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Abstract - The notion of nonclassical structures resulting from through-space inter-
actions has been approached from a topological resonance energy point of view.
The phenomenon of homoaromaticity has been simplified to competitive tendencies
of aromatic stabilization and minimal-strain conformation. The fomation of a
polygon-like pattern by through-space interactions among disjoint intramolecular
fragments has been recognized as the essential stage in the course of aromatic
stabilization/destabilization. Introduction of the original combinatorial-topological
manipulations enabled the use of first order perturbation treatment. This constructed
procedure was used in calculating the intrinsic topological contribution due to
closing polygonal pattems gemane to most homoaromatic systems.

INTRODUCTION

Homoaromaticity is generally considered to be related to the phenomenon of through-space interaction.
Such interactions are those between molecular fragments that are not directly bonded. The prerequisites
are propinquity of interacting fragments, confomable symmetry of interacting orbitals and compatible
energy ranges of interacting orbitals. Such interactions can occur mostly between i) an ethylenic
fragment and a positively charged carbon center at the g position (Ref. 1), ii) an ethylenic fragment
and small rings, particularly that of trigonal topology (Ref. 2), and iii) ethylenic fragments (Ref. 3).
This variability of situations has led to some argumentation on the orbital character of the through-
-space interactions in tems of g -, - orbitals separability (Refs. 4 & 5). If we consider aromaticity
as a common name for cumulative physical effects that are experienced by species possessing a system
of conjugated carbon-carbon m -bonds, homoaromaticity is then usually referring to those effects that
are experienced by species possessing adjacent nonconjugated carbon-carbon T -bonds. Because of the
primacy of effects characterizing conjugated systems some people tend to refer to analogous effects that
appear in systems without strict conjugation as second-order effects. Such would be effects in the
fricyclo/5.2.'|.04'I / deca-2,5,8-triene, (1), for instance,

by allowing for a possibility of through-space interactions

among the three ethylenic fragments. In employing the

rigorous approach of MO fomalism to this system, one

has to solve the secular equation, def(ﬁ‘ - ES) = 0, which

requires the evaluation of the through-space interactions

quantitatively. The entries of the secular deteminant,

constructed upon the premises of general orbital interaction

" fomalism, which describe the through-space interaction (_l_)

are of a fom,
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which describes a mixing of orbitals at different ethylenic fragments, i #i, (i, i =1,2,3), but of the
same occupancy, M = ¥, and,
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(1) (3) - (1) (J)
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which describes a mixing of orbitals at different ethylenic fragments, i # j, and with different oc-
cupancy, M # vV . The mutual interaction among the three ethylenic fragments is dissected to pair-
wise interactions, as given in the fom of Fock operator,

)
1]
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In many practical situations such a "hard" approach effected by ab initio calculations appears to be
both complex and "inordinately expensive" (Ref. 4). Therefore there is a paucity of such calculations.
On the other hand, the results of detailed MO calculations do not seem to be recognized as sufficient
arguments in ambiguous cases. An illustrative example is that of 2-norbornylcation (2a, b), (Refs. 6 & 7).
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oo
83c0000scsvess

2 2b

There seems to be another, quite general, weak point in the rigorous MO approach to the homoaroma-
ticity. It is implied in this sort of questions: if the inversion of the cyclobutenylcahon (30, b) through
a structure with a wholly planar carbon skeleton is calculated to require 1.9 kJ - mol-1 (Ref.” 8), what

d —q
3a 3b

would be the energy barrier for the crown-crown flip-flopping of the cis, cis, cis-cyclonona-1,4,7-triene

(40, b)?

4a 4b

It follows that there has been an obvious necessity for constructing a set of simple, practical rules
‘that could be used to make an accurate prediction of homoaromatic stabilizafion/destabilization for
any species of interest. Thus the strictness of the rigorous MO approach frequently succumbs to the use
of empirical quantities introduced at various levels of sophistication (Refs. 4, 9, 10, 11 & 12). Simple
methods which are based more on intuition than on mathematical justification have been employed too.
Within the formalism of the Huckel MO method, the through-space interaction has been treated by
introducing a variable B -parameter, =k 8 ; k ¢ 1.0. The k could be detemined from UV
spectral data (Ref. 13) by use of Imear relationship esrobllshed between A max and the HOMO-LUMO
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separation value (Ref. 14). One could exploit the perturbation treatment and express such an inter-
action by a linear combination of bonding orbitals, LCBO. The numerical calibration of the off-dia-
gonal entry, < ¥ | H, | ¥5 > in the Huckel secular determinant could be done by use of PES data
(Refs. 15 & 16). The attempts to interpret the detailed MO calculations in a more intuitive way have
proved the usefulness of the qualitative orbital representation (Refs. 17 & 18). The fact that homo-
aromaticity is associated with species which are neither of cycloalkyl- nor of aromatic character has
been reflected through different approaches by attempts, more or less justified, to block out the energy
of a system under consideration to a simple union of linearized contributions. Thus, by the Huckel MO
method the "aromatic contribution" is dissected from the rest of a system while in some other approaches
various strain situations have been found the main factor to be accounted for (Refs. 19 & 20).

Certain dissection of the through-space interaction phenomenon is made in our approach to homoaroma-
ticity. The dissection is but fictive, it does not presume any physical situation and is essentially an
algebraic procedure. It is completely different from any other method used. It was based on the trivial
fact that some kinetic, spectroscopic and structure-determination data in the pertinent literature had
been rationalized by invoking "nonclassical structures" to come into play. This is well illustrated by
the i) kinetic observations in the acefolysis of the cis-bicyclo/3.1.0/hex-3-yl toluenesulphonate (5),
(Ref. 21); iD) by the H nmr data of the bicyclo/5.1.0/

NC
OTs

(5) () (2)

octadien}ll cation (6), (Ref. 22), and iii) by the structure-detemination data of the 1-cyanotricyclo/
3.3.0.0 '8/octa-3,6-diene (7), (ref. 23). In the cases (i) and (iii) homoaromaticity is believed to
contribute to transition states while the nonclassical representative of () is an isolable species. What
is common to all three examples is that new chemical bonds are presupposed. If we consider a
transition state as a chemical species, the essential quality in all three examples is a change in both
the number and the arrangement of chemical bonds. In approaching this situation from the topological
point of view one should say that molecular topologies are changed.

OUTLINE OF THEORY

Molecular topology of a conjugated system is effectively represented by an unoriented connected graph.
Vertices in such a graph stand for carbon atoms while edges stand for carbon-carbon bonds. The maxi-
mal valency in such a graph is naturally three. There exists a copious literature relevant to the

Huckel MO theory-graph theory alliance (Refs. 24, 25, 26 & 27). This connection is based on
numerical identity of the HMO energy levels and the spectrum of a graph representing the carbon
skeleton of a conjugated species. Graph theoretical techniques were successfully employed when dealing
with the problem of representing a cyclic structure and its reference structure. By use of _combinatorial
topological rules we have for a characteristic polynomial of a generally oriented graph, G (ref. 28), .

p (0¥ (-1 I TR Nk @
k=0 LCG

—r
being a "linear element" (see Note a) of a graph G, that is, subgraphs built up exclusively
of subgraphs such as are G; = Gi(u, v); where outdegree and indegree are equal, d* (v;) =

—d () =1, fori=0, 1, 2,...., N.

- -
a(Ly) number of components in a subgraph Lj.

)

Note a. There is no such thing as nonlinear graph.
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For unoriented graphs that are spectral representatives of systems based on the nearest-neighbour ap-
proximation, Sachs (Ref. 28) established the following relation:

PGix) = 1 . (yeUD2 (U, N-1 i
c,r being the total number of components and the number of ring components, respectively in a
subgraph U;; U; € G,
Y; being the unoriented analog of fk'

The problem of the linear reference structure (Refs. 29, 30, 31 & 32), (vide supra) has been avoided
by singling out the non-ring components of the U; (Ref. 33). In such a way the formed polynomial,

N .
PGC(G; x) = 5 5 (_])C(Ui)xN-l

i=0 UiCG

(6

has coefficients constructed by all possible disjoint selection of the subgraphs Ko (two vertices linked
by an edge), such that Ko & G. With the K2 subgraph given a name dimer (Ref. 34) the P¢ (G; x)
polynomial could be expressed as,

QG =Mz z N @
d=0
i being the imaginary unit,
Zy being a d-dimer partition function associated with dimer covering of a graph G.

The zeros of such a polynomial are given the meaning of a spectrum of reference graph (see Note a).
Pursuing the previously mentioned connection, these roots are given the meaning of energy levels of .
the reference structure of the conjugated system under consideration. The final step, being very simple,
gives topological resonance energy, TRE, as a sum of pairwise substracted values of the HMO
characteristic polynomial zeros and the zeros of the PI¢(G; x).

TRE = .2 gi(xi - x;’°) ®)

ac . - . .
xi, xi being zeros of characteristic and reference polynomial, respectively,
9 being "orbital" occupancy number.

The sum is over occupied levels. The "orbital occupancy" number, g;, is determined with respect to
the principle of maximal resonance. It should be clear that PA¢(G; x) is not the characteristic poly-
nomial of a graph G, it is generally not a characteristic polynomial of any finite, unoriented graph.
However, for certain special cases a reverse procedure could be performed, that is, an acyclic graph

Note a. Matching polynomial, matching graph are probably more correct names for structures we call
reference (acyclic) polynomial, reference graph, respectively.
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could be constructed from the reference polynomial. We start with the difference between the
characteristic and reference, acyclic polynomial. It could be easily shown (Refs. 35 & 36) that this
difference is, in general, given by

a=P(G;x) - PU°G; x) =

= ('l)i2i Z() klk(l) k+n||(|) (G - RII(I)I k)xN-Zk-nii(i) (9)
i, (i 0

=1,2,3,...r, r+1,..., r+q.
r number of principal (chemical) rings in G,
q increment in the number of principal rings due to possible fusion of rings.
The ij(i) index have the following meaning:
i=1; i@ =i, i,..., i(r+q), i.e. denote piecewise numbering;
=2 0 '
i=3; i

k1, mn,..., klm, mnp, - denote disjoint (ring) components.

i(k1), j(mn),..., {(pq), i.e. denote pairwise numbering;
iklm),..., etc.

k number of Ky components,

p(G; k) number of disjoint Ko selections in G,

G'Rii(i) graph obtained by excising the ring(s) R;i(i) from G,
miidi) maximum number of Ko in the graph G'Rii(i)'

i) number of vertices in the ring(s) R;i(;),

N number of vertices in G.

Inspection of the equation (9) reveals a possibility for constructing the acyclic graphs, at least in
certain cases. The necessary prerequisites for such a possibility is stated in the following proposition.

Proposition. For any polygon-type graph the difference between the characteristic and the acyclic poly~
nomial is linear and unique.

Proof. A proof may be constructed either from the Sachs’ fomula (5 or from the relation (9). It fol-
lows from (5) that, if the characteristic polynomial of a graph G is given as:

N N-2 N-N+k
fix) = agx Fapx T TH L ey X (10

{0 for N even,

where k =
, for N uneven,

. - . s r e . N-
the difference between the characteristic and the acyclic polynomial is given by, at least, x P tem,

where p is the girth (Ref. 37) of the smallest ring in a graph. It is easily seen in the relation (9) that
the difference,

P(G; x) - PY(G; x) = f( ;f gx ) )
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is linear and unique when ij(i) = 0. The index ij(i) is equal to zero for a graph containing but one
ring. Hence the proposition.

For the particular case when no more than one ring exists in a graph G, the difference between the
characteristic and the acyclic polynomial is given by:

N1 - s
b=dorogeg) - T (0| b(Ex 2 - o)W (12
i=0 Uu.cG

b(E) combinatorial contribution due to subgraph E, E < U;;
E\I/2] maximum integer of N/2,

that is, it figures in the absolute coefficient only. The simple consequence follows that the acyclic
polynomial could be constructed from a linear graph with an edge given a weight, w = ( 4 /2. 1o
detemiine the position of the weighted edge, a combinatorial procedure based on generalization of
Hosoya’s (Ref. 39) formulae is used (Ref. 36). From there follows the combinatorial formula for
constructing the coefficients of the characteristic polynomial of a linear, weighted graph:

N/2 . 2 2-3 2i-1 )
fx) = C zJ -1’ o7 TT N2+ i‘—! TT 143 2 9

i=0 P=i-1 i=i

Such a selectively weighted graph possesses combinatorial properties analogous to those of an imaginary,
acyclic graph. If the previous relation is properly equated with the fomula for constructing the
characteristic polynomial of a p-polygon,

N/2 . 2i-1 o '
6 = hyd @' L TT N1 N2 2™ (14
i=0 i=i

and solved for the weight w, one gets:

’
2i-1 2i-1 /2
3 T w5 TT oo
w = i=i-1 [=i f (15)
2i-3
i 1T ez
: i=i—] J
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RESULTS AND DISCUSSION

We proceed by operating on both the molecular graph representing the carbon sigma skeleton of a
conjugated compound and the linear weighted graph bearing the combinatorial properties of a fictituous
graph representing the reference structure of a conjugated compound. Describing the homoaromatic effects
in terms of cycle forming/breaking (vide supra) we proceed by introducing variations of the Huckel
parameters; these variations specifically concern 8 .- parameters that are ascribed to the "nonclassical"
linking of directly disjoint molecular fragments. These variations built into the Huckel secular determinant
result in exact values; however, we are more interested in the trend that obey topological resonance
energy values with the "nonclassical bonds" weakening. We thus come upon a perturbation calculation.
The first order perturbation, FOP, treatment adapted to the HMO theory gives the standard Huckel energy
levels, Ej7 i =1, 2,...., N; corrections due to changing the B - parameters (Refs. 39 & 40).

Ei = Ei + 5Ei (16)
GEi = 2cikci| 8B 1 : (17)

or, in the case of more than one simultaneously varied B - parameter,

8E, =2 X, c, OB
i L ik, °.|i kI, (18)
i MO levels, =1, 2,..., N,
Cik LCAO coefficient corresponding to the j-th MO orbital and the k-th atom,

i the number of simultaneously varied B - parameters.

Thus, the topological resonance energy values for the firstly used example, the tricyclo/5.2.1.04,10/
deca-2,5,8-triene (1), are to be calculated in the following way; the Huckel energy levels are,

8E, = 2¢

h = 2% %2 882 *+ 2

* 2035498 34 * 2%,5%¢ 08 56

(19)

h=1,23.

An analogous formula is used in calculating the "energy levels" of a reference, acyclic graph,
g )4 Y grap

GEr 2c 15 6312+2c3c46634+2c € 8854 (20)
r=1,2,3. .5
By \1.
Three ethylenic groups of the triene are schematized .
as in (8) and the first order perturbed topological :
resonance energy, FOPTRE, is obtained as follows, 16, /3
2
= z o
FOPTRE = h=r gh,r(Eh E;) (8) (21)

The first order perturbation treatment has been thus used within the Huckel MO theory formalism applied
to a conjugated system represented by its molecular graph and simultaneously applied to a fictitious
linear structure represented by an edge-weighted graph bearing the required combinatorial properties.
This procedure should not be mistaken (Ref. 42) for graph-perturbation which is an essentially different
thing. Our calculations were based on the conceptual approaches (i) presuming the existence of a poly-
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gon made up of directly disjoint molecular fragments, (ii) allowing for 8 - parameter variations ex-
tending far over the values taken in rigorous perturbation treatment. The presumption of yet the existing
through-space connected intramolecular framgents is an approach apparently antithetic to the previous
work on the homaromaticity. However, considering either a ring that is opening to a chain or a chain
that is closing to a ring is merely two ways of looking at essentially the same process. These two dif-
ferent approaches give no rise to conceptual difficulties, at least not within the formalism of the first
order perturbation treatment. The allowance for large 8 - parameter variations is unjustified from the
angle of rigorous perturbation treatment; however we believe that such variations are of minor signifi-
cancé compared with the approximation inherent to the Huckel MO method which is the basis of our
approach. In the Table are given the first order perturbation topological resonance energy, FOPTRE,
values for a selected set of structures. This set is probably not a complete one but it covers most of
the experimentally observed or suggested homoaromatic systems. The systems are basically arranged with
respect to their presumed topologies and then subdivided to mono-, bi-, and polyhomo structures, as is
illustrated in the Figure.
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TABLE
SYSTEM GBuv FOPTRE REFERENCE
1. TRIGONAL CATION
1.1. Monochomo- 0.90 0.56570 a
0.70 0.62531
0.30 0.74453
0.10 0.80414
1.2. Bishomo- 0.90 0.47932 b
0.70 0.36612
0.30 0.13975
0.10 0.02656
1.3. Trishomo- 0.90 0.50911 c
. 0.70 0.45554
0.30 0.34840
0.10 0.29483
PENTAGONAL ANION
2.1. 1,3-Bishomo- 0.90 0.21610 d
0.70 0.00012
0.30 -0.43186
0.10 -0.64784
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1,2,4-Trishomo-

1,2,3-Trishomo-

.

HEXAGONAL NEUTRAL

. Monohomo-

1,3, 5-Trishomo-

HEPTAGONAL CATION

.1. Monohomo-

1, 3-Bishomo-

1,4-Bishomo-

1,3, 5-Trishomo-

Heptahomo-
(Perhomo-)

OCTOGONAL DIANION

. Monohomo-

1, 3-Bishomo-

[eNeoNeNo]
- W
c8338

[eNeNeNa]
]

[eNeNeoNa] [eNeNe N
] 0 - W N

0.32701
0.33286
0.34458
0.35043

0.35653
0.42143
0.55123
0.61613

0.32902
0.42649
0.62145
0.71892

0.40152
0.64401
1.12899
1.37148

0.14489

0.03092
-0.38254
-0.55835

0.31473
0.47860
0.80632
0.97019

0.27815
0.36886
0.55028
0.64099

0.25351
0.33754
0.50561
0.58964

0.17747
0.06682
-0.15450
-0.26515

0.10525
-0.06946
-0.41876
-0.59339

0.22525
0.29060
0.42128
0.48663
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5.3. 1,3, 5-Trishomo- 0.90 0.19943 P
0.70 0.21314 -
0.30 0.24054
0.10 0.25425

6. NONAGONAL ANION

6.1. Monohomo- 0.90 0.08603 q
0.70 -0.10692
0.30 -0.49280
0.10 -0.68575

a) G.A. Olah, J.S. Staral, R.J. Spear, and G. Liang, J. Am. Chem. Soc., 97, 5489 (1975);

b) S. Winstein and C. Ordronneau, J. Am. Chem. Soc., 82, 2084 (1960); c) S. Winstein, J. Son-
nenberg, and L. de Vries, J. Am. Chem. Soc., 81, 6523 “(1959); d) J.M. Brown and J.L.Occolowitz,
Chem. Commun., 1965, 376; e) P.K. Freeman and T.A. Hardy, Tetrahedron Lett., 1971, 3939;

f) L.A. Paquette, H.C. Berk, C.R. Degenhardt, and G.D. Ewing, J. Am. Chem. Soc., 99, 4764
(1977); @) M. Traeterberg, J. Am. Chem. Soc., 86, 4265 (1964); h) P. Radlick and S. Winstein,

J. Am. Chem. Soc., 85, 344 (1963); i) J.L. von Rosenberg, Jr., J.E.-Mahler, and R. Petit, J. Am.
Chem. Soc., 84, 2842 (1962); i) P. Wamer and S. Winstein, J. Am. Chem. Soc., 93, 1284 (1971);
k) P. Ahlberg, D.L. Harris, and S. Winstein, J. Am. Chem. Soc., 92, 214 (1970); T L.A. Paquette,
P.B. Lavrik, and R.H. Summerville, J. Org. Chem., 42, 2659 (1977); m) R.W. Thies, M. Gasic,

D. Whalen, J.B. Grutzner, M. Sakai, B. Johnson, and S. Winstein, J. Am. Chem. Soc., 94, 2262
(1972); n) M. Ogliaruse, R. Rieke, and S. Winstein, J. Am. Chem. Soc., 88 4731 (1966); o) L.A.
Paquette, M.J. Kukla, S.V. Ley, and S.G. Traynor, J. Am. Chem. Soc., 99, 4756 (1976); p) the
same as in (0); q) W.A. BSll, Tetrahedron Lett., 1968, 5531.

We used in our calculations the uniform sequence of 68 values: 0.90, 0.70, 0.30, and 0.10. Since
we were considering the opposite process - opening of a ring - the actual B values used were: -0.10,
-0.30, -0.70, and -0.90. These figures are not the best choice for each particular case, however, we
have chosen them because they are concordant with some values experimentally found (Ref. 13) and
because our primary aim has been to compare the influences of B - parameter variations to various
topologies, that is, the unifomity of variations was preferred to an adjustment to each particular
situation. In analyzing the numerical values we made use of a criterion analogous to that commonly
employed by our group (Ref. 43); the trend of decreasing TRE values and eventually taking negative
values means the weakening of the aromatic stabilization and vice versa.

Comparison with experimental facts. The inspection of the first order perturbation topological resonance
energy, FOPTRE, values for the monoionized structures of trigonal topology reveals that monohomocyclo-
propenyl (1.1) cation gains TRE with the bond wedkening while trishomocyclopropenyl (1.3) cation
decreases in TRE with all three bonds simultaneously and uniformly weakening. The same tendency is even
more pronounced in the case of bishomocyclopropenyl (1.2) cation. Experimental evidence concerning
the monohomocyclopropenyl cation is somewhat mconclusuve, its presence seems to have been established
firmly only in a super acid medium (Ref. 44). The 13C nmr spectrum, however, does not indicate a
significant diagonal overlap in the cyclobutene cation (Ref. 45). Theoretical work has not shed much
more light on that subject (Ref. 8). The wedk tendency toward aromatic stabilization should be matched
by a particularly feasible geometry giving no rise to significant strain; these requirements seem to be
met in the case of bis(tetramethylhomocyclopropenyl)dication (Ref. 46). Diminishing the FOPTRE values
with a decrease in g values in the case of bishomotrigonal cation suggests the triangular topology to
be strongly supported from the point of homoaromatic stabilization. This topology preference matched
with not too rigid and unappropriate geometry should give rise to significant homoaromatic behaviour.
There exists strong experimental support for this hypothesis. Solvolytic reactions of three bicyclic
systems (9-11) have been studied (Ref. 47). In

X X X
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going from 11 to 10 to 9 the geometric effect is to bring the carbon bearing the leaving group (X)
closer to the two unsaturated carbons. This is very nicely reflected in a marked increase in the rate
ratio of the unsaturated system to the saturated system as one proceeds from 11 to 10 to 9 (Ref. 47c).
Product studies also support the formation of a bishomotrigonal cation. Similar support is found in the
case of solvolytic studies of 7-chloronorbomadiene (Ref. 48). It is of some interest to compare the
opiniion (Ref. 49) of the two rapidly interconverting classical tricyclic fons with some of our calculations.
When calculating the maximum FOPTRE value for the bishomocyclopropenyl cation (which is actually
switching off the very perturbation) we obtain unequal B8 -parameters for C(1) - C(3) and C(2) - C(3) bonds;
that is, either 88 13 0or 8B o3 is larger by the factor about two. Trishomotriangular topology (1.3)
is favoured too and has been experimentally established in at least two cases. It is not that significant
in the solvolysis of the cis-bicyclo /3.1.0/ hex-3-yl tosylate due possibly to the unappropriate choice
of solvent in the original work (Ref. 50). In the case of 9-pentacyclo - /4.3.0.02,4.03,8.05,7/ non-
ane p-nitrobenzoate the preferred topology seems to be a recognizable physical fact (Ref. 51). The
FOPTRE calculations for pentagonal anionic structures favor the 1,3-bishomopentagonal topology (2.1)
and disfavor the 1,2,4-trishomopentagonal one (2.3). The 1,2,3-trishomo-system is rather insensitive to
the three bonds weakening (2.2). The auspicious 1,3-bishomo topology is possibly amenable - besides
other factors - for the remarkable rate enhancement in the base-catalyzed deuterium exchange in the
bicyclo /3.2.1/ octa-2,6-diene (Refs. 52 & 53) with respect to the same process on the bicyclo/3.2.1/
octa-2-monoene. There seems to be no experimentally observed 1,2, 3-trishomoaromatic system (Ref. 54).
The same applies to_the unfavorable 1,2, 4-trishomopentagonal topology. In the process of deprotonation
of tricyclo/4.2.1 .03'9/nona-4,7—dien-2-y| "the transition state for exo, Hp abstraction does not ex-
perience significant stabilizing interaction with the proximate double bonds" (Ref. 55); the conclusion
which falls in nicely with our calculations. Both hexagonal neutral systems, monohomo- as well as the
1,3, 5-trishomo -, appear to be strongly disfavored judging from the FOPTRE results. Traetterberg (Ref.
56) argues against establishing the planar monohomohexagonal system by pointing out the insufficient
aromatic stabilization to match the geometric requirements. The monohomohexagonal system occurence
within the cycloheptatriene, CHT, structure is unfavorable for at least two reasons; (i) the propinquity
of C(1) - C(6) sufficient for a noticeable through-space interaction would impose on CHT a situation
of significant strain, and (ii) strengthening of C(1) - C(6) interaction gives rise to a weaker system,
according to FOPTRE calculations. Not much more is to be said of the sym-cis,cis,cis-l,4,7-cyf|2-
nonatriene (Ref. 3 ), tricyclo/5.2.l.04']o/deca-2,5,8-triene‘ (Ref. 57) and hexacyclo-/4.4.0.04/%.
O3r9.05'7.08'10/decane (Ref. 58) - the alleged trishomohexagonal aromatic systems. Perturbed
resonance energy calculations for the heptagonal topology suggest the following: monohomoheptagonal
system creation is topologically favored, to somewhat of a less extent this applies to the perhomohepta-
gonal system. The fomation of 1,3-bishomoheptagonal topology (4.2) is rather unfavorable. The for-
mation of the 1,4-bishomo- (4.3) and the 1,3, 5-trishomoheptagon (4.4) is not favored either. There is
an ample evidence of the yet classical "nonclassical” homotropylium cation (Refs. 22, 59, 60 & 61).
Both bishomoheptagonal systems (4.2 and 4.3) occur within flexible enough frameworks (Ref. 62) to al-
low for required distortions, like that of cis-bicyclo/6.1.0/nona-2,4,6-triene (Ref. 63) which has a
1,3-bishomo-system or those of 1-methylbicyclo/4.3.0/nonatrienyl (Ref. 64), 9-barbaralyl (Ref. 65),
and bicyclo/4.3.1./deca-2,4,7-trienyl cation (Ref. 66) which have the 1,4-bishomoheptagon. However,
all bishomoaromatic heptagonal systems appear to be significantly attenuated in aromatic stabilization
with respect to the homotropylium cation; for instance the chemical shift between inner and outer
methylene protons in the cis-bicyclo/6.1.0/nona-2,4,6~triene is more than three times smaller than the
corresponding shift in homotropylium cation. We argue that this is due mainly to the unfavorable topo-
logies of 1,3- and 1,4-bishomoheptagon. Furthemore, the intuitively acknowledged difference (Ref. 67)
between the two bishomoheptagons in the amount of charge transfer is clearly quantified by our FOPTRE
calculations of 1,3- and 1,4-bishomoheptagons (4.2 and 4.3, respectively). There seems to be no ex-
perimental evidence supporting the existence of 1,3, 5-trishomoheptagonal topology, at least not in the
case of tricyclo/5.3.1.04 11/undeca-2, 5,8-trienyl cation (Ref. 68). Though favored by FOPTRE results,
perhomoheptagonal topology is not as yet experimentally identified. It is possible that either the ana-
lyzed tetracyclo/11.1.0.03:5.07,9/tetradecan-11-ol (Ref. 69) is not of appropriate geometry or that
our calculations are misleading. Without reliable computational data of the conformation an answer
would be only speculative. In the octogonal series the monohomo system is favored to occur; 1,3-bis-
homooctogon (5.2) is slightly unfavorable while 1,3, 5-trishomooctogon (5.3) is rather insensitive to g
- parameter changes. The monohomocyclooctatetraene system is obtainable by a reduction of either
cis-bicyclo/6.1.0/nona-2,4, 6-triene (Ref. 70) or cis-cyclononatetraene (Ref. 71); that is, rather strong
tendency toward forming the octogonal topology matches successfully with the effort required to flatten
the anglestrain-free boat conformation (Ref. 72) into nearly planar, COT ring. The reduction of the
bicyclo/6.2.1,/ undeca-2,4,6,9-tetraene and the tricyclo/5.4.l.04']2/dodeca-2, 5,8, 10-tetraene did
not give rise to "spectroscopically characterizable" (Ref. 73) 1,3-bishomo COT dianion and 1,3, 5-tri-
shomo COT dianion, respectively. The tendency of closing the monohomononagonal topology is strong
enough to match the conformational requirements, at least in the structure of 1,6-methano/10/annulene
(Ref. 74).
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CONCLUSION

The FOPTRE results for seventeen examples are correlated with the experimental findings concerning

the existence and amount of homoaromaticity. In some cases (1.2, 1.3, 2.1, 2.2, 2.3, 3.1, 3.2,
4.1, 4.4, 5.1, 5.2 and 6.1) the FOPTRE results correlate well with experimental facts, in other cases
(1.1,4.2, 4.3 and 5.3) they do not. For system (4.5 our results are contrary to the experimental
evidence. One could thus anticipate that either no unambiguous opinion could -be formed or that only
a tentative premise, based on the relative prevalency of the first group (1.2, 1.3, 2.1,....etc.) could
be postulated. The actual state is, however, differently accented. The tentative conclusion which has
been made above cah only be tested with pertinent experimental findings. We go ahead by assuming
that all the experimental evidence cited is correct and reliable. Now care is to be taken in inter-
preting the FOPTRE results. FOPTRE calculation results do not refer to any physical quantity of the
system under consideration, at least not directly. These results do not quantify the dissected, as a
linear tem, "aromatic" contribution to certain physical situation of a relevant species. The calculations
do not quantify anything, in strict terms. They are given as numbers but should be understood a dif-
ferent way. These numbers do not even express the FOPTRE values for cited topologies, at least not
correctly. What is important are the sequels of these numbers. These sequels are sometimes of positive
trend, in the other cases of negative trend. They are sometimes steep, sometimes not. They express a
tendency of certain chains, or bits of chains to close a ring. We have thus come upon an unobservable
property .that represents the intrinsic tendency of a certain system to form a closed structure by through-
-space interaction. Whether this tendency will be realized in the specific situation, conceming a, say,
symmetry of interacting orbitals or a strain of particular geometry, that remains to be calculated.
Whether the topological tendency should provoke the dispersal of a charge over the polygon-like frame-
work, or should result in equal deuterium scrambling over all the vertices of a hypothetic polygon -
remains to be measured. The FOPTRE results are given for the purpose of planning either calculations
or the experiment for a specific, alleged homoaromatic system.
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