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Abstract - Individual benzene rings in polycyclic benzenoid hydrocarbons
are examined from a graph theoretical position in an effort to character-
ize structural features responsible for variations in local molecular
properties. The basis for the present study is the concept of conju-
gated circuits (M. Randié, Chem. Phys. Lett. 38, 68 (1976) ). By enu-
meration of conjugated circuits that encompass individual rings, local
diversities in conjugation can be studied quantitatively. The approach
defines for each ring in polycyclic conjugated hydrocarbons a code, a
sequence of integers which indicate the occurrence of conjugated circuits
of size (4n + 2) for a ring. Ring codes thus derived offer an alterna-
tive partitioning of the molecular resonance energies. The average ring
resonance energy appears to be a good index of the aromatic character for
benzenoid systems. The use of the ring codes is further illustrated on
a re-examination of ring currents, where regularities in the relative
magnitudes, not previously recognized, are indicated,

INTRODUCTION

Some differentiation of individual rings in fused benzenoid systems had already been suggest-
ed by Robertson (1). The problem remained dormant for many years until Clar (2), 1lead by
chemical intuition, was able to interpret some spectroscopic data in terms of local aromatic
properties of benzenoid systems. Clar suggested for benzenoid hydrocarbons a novel type of
valence structures in which some rings are viewed as fully aromatic, others are combined in
partially aromatic rings, and finally some rings may even completely lack the aromatic con-
tent. Such rings were differentiated by inscribed circles, presence of formal CC double
bonds, or simply left empty. Clar's concepts, it appears, have not induced commensu-
rable interest among theoretical chemists. Nevertheless, some efforts were made to quanti-
fy the insights of Clar. Thus Polansky and Derflinger (3) initiated theoretical studies of
Clar's valence structures by’ considering suitable MO indices for a characterization of the
individual rings. Alternative ring indices, based on MO or VB calculations or some em-
pirical grounds, followed (4). Here we will develop a graph theoretical, rather than
quantum mechanical characterization for the individual rings in polycyclic benzenoid systems,
In graph theory one is primarily interested in binary relations, and when graphs are
pictorially represented this translates into the connectivity of the system. Applications
of graph theory to molecules focuses on consequences of the given pattern of bonding. Usu-
ally the analysis consists in enumeration of selected graph invariants. Since in this work
we are interested in the individual rings our analysis will be concerned with enumerations of
subgraphs that can be associated with rings. We will first describe a particular encoding
of the rings in benzenoid systems based on the concept of conjugated circuits (5). We will
then see that the derived ring codes represent partitioning of the molecular resonance ener-
gy. We will continue with a discussion of ring currents and will see how ring codes lead to
recognition of regularities in the relative magnitudes for the ring currents. It is notewor-
thy that no significant insight followed quantum chemical calculations on ring currents,
which were reported for a decade and more. It is remarkable then that the new concept of
ring codes offers novel important leads.

OUTLINE OF THE APPROACH

1 Kekulé valence structures of
Conjugated circuits are defined as those circuits in individua_

a milgcule in which there is a regular alternation of formally single and double CC bonds
(5). In Fig. 1 we show one of the 13 Kekulé valence structures of 1,2:3,4-dibenz-
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Fig. 1. Decomposition of one of Kekul€ structures of dibenzanthracene
into circuits with an alternation of the single and the double CC bond

db

anthracene and all conjugated circuits present in this valence structure. In benzenoid
systems conjugated circuits are necessarily of size (4n + 2), 1i.e., involve 6, 10, 14, 18,
etc carbon atoms. The smallest conjugated circuit is the benzene ring itself. Importance
of formal benzene rings in larger valence structures was recognized in 1927 by Fries (6)
even before the advent of MO and VB methods., Fries formulated an empirical rule pre-
scribing among various Kekul€ valence structures of a molecule one with the largest number of
formal benzene rings as the dominant structure. Interestingly, the improvements in MO
calculations when going from Hiickel MO approximation to SCF MO approximations can be in-
terpreted as supporting the empirical rule of Fries (7). Enumeration of benzene formal
rings in a large structure represents a simple graph theoretical analysis of ring character
(8). In Fig. 2 we show all 13 Kekul€ valence structures of dibenzanthracene. The
benzene character of a ring can be characterized by a fraction of structures in which the se-

lected ring appears formally as a benzene ring. The results for dibenzanthracene are as
follows:

ring benzene character
A 8/13
B 8/13
C 2/13
D 12/13

Ring index for isolated benzene is clearly one. Of all rings in dibenzanthracene ring D
approaches mostly that of benzene, Rings B and C show significant deviations from ide-
alized benzene fragment, however, together they approach naphthalene core ( 8/13 = 0.6154,
is not numerically very different from 2/3 which signifies naphthalene rings). The cen-
tral ring exibits the least conjugation content, and is the ring which Clar correctly recog-
nized as an "empty" ring (i.e., empty of conjugation). It is remarkable that already such
a simple approach offers useful discrimination of fused rings. This suggests that the main
assumptions of the approach are correct and justify  further examination of related graph
invariants in an effort to arrive at a comprehensive characterization of molecular local fea-
tures. The discussion of aromaticity, conjugation, and the resonance energies in terms of
conjugated circuits suggests that besides benzene fragments contributions from other conju-
gated circuits will provide important ingredients for a more complete structural character-
ization of ring environments in fused ring compounds. The work outlined here presents an
extension and logical conclusion of the simple characterization of the benzenoid nature of
individual rings based on the count of formal benzene valence structures within a larger sys-
tem, It takes into account all conjugated circuits in a molecule, not only the dominant
smallest such components, benzene rings.

We want firstly to introduce a convenient notation which summerizes information on conjugated
circuits of a single Kekul€ valence structure. This can be achieved as follows: Write
down a molecular structure and insert label 1 for each formal benzene ring ( 1 indicates
the size of conjugated circuits in the expression 4n + 2). Consider next conjugated cir-
cuits of size n =2 and introduce label 2 for rings involved in such conjugated circuits,
but only for the rings which have not already been assigned label 1, Continue the process
by considering conjugated circuits of size n = 3 and assign labels 3 to circuits involved
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Fig. 2. Kekulé valence structures of 1,2:3,4-
dibenzanthracene
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if they have not been earlier given smaller labels. The process ends when all rings have
been assigned a label, For dibenzanthracene Kekul€ valence structure of Fig. 1 the indi-
cated steps are illustrated below:

ot
38
234

In this way each ring in the structure is assigned a single number, the number indicating
the smallest conjugated circuit that encompasses the particular ring. The labeling of rings
can be combined on a single molecular structure as illustrated for the 13 Kekuld structures
of dibenzanthracene in Fig. 3. = A glance at Fig. 3 clearly shows how individual rings
play a different role in each of Kekul€ structure. A superposition of the results for a
single ring arising from all Kekul€ structures will produce a characterization of the chosen
ring. The present analysis differs from the previous simple characterization of the rings
in conjugated hydrocarbons by the recognition of the role of larger conjugated circuits. For
each ring separately we count how many times it appears with label 1, 2, 3, 4, and 5 and
thus for each ring we obtain a sequence of integers, a code. For the four nonequivalent
rings of 1,2:3,4-dibenzanthracene we have the results shown on the next page. Generally
some rings will show a tendency of a prevailing benzenoid character, while others may in-
volve different conjugated circuits equally and consequently will lack apparent similarity
with a benzene ring. Rings A and B of dibenzanthracene already show that some differ-
ences among individual rings previously ignored surface when larger conjugated circuits are
taken into account. Before embarking on a more detailed discussion of the ring codes and
selected local molecular properties in catacondensed benzenoid systems we want to emphasize
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Fig. 3. Numbers indicating the size of the smallest
conjugated circuit for each ring and each Kekul€ va-
lence structure of 1,2:3,4-dibenzanthracene (the or-
der of structures corresponds to that of Fig. 2)
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that the above analysis applies to a wide selection of compounds, including also nonben-
zenoid hydrocarbons (e.g., biphenylene, azulene, heptalene), providing that the role of 4n
conjugated circuits is also taken into account. .

&

CATACONDENSED BENZENOID HYDROCARBONS

In this work we will confine our attention primarily to catacondensed benzenoid hydrocarbons.
They represent the most primitive fused ring compounds. If the analysis proves useful for
them one would be justified to expand such studies to more general compounds. In Table 1
we have listed the ring codes for benzenoid catacondensed hydrocarbons having four and less
rings, while similar results for selected larger hydrocarbons are given in Table 2. The
corresponding molecular carbon skeletons which include ring labels are shown in Figs. 4 and
5. Some regularities and properties of the ring codes can be learned from Table 1. The
codes are not unique, for instance the code 2, 2, 1 appears in phenanthrene and tetra-
cene, The corresponding rings in benzphenanthrene and chrysene have the same codes which
indicates that occasionally this approach cannot discriminate among some isomers and their
rings. Terminal rings tend to have a more pronounced benzenoid character. Qualitatively
the most important aspect of Table 1 is the demonstration of the considerable diversity of
codes, which means that we have a sensitive scheme capable to capture important structural
variations. Besides merely encoding some innate structural features we propose that the
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TABLE 1. Ring codes and ring resonance energies for selected benzenoid

hydrocarbons
MOLECULE Ring Code Ring RE RE/Ring
1 Benzene 2 0.869 0.869
2  Naphthalene . 0.661
2, 1 0.651
3  Anthracene 0.533
A 2, 1, 1 0.521
B 2, 2 0.558
4  Phenanthrene 0.651
A 4, 1 0.744
B 2,2, 1 0.466
5 Tetracene 0.446
A , 1, 1, 1 0.425
B 2, 2,1 0.466
6  Benzanthracene . 0.579
A 4, 2, 1 0.581
B 4, 3 0.602
c 2, 2, 2,1 0.353
D 6, 1 0.780
7 Benzphenanthrene 0.626
A 6, 2 0.713
B 4, 3, 1 0.539
8 Chrysene 0.626
A 6, 2 0.713
B 4, 3, 1 0.539
9 Triphenylene 0.680
A 8, 1 ’ 0.800
B 2, 3, 3,1 0.318
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Fig. 4. Ring labels for benzenoid systems of Table 1,

count of conjugated circuits is a fundamental component in analysis of molecular properties.
Earlier results on molecular resonance energies (RE) of smaller benzenoid systems fully justi-
fies such a claim, More recently the conjugated circuits approach has been applied to much
larger polycyclic benzenoid hydrocarbons (9) showing that size of a molecule is not detri-
mental factor. The partial contribution to the molecular resonance energy of a Kekul€ va-
lence structure can be readily found from Fig. 3 1if symbols 1, 2, 3, ... are replaced by
Ri, R2, R3, ... and the components added. For the first Kekul€ structure of Fig. 2 we then
obtain (3R; + Ry + Rg)/13, while the second structure yields (4Ry + Rp)/13 and so on. The
partial contributions have to be divided by the number of Kekul€ structures in order to prod-
uce the molecular RE. In this way we find for RE of dibenzanthracene (42R1 + 14R2 + 5R3 +
3R + Rg)/13.  Hence one can view the molecular RE as an average RE of the participating
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Kekulé valence structures. This reconfirms that benzenoid hydrocarbons cannot be adequately
represented by a single Kekul€ valence structure, but manifest themselves as a superposition
of all such structures. Interestingly, already a simple averaging is producing a suffi-
ciently accurate picture of some molecular properties, such as the molecular resonance ener-
gles. Now instead of summing the contributions of conjugated circuits for each Kekul€ va-
lence structure separately we can alternatively first add all contributions for the individu-
al rings, and than add all ring contributions to derive the overall result for the molecule.
From ring codes we immediately obtain the partial contributions for rings. In the case of
dibenzanthracene we have

ring resonance energy contribution

A ( 8R1 + 4R2 + R4 )/13

B ( 8R1 + 5R2 )/13

c ( 2Ry + 3R, + 4Ry + 3R, + Ry )/13
D ( 12R1 + R, )/13

Molecular resonance energy is obtained as the sum: A+ B+ C + 2D . In order to obtain
the numerical values for the RE one has to adopt some numerical values for the parameters
Ry, Ry, Rj, etc. As discussed elsewhere (5), primarily to dispel some confusion that
graph theory is 'nothing but disguised Hiickel MO method" we have deliberately selected
available SCF MO calculations (10) for determining the magnitudes for the parameters Ry
Ry = 0.869 ev; Ry = 0.246 eV; Rg = 0.100 ev; R, = 0.041 ev.
Larger conjugated circuits are assumed to have negligible contributions. The agreement be-
tween the graph theoretical predictions and individually calculated SCF MO results was found
to be within few hundredths of eV. Hence, one is justified in (a) considering only Keku-
1€ valence structures in the study (i.e., ignoring the so called "long bond" structures);
and (b) taking all Kekulé valence structures with a same weight. This does not mean that
graph theoretical analysis cannot be extended beyond the above conditions, it only means
that available data do not warrant at this moment such extensions.
The numerical values for the ring resonance energies in Table 1 imply the normalization
which corresponds to averaging with respect to the number of Kekul€ valence structures of the
compound. This means that the ring code 6, 1 of benzanthracene and code 12, 2 of
1,2:3,4-dibenzphenanthrene ( Table 2 ) indicate the same kind of ring when resonance energies
are considered. The monotonic decrease of the parameters R, with n leads to some regu-
larities for the relative magnitudes of ring resonance energies. For instance rings with
codes 1, 1; 2,1; 3,1; 4,1; ... give a monotonic sequence of ring RE: 0.558; 0.661;
0.713; 0.744; etc, which, as expected, converges to the limit 0,869, the RE of benzene.
Among the rings of Table 1 the peripheral rings in triphenylene ( RE = 0.800 eV ) already
approach the benzene limit, but in some larger benzenoid systems the similarity with the
benzene ring is even more remarkable. Among the compounds studied in this paper, we find
ring code 16, 1 in 1,2:3,4-dibenzanthracene ( Table 2), but it is obvious that by consid-
ering even larger catacondensed benzenoid hydrocarbons the limit of benzene can be approached
even more closely. The same can happen also for larger pericondensed systems. Many such
large benzenoid compounds are known and particularly important class consists of compounds
which Clar calls fully benzenoid (2). For these compounds one can write a valence structure
in which a ring is either represented as an isolated sextet or is devoid of conjugation.
Symbolically such rings have an inscribed circle or are empty:
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In comparing molecules, particularly molecules of different size, it is useful to evaluate
the average ring resonance energy. This quantity can be viewed as a measure of the aromatic
character of the molecule indicating the degree of delocalized conjugation. Benzene 1is the
prototype of full delocalization, but as we go along the series of linearly fused benzene
rings: naphthalene, anthracene, tetracene, and so on, as is well known, gradually pro-
nounced differences with benzene emerge. The fully benzenoid compounds in this respect show
an optimal local similarity with benzene in comparison with other molecules of a similar size
with only a moderate decrease in the average ring resonance energies. The decrease of the
average ring RE 1s related to the ratio of the number of "fully benzenoid" rings and "emp-
ty" rings. Hence, already such simple examination of molecular skeletons leads to a useful
qualitative characterization of such compounds. Quantitatively the average ring resonance
energy ( RE/ring in Table 1 ) appears a plausible index for the degree of aromatic conjuga-
tion in benzenoid hydrocarbons. Such index is defined for all benzenoid systems, whether
they are fully benzenoid or not. The qualitative ideas of Clar have found, 1in ring reso-
nance energy and average ring resonance energy, the quantitative paragon.

RING CURRENTS

As an application of the concept of ring code, we will discuss the ring currents in fused
ring compounds. The concept of ring currents, already considered by Pauling (11) over 40
years ago, 1s of interest in the computation of chemical shifts in NMR spectroscopy. Ring
currents are not observable, but nevertheless proved useful for discussing magnetic proper-
ties of conjugated hydrocarbons. A number of publications reported the numerical values of
ring currents for well over 300 rings in some 60 benzenoid systems (12-14). Although
data are in abundance, it is significant how little was deduced from them concerning the
origin for reported relative magnitudes as witnessed by the following quotations: "... in
general, the ratios of the individual ring currents in the pentacyclic hydrocarbons to the
benzene ring current do not differ drastically from unity..." (13), and "... in polycyclic
molecules, the ring currents are, in general, greater than the ring currents in benzene,
but fall rapidly with increase in condensation..." (14). We will see that with the help of
the concept of conjugated circuits and the ring codes considerably more could be said about
the relative magnitudes for the ring currents. In Table 2 we give ring codes and the ring
currents (taken from the literature, ref. 13 and ref. 14) for a number of catacondensed ben-
zenoid compounds having five and six fused rings. Molecular diagrams with labels for the
rings listed in Table 2 are shown in Fig. 5. Immediately a number of interesting and im-
portant observations can be made regarding the relative values for the ring currents in these
molecules:
(@3] Nonequivalent rings (within a molecule) with the same code show the same ring current
(2) Rings with a same code in different molecules have the same ring current
(3) Rings with a dominant contribution from Rj approach a ring current of 1,000
(4) Rings which have the smallest ring currents tend to have "long" codes (i.e., contribu-
tions from conjugated circuits of all sizes compatible with the structure)
We still are unable to discover fully the relationship between the codes and ring intensities
and reduce such a relationship to some functional dependence. But it is remarkable that the
simple graph theoretical approach already provides important guidance. There should be no’
doubts that the conjugated circuits play an important role here, since we find that rings in
different molecules, such as rings A, B, C in molecules 12 and 13 have practically co-
inciding ring currents for the corresponding rings. Moreover, in molecule 14 we find
rings which are nonequivalent but display same ring codes and same ring currents. The situ-
ation is even more impressive in the case of the "exposed" rings (E) of dibenzotetracene 24
and dibenzopyrene shown below

24

since the compounds are hardly related, representing catacondensed and pericondensed systems
respectively, Yet the rings E have the same code 16, 1 and approximately a- same ring
current ( 1,061 and 1.058 respectively). Ring currents of benzenoid hydrocarbons are
calculated independently for each ring and for each molecule. Hence the observed coinci-
dences convincingly demonstrate some common structural basis, We conclude that ring cur-
rents are transferable between rings of a same code, though a caution is needed when extend-
ing such considerations to pericondensed systems, There are indications that additional
factors may influence the magnitudes of the ring currents: (1) While the same ring codes
indicate the same ring current the opposite is not necessarily true. For example rings

4, 3,3, 1 and 6, 4, 1 which involve a large participation of conjugated circuits of dif-
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TABLE 2. Ring codes and the ring currents for selected catacondensed
benzenoid hydrocarbons

Molecule Ring Code '~ Ring currents
10 Pentacene
A 2,1, 1, 1, 1 1.06
B 2, 2,1, 1 1.30
[ 2, 2, 2 1.35
11 1,2-benztetracene
A 4, 2,2, 1 1.09
B 4y, 4, 1 1.32
C 4, 3, 2 1.35
D 2, 2, 2, 2, 1 0.85
E 8, 1 1.11

12 1,2:5,6-dibenzanthracene

13 1,2:7,8-dibenzanthracene

A 10, 2 1.14 1.14
B 4, 4, 3, 1 0.94 0.9
c 8, &4 1.29 1.29
14 1,2:5,6-dibenzphenanthrene
15 Picene
16 3,4:5,6-dibenzphenanthrene
A 10, 3 1.15 1.15 1,16
B 6, 5, 2 1.06 1,05 1.06

¢ 8, 4, 1 1.16 1.15 1.16
17 2,3:7,8~dibenzphenanthrene

18 2,3:5,6-dibenzphenanthrene

A 6, 3, 2 1.12 1,12
B 6, 5 1.30 1.30
c 4, 3, 3, 1 0,99 1.00
D 6, 4, 1 1.08 1.08
E 8, 3 1.15 1.14
19 Penthaphene
A 6, 3, 1 1.11
B 6, 4 1.23
c 2, 2,3, 2,1 0.78
20 1,2:3,4~dibenzanthracene
A 8, 4, 1 1.12
B 8, 5 1,21
C 2, 3, 4, 3, 1 0.65
D 12, 1 1.08
21 1,2:3,4~dibenzphenanthrene
A 12, 2 1.13 1,14
B 4, 5, 4, 1 0.85
[¢ 8, 5, 1 1.09
D 10, 4 1.10

22 1,2:7,8-dibenzotetracene

23 1,2:9,10-dibenzotetracene

A 14, 2 1.121 1.119

B 4y 4, 4, 3, 1 0.877 0.876

C 8, 6, 2 1.299 1.298
24 1,2:3,4-dibenzotetracene

A 8, 4, 4, 1 1.094

B 8, 8, 1 1.311

C 8, 5, 4 1.194

D 2, 3, 4, 4, 3, 1 0,603

E 16, 1 1.061
25 3,4-benzopenthaphene

A 10, 5, 2 1.121

B 10, 7 1.257

c 4, 4, 5, 3, 1 0.839 -

D 12, 5 1.262 -

E 6, 6, 4, 1 " 0.951

F 14, 3 1,138
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Fig. 5. Molecular diagrams and labeling of rings for benzenoid systems of
Table 2.

ferent size have nevertheless ring currents close to the value of benzene ring; and (2) Oc-
casionally rings having a same code ( but belonging to less similar structures, e.g., cata-
condensed vs pericondensed benzenoid system ) have profoundly different ring currents. For
example, while rings B in 3,4-benzpyrene and 1,2-benztetracene

have a same code and reasonably similar ring currents (1.28 and 1.32 respectively) the
rings C of the same compounds have also a same code but show very different ring currents
(1.08 and 1.35 respectively). The origin of such discrepancies, be it spurious or genu-
ine, need to be clarified. There are several factors which can possibly influence ring
currents and which have not been here considered. In considering conjugated circuits we have
registered for each ring only a presence of the smallest conjugated circuit involved. Then
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the shape and the area of conjugated circuits may make an important difference for rings which
have a same ring code. Finally disjoint conjugated circuits, the properties of which have
been considered (15), may also play here some role.

The novel viewing on rings and ring contributions has still not resolved the issue of the rel-
ative magnitudes of ring currents in benzenoid systems, The problem has been challenge for
a decade and more to quantum chemists and continue to be elusive. We are not surprised for
the past lack of understanding of the relative magnitudes for ring currents. Strictly speak-
ing the task 1s outside the usual scope of applied quantum mechanics since it is conceptual
not computational. The concept of conjugated circuits definitely offered some guidance. To
find explanation fully one needs more numerical results on additional rings and compounds.
This part has to come from quantum mechanical calculations, it will not clarify the present
difficulties, but may pave way to subsequent graph theoretical efforts and help in recogniz-
ing important factors. Graph theory normally does not produce new data, but hopefully can
relate meaningfully the available data with a help of appropriate graph invariants. Combined
quantum mechanical calculations and graph theoretical considerations are likely to further
clarify the problem and possibly offer a complete understanding. The situation is a good il-
lustration of the different character of the two important theoretical tools: quantum me-
chanics and graph theory.
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