (24)i=O 1 1 n n

from which the average excess enthalpy function associated with the double-
stranded molecules (<tH>*) can be calculated

H. (-tG./RT)
<tH>* = i—O exp (25a)

- F tH
= n

(25b)
1-F

Q* is the partition function only for double-strand forms and can be
numerically obtained from the relation

'T <LH>*= exp (1 2 dT) (26)
IT RT

0

Having Q*, the thermodynamics of the double-stranded molecules can be
described in an analogous form to that derived for the case of multistate
transitions.

STRAND SEPARATION

The strand-separation step in the general reaction mechanism (Eq. 17] can
be analytically isolated from the whole transition by considering the
equilibrium

nl I. 2 I (27)i=O 2i in
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with the equilibrium constant K defined as

K = " :: ' (28a)

K = 2CtF I (1 - F) (28b)

where C is the total concentration of polymeric molecule expressed in moles
of singe—stranded forms. The apparent enthalpy change for the strand
separation reaction, defined in terms of the classical van't Hoff equation,
is equal to

d ln KH = — R = H — <LH>* (29)hi d(l/T) n

where tH is the total heat for the transition and <tiH>* is the average
excess eRthalpy of the double-stranded form at the point where strand
separation occurs. If the usual assumption that the only contribution to
the total enthalpy change is the disruption of base pairs is made, it
follows that

LHvh = th (N_<n>*) (30)

where Lh is the enthalpy change associated with breaking one base pair, N is
the total number of base pairs per polymer chain, and <n>* is the average
number of broken base pairs in the double-stranded chain immediately before
the strand separation. In other words, (N_<n>*) is a measure of the size of
the cooperative unit required for double-strand formation.

This analysis has been applied to the double stranded-single stranded
transition of Poly (A) . Poly (U) under different ionic conditions (Ref.3).
In Figure 3 the fraction of broken base pairs and the fraction of single
stranded molecules estimated from the heat capacity function shown in
Figure 2 have been plotted as a function of the temperature.

GENERAL COOPERATIVE TRANSITIONS

In many systems of biological interest (e.g., polypeptides, polyribonucleo-
tides, DNA, and phospholipid bilayers), the individual macromolecular states
differ only slightly in energy so that the discrete steps tend to merge into
a near continuum of states. In such cases, it is not possible to decon-
volute the transition curve into distinct transitions but, having the
partition function, it is possible to describe the overall thermodynamic
changes and calculate molecular distribution functions. In these types of
systems, the individual macromolecular states are not uniquely defined, and
therefore a better description is obtained by considering the energy states
accessible to a single residue (e.g. helix, coil, etc.). Macromolecular
states are then defined in terms of statistical averages and distribution
functions. Cooperative transitions are generally described by specifying
the relative population of residues populating a particular energy state
and the statistical distribution of such residues within the macromolecular
moiety. The distribution of residues is not random but is constrained by
the extent and magnitude of the cooperative interactions existing within
the system. The greater the cooperativity, the greater the tendency of
residues in the same state to group together, and, therefore, the smaller
the probability of finding a pair of neighboring residues in different
states. A highly cooperative transition is then characterized by the
presence of large clusters or domains of residues in the same state. Con-
versely, in a poorly cooperative system, the size of these clusters tends to
a minimum. A two-state transition as defined previously is, within this
context, a limiting case of a highly cooperative transition, i.e., one in

PAAC 52:2—s



1 fT <th>
q(n) = (Q)N = expiT 2 dT0 RT
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which the probability of finding unlike neighbors is always zero.

TEMP °C

Fig. 3. Experimental fraction of broken base pairs (1-0 ) (solid
line) and fraction of single-stranded molecules (F ) vs emerature,
for the helix-coil transition of poly (A) . poly (ii) at (Na ] =
O.16M. (From Freire, E. and Biltonen, R., Biopolymers 17, 497 (1978)
with permission).

—
Helix-coil transitions in polypeptide and polynucleotide systems, as well
as the gel-liquid transition inphospholipidbilayers, are examples of these
types of cooperative transitions. In such transitions, a precise evalu-
ation of the fractional degree of melting, the relative population of
residues, in the various accessible energy states, and the statistical
distribution of residues within, the molecular array is of primary'interest.
The knowledge of this statistical distribution will provide information
regarding the size of the clusters and the equilibrium fluctuations about
the statistical averages.

RESIDUE PARTITION FUNCTIONS

For a system in which the macromolecule is composed of N identical units or
residues (e.g., an amino acid residue, comprising a polypeptide chain), a
"residue partition function" can be defined as

(31)

where <th> <tH>/N is the excess enthalpy per mole of residues. As
defined,, the molecular partition function, Q, will always be recovered by
raising q(N) to the Nth power. It is also true that as N becomes large,
q(N) approaches a limit, q, in which it is independent of N. This situ-
ation defines the thermodynamic limit in the canonical ençmble. In an
analogous way a second residue par'tition 'function z = (Z) ,n can be
defined, where Z is given by Eq.' 7. It can also be shown that

= (32)
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where Lg is the Gibbs energy difference per mole of residues between
the initial and final states. This relation allows calculation of g as
a continuous function of temperature without assuming a particular model
for the transition. The volume change for the transition can also be
calculated if Lg is known at different pressures, as we have recently
demonstrated for the gel-liquid crystalline transition of dipalmitoyl
phosphatidyicholine liposomes (Ref. 6).

CLUSTER DISTRIBUTIONS

In the thermodynamic limit canonical and grand canonical ensemble averages
are identical for all the properties of a system that are bounded functions
of N • In general, the grand canonical partition , (a), can be
represented as,

E (a) = E N (33)

and diverges as ea ÷ eao = z. This divergence condition defines the
thermodynamic limit in the grand canonical ensemble. For the cluster
model, E (a) can also be written formally in terms of cluster grand
partition functions

(a) = E fl ffl)n (34)

{n}i

where the product runs over all different types of clusters i, and the
summation runs over all sets of number of clusters {n.} consistent with the
specification of the System. The cluster grand partition functions . are
defined by the equation 1

= E ei,jhh1T ej (35)
j=l

where G. is the Gibbs energy of a cluster of type i containing j residues.
This fohdlism is an extension to any dimensions of the method originally
proposed by Lif son and Zimm for the helix-coil transition of DNA (Ref s. 7,8).
For a transition in which each residue exists in either state A or state B
we can write

A_3E1
e (36)

and

= E eja (37)
j=l

where, by convention, the state stable above the transition temperature, B,
has been chosen as reference state. The average size of clusters of type i
is defined as

in .
1) (38)

a=a0
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from which it follows that

The above equations allow direct calculation of the average' length of
helical and coil sequences in the case of helix-coil transitions in poly-
peptides and polynucleotides; and of the average size of gel and liquid
crystalline clusters in phospholipid membranes. Typical results of such
calculations are shown in figures 4 and 5.

a
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Fig. 4. Experimental average helical-and coil-sequence lengths
(<lb> and <1 >) associated with the helix-coil transition of poly (A)
ply (U) a [Na+] = 0. 016M. (From Freire, E. and Biltonen, R.,

Biopolymers 17, 497 (1978) with permission).

EQUILIBRIUM FLUCTUATIONS

In addition to calculation of cluster averages, the exact energy distribution
functions can be calculated from excess heat capacity function by considering
the following. The relative probability, FA (2,), of finding an A cluster of
size 2, among all A clusters can be written in terms of the residue partition
function q as,

q-l
FA(2) =

The kth moment of the cluster distribution is

(q—l) 9,kq2,

(40)

(41)

q z
<2,A> = q-l <2,B> = z-]. (39)

.z .4 .b .1



From which
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<J> = 1 (42)

and indicates a broad distribution with an average fluctuation, t,
approximately equal to the average cluster size.

Fig. 5. Average size of gel (--------—) and liquid crystal
clusters as a function of temperature for (A) multilamellar
dipalmitoyl phosphatidylcholine liposomes, (B) multilamellar
dipalmitoyl phosphatidylcholine liposomes in equilibrium with
0.047 atm halothane, and (C) sonicated dipalmitoyl phosphatidyl-
choline vesicles. (From Freire, E. and Biltonen, R., Biochim.
Biophys. Acta 514, 54 (1978) with permission).

At tg = 0, the residue partition function, q, is bounded in the interval
l<q<2. It is equal to one for a classical first order phase transition and
equal to two for a non-cooperative transition. According to Eq. 45, the
fluctuations associated with a first order phase transition are of infinite
size, in agreement with the predictions of classical theories of critical
phenomena. In real systems these fluctuations are, however, finite due to
such factors as the finite size of the system, the presence of impurities
and most importantly, to the existence of molecular interactions not
contemplated in model hamiltonians which reduce the effective magnitude of
the cooperative interaction energies. Sinc.e q is directly calculated from
experimental data, it implicitly contains all these possible contributions

<LA> = q—l
=

<LA> (43)

2 q(q+l)<> =
2A

(q-l)

The dispersion of the distribution, ,2, is

= — <A>2 =
<LA> <A>1 <2'A> (45)

$

TEMP 'C
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and, as such, allows calculation of the effective range of the fluctuationS
in any physical system.

In phosphatidylcholine bilayers, for example, the magnitude of the coopera-
tive interactions varies inversely with the length of the hydrocarbon chain.
This effect is illustrated in Figure 6, where the average cluster size has
been plotted as a function of the length of the lipid acyl chains. Since
the experimental lipid systems are very similar in size and the samples are
equivalent with regard to their chemical purity, this phenomena most likely
reflects an intrinsic characteristic of such systems.

Fig. 6. Average cluster size at tg = 0 as a function of acyl chain
length for phosphatidylcholine liposomes. The value for n = 12
(open circle) was calculated from the heat capacity data obtained
by Mabrey and Sturtevant (Ref. 9).

VOLUME CHANGES

It was recognized in the first paper dealing with the deconvolution analysis
(Ref. 1), that the volume changes associated with a conformational transi-
tion can also be used to investigate the microscopic evolution of a system,
adding a new dimension to this type of analysis. Consider, for example,
the partition function Q defined by Eq. 2. At constant temperature, the
pressure derivative (-9lnQ/P) defines the excess volume function, <LV>, and
therefore,

Q (P) = exp - <zW> dP (46)
JP0

where P is a pressure at which all molecules exist in the initial state A.
This is8thermal partition function, Q (P), can be deconvoluted following the
same procedures developed for Q, to yield information regarding the number
of intermediate states, their partial specific volumes and their corre-
sponding transition pressures. Thus, having a family of P-V isotherms
obtained at different temperatures and knowing Q(T) at constant pressures as
a function of temperature from scanning calorimetric data, the
system partition function in the P-V plane can be defined. From this a
complete thermodynamic mapping of the system can be performed.

10 12 14 16

n

10 20 22 24
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The excess volume function, <LW>, can also be measured as a function of
temperature, at constant pressures. In such cases, the simultaneous
knowledge of <LW> and <h> provides important information to characterize
phase transitions in two-component systems, such as in phospholipid mixtures
of various composition. For such mixtures one can write the following set
of simultaneous equations,

<Lih> XAhAFA+XBhBFB (47)

<LW> XALWAFA+XBLWBFB (48)

where X and X are the mole fractions of components A and B. These
equations can e solved at each temperature to yield F and FB, the fraction
of A and B molecules in the melted state. Further anaTysis of FA and F
allows calculation of the thermodynamic and cooperative behavior of eac
component within the mixture.

CONCLUDING REMARKS

The potential of this analytical procedure to obtain molecular information
about complex systems appears to be almost unlimited. It is to be noted,
however, that the validity of this analysis requires that the systems
studied be homogeneous, but not necessarily pure ; that each system in the
ensemble exist in distinct thermodynamic states or that each molecular unit
of the system exists in only two defined states; and that the data are
obtained under equilibrium conditions. The ultimate usefulness of this
approach will be realized when the energy fluctuations obtained can be
quantitatively correlated with structural fluctuation which in turn can
be related to variation in other physiôal or functional properties of the
system of interest.

REFERENCES

1. Freire, E. and Biltonen, R.,
2. Freire, E. and Biltonen, R.,
3. Freire, E. and Biltonen, R.,
4. Freire, E. and Biltonen, R.,
5. Biltonen, R. and Freire, E.,

85—124 (1978).
6. Freire, E. and
7. Lifson, S. and
8. Lifson, S., J.
9. Mabrey, S. and

3866 (1976).

Biopolymers 17, 463—479 (1978).
Biopolymers 17, 481—496 (1978).
Biopolymers 17, 497—510 (1978)
Biopolymers 17, 1257—1272 (1978).
CRC Critical Reviews in Biochemistry 5,

Biltonen, R., Biochim. Biophys. Acta 514, 54-68 (1978)
Zinim, B., Biopolymers 1, 15—23 (1963).
Chem. Phys. 40, 465—470 (1964).
Sturtevant, J.M., Proc. Natl. Acad. Sci. USA 73, 3862-




