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CAN PERCOLATION ThEORY BE APPLIED tO CRITICAL PHENOMENA AT GEL POINTS ?

. D. Stauffer

Institut für Theoretische Physik, Universitàt, 5000 Köln 41, W.-Germany

Abstract - A review is given on controversial gelation problems very close
to the sol-gel transition. For several quantities the concept of critical
exponents like and y is introduced. For example, the gel fraction vani—
shes as c and the weight-average degree of polymerization diverges as
where c is the small distance from the gel point. Classical theory (Flory,

Stockmayer, Gordon,...) predicts =y=1 whereas recent percolation theories
give =O.4, y=1.7 . Who is right ?

INTRODUCTION

Since nearly 40 years(Ref. 1,2) we know that branching polymers may have a sharp gel point
separating the sol phase without an infinite network from the gel phase with an infinite net-
work of monomers bound together. But only since a few years (Ref. 3,4) it is explicitely asser-
ted by reference to percolation theory that these older theories, which we call classical, may
have serious deficiencies close to the gel point. For example, if c measures the distance from
the gel point, then the fraction G of monomers belonging to the infinite network, i.e. the gel
fraction, vanishes for c-O as e in Flory—Stockmayer theory, but as in percolation theory.
Who is right ?

In the next section we will define what critical phenomena are, namely the asymptotic behavi-
or of systems very close to the phase transition point. Only with these critical phenomena
does thisreview deal. The next section describes the results of classical and percolation
theory and we will see that in many respects percolation can be viewed as a generalization
of classical theory. Then we look at the present theoretical and experimental situation of
gelation to see which theory is better. M. Adam in these conference proceedings is giving a
review of gelation experiments near the critical point; earlier reviews of percolation theory
(Ref. 5) and classical gelation theory (Ref. 6), in particular near critical points, are al-
ready published. An appendix gives a short introduction to scaling and universality.

WHAT ARE CRITICAL PHENOMENA ?

If a system of branching polymers approaches the gel point, many quantities like the gel frac-
tion approach zero, and many other quantities like the (weight-average) degree of polymeriza-
tion approach infinity. Since in the latter case the recdprocal of that quantity vanishes we
may restrict ourselves first to properties vanishing at the gel point. Let G(p) be such a

quantity, for example G(p) = gel fraction = fraction of monomers belonging to the infinite
network. Here p is the conversion factor, i.e. the fraction of bonds which have reacted, and

Pc is the critical conversion factor at the gel point and is also called the percolation
threshold. For PPc the quantity G may vanish linearly,

G = B' (p-p)
but more generally,

G = B(P_p)
with a general critical exponent which may differ from unity. The prefactor B is often called
a critical "amplitude". If p is not extremely close to Pc it may be necessary to add correc-
tion terms:

G(p) = B.(p_p) + B1• (p_p)1 + B2.(p?p )2 +... (la)

with < 1 < 2 (ib)

We define for the purpose of this review "critical phenomena" as the properties connected with
the leading asymptotic term, i.e. with B• (P-Pc) in Eq. (la). And for simplicity we restrict

1479



1480 D. STAUFFER

our discussion to critical behavior in this sense, even though recent theories exist (Ref. 8)
also for the leading correction terms.

Of course, in this sense our considerations are unrealistic since they refer to the theoreti-
cal asymptotic limit not to an experimental situation at finite distance from the gel
point. Similarly, chemistry usually deals with pure substances, whereas all real materials
have some impurities. And physics is usually concerned with the thermodynamic limit of infi-
nite volume, whereas any real system is finite and thus has surfaces. It seems that in the
natural sciences, differently perhaps from sociology or psychotherapy, a discussion of asymp—
totically pure situations is more fruitful than the incorporation of all the complexities of
a real situation right from the beginning of the research.

Let us now take a simple mathematical example, the function

f(p) = (1 + -- ch/2)l c 1/4 . (2a)

Its critical behavior for p close to Pc is

f(p) = 2(p-p)112 - 4c (2b)

In the notation of Eq. (la) we have B = 2 and 8 = 1/2, B1 = -4 and = 1 etc. . Instead of
expanding in powers of (PPc) we may also try an expansion in i/p for p-°°:

f(p) = 1 — 1/2V , (2c)
a function which vanishes at p = Pc 1/4 as

f(p) = 2(P1)c) + , (2d)
i.e. B = 2 again but 8 = 1 instead of the correct = 1/2. Everybody will agree that such an
expansion for p-*co is no longer good for p near 1/4, and that the critical exponent 8 = 1 in
Eq. (2d) is erroneous. People who believe that percolation theory can be applied to gelation
may think that Eqs. (2c,d) correspond to classical theory and Eqs. (2a,b)to percolation theory
in this loose analogy. At finite PPc it is not longer clear which equation is better. For
example, at p = 2Pc = 1/2 the exact value of f(p) is 0.5, the 'correct approximation of Eq.
(2b) gives f(p) = 0 and the "wrong" approximation (2d) gives f(p) = 0.3, which is a better
approximation ! Thus far away from the gel point the results of this article should not be
applied; one has to restrict oneself to critical phenomena close to the gel point if one
wants to distinguish between different theories on the basis of critical exponents like .
(See Ref. 9 for more discussion of these points.) See in particular Schmidt and Burchard (27).

Another sort of critical phenomena, which we will also deal with, appears if we look at pro-
perties of finite macromolecules as a function of the number s of monomers in the macromole—
cule, at fixed P=Pc. (One can also look at such quantities at fixed PPC' but for our review
here this is not necessary.) For example, we may wonder how the typical radius R5 of a macro—
molecule with 5 monomers (called an s—cluster in percolation theory) varies with size s at the
gel point:

R = rs + r1sP1 + r2s2 + ... ; p >
p1

>
p2 . (3)

In such a case we define "critical behavior" as the leading term for s-°', i.e. as the proper-
ty of very large but finite macromolecules; in the example above this is the term rsP. Few
experiments seem to exist for this type of quantity, which is therefore mainly of theoretical
interest (Stauffer (5)).

After this preliminaries we may define the critical exponents 8, y, , v, p, a, T, t for P±Pc
and s-, respectively, by (Ref. 4)

G(ppc); DPwlp_pcf1; fp-pl ; sp—p°; E(p_pc)t (4a)

Rccs (p=p); NO5T(p=p); DPG1 (pap) (4b)

(For our purposes the most important exponents are 8, y and t.) Here G is the gel fraction
and vanishes for p below c' DPw is the weight—average degree of polymerization, s is the
number of multifunctional monomers in a typical macromolecules, i.e. in that size s=s of mac-
romolecules which gives the largest contribution to the sum for DPw, and is the average ra-
dius of such "typical" s—clusters. (One may also define s as the z-average of 5, and as the
z—average of the cluster radius.) R5 is the average radius of gyration for macromolecules, Ns
the average number of macromolecules with s monomers each, and E is the elasticity constant.
(Essam (5) discusses more precisely the relation between the correlation length and the
cluster radius R5.) In the last relation of Eq. (4b) we assume that gel fraction and molecu-
lar weight are measured simultaneously and that the usually unknown PPc is eliminated from
the relations. Thus from Eq. (4a) we find trivially

= (cS—1) . (5)
This relation is one of many "scaling laws" relating critical exponents. By assuming

N = —T
(6a)

for s-°°, p4p (Stauffer (5)) with a suitable "scaling function" f, and a similar expression
for the cluser radius one can derive easily (Ref. 4,5) in addition to Eq. (5):
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T 2+1/ó, o = 1/u, p = a') (6b)

(The number average A of some quantity A depending on the cluster size s is defined as

A = AN/N; its weight average is A AsN/sN, and its z-average is A = As2N/
/s2N , where all sums start from s = 1 and extend over all finite cluster sizes s. The sum

SN :quals the total number of monomers in the sol, since isolated monomers are counted as

clusters with 5 = 1; thus it varies as 1—G.)

Because of these scaling laws, Eqs. (5,6b) only three of the exponents P, y, 6, v, p, a, T
are independent. The number of independent exponents reduces from three to two by assuming
(Ref. 4,5) that the interior structure of very large clusters is for p above Pc the same as
that of the infinite network. Then a 'hyperscaling" law can be derived for d dimensions,where
d = 3 of course is what we are most interested in:

dv=y+2 (7)

Perhaps this hyperscaling law is less reliable than usual scaling laws, Eqs. (5,6). For the
exponent t the Skal-Shklovskii-De Gennes hypothesis (Ref. 10,3) is still controversial:

t = 1 + (d—2)v (8)

These scaling relation between , y, , and v are nothing peculiar to gelation. They have
been part of the standard body of knowledge of second order phase transitions (i.e. those
without latent heat) more than ten years, for example for the transition from a ferromagnet
to a paramagnet near the Curie temperature, or for the liquid—gas phase transition near a cri—
tical point. Table 1 summarizes this analogy and also compares the usual gelation notation
with the notation customary in percolation theory.

TABLE 1. Analogies in the critical behavior of different phase transitions.

Gelation Percolation liquid-gas ferromagnet

G P M0

DPw S K X

PPc TcT TcT

P = fraction of units belonging to infinite network; L\ = difference be-
tween densities of liquid and vapor; M0 = spontaneous magnetization;
S = s2N/sN; K = isothermal compressibility; x = isothermal susceptibi-
lity; = correlation length.

The concepts of critical exponents and scaling laws are believed to apply to all these transi-
tions, only perhaps with different values for the exponents.

A reader who wants to check these scaling laws and does not want in their derivation (Ref. 5)
to work with the general scaling function f in Eq. (6a) may simplify his task (Ref. 11) if he
is interested in critical exponents only: Take N55T for s<s, and N5=O for larger S. Then,

r 2 r 2 p+2—r r 2—T p —p/a
for example p—p LS RN/Ls NJs ds/)s dsosccIp_pI

, or p=av as required in

Eq. (6b). (Here the integrals run from zero to s only.) Of course this simple approximation
does not describe correctly the asymptotic exponntial decay of the number Ns of macromolecu-
les, which seems to follow log(N5)a-s above Pc and _511/d below PC (Ref. 5) for percolation.

The principle of universality asserts that the many different materials exhibiting critical
phenomena can be grouped into a few universality classes having the same exponents. For exam-
ple, all liquid-gas phase transitions in as different materials as helium, CO2 and water seem
to belong to the same universality class (Ref. 12). Also the Ising model for magnets (i.e.
the lattice gas approximation) belongs to this universality class according to our present
knowledge. On the other hand, isotropic magnets (i.e. the Heisenbergmodel) belong to a differ-
ent class than anisotropic magnets, and both do not belong to the same universality class as
percolation (see table 2 below). Systems in different dimensions, like the two- and the three-

dimensional Ising model, belong to different universality classes. Three-dimensional percola-
tion problems in general all seem to have the same exponents, but some exceptions exist (Ref.
13). Thus for our purposes we should regard universality as an empirical classification which
works for most cases.

Thus far this discussion has centered about the critical exponents, like 8. What about the
critical amplitudes, like B, or the position Pc of the critical point? These quantities are
not universal within one universality class, and if they can vary for different materials
they are more difficult to predict and therefore of less interest. In particular they are not
suited to distinguish between classical and percolation theories. However, certain combinati-
ons of amplitudes can be shown to be universal, the simplest being the "susceptibility ratio":
If DPw = C+(p-p)Y for p above PC, and DP = C (pp)1 for p below PC, then the ratio
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c+/c_ is hoped to be universal, i.e. to be the same for all members of one universality class.
After all these definitions, what do the values for these quantities look like in classical
and in percolation theory? This is discussed in the next section.

COMPARISON OF CLASSICAL AND PERCOLATION THEORY

Both classical and percolation theory usually assume the bond distribution to be random. Also
we neglect here the particular problem of very long chains with few crosslinks only and look
at the simple polymerization of f-functional monomers. Classical theory neglects all or some
possibilities for cyclic bonds within one macromolecule, whereas percolation theory knows no
such restriction. (If percolation is studied on the Bethe lattice or Cayley tree, Essam (5),
then cyclic bonds are impossible, too, and the results are equivalent to Flory-Stockmayer
theory. In this sense classical theory is a special case of percolation theory.)

Although percolation has been studied (Ref. 15) without restriction to a lattice, most of the
work and in particular the determination of critical exponents used periodic lattices. (It
does not seem to matter (Ref. 5,16) what type of lattice is used as long as one does not
change its dimensionality.) In that lattice case, percolation, or more precisely, bond perco-
lation between nearest neighbors, is defined as follows:

All lattice points are occupied, and between two lattice points
which are nearest neighbors one bond exists. This bond is ran-
domly closed with probability p, and open with probability i-p.
A cluster or macromolecule is a group of lattice sites connec-
ted directly or indirectly by closed bonds.

The infinite cluster, which appears for p larger than a percolation threshold Pc' then iden—
tified with the gel, i.e. with the infinite network of connected monomers.

Since in classical theory cyclic bonds are not allowed and other bonds are closed randomly,
the monomers in a macromolecule have to get the closer together the larger the macromolecule
is. On the other hand, for percolation the lattice structure takes into account automatically
the excluded volume effect, that no monomer can exist on the place already occupied by other
monomers.(We thank M. Adam for pointing out to us the importance of that difference.)
It turns out that in nearly all classical theories investigated so far the same critical ex-
ponents appear independent of dimensionality; in other words, all classical gel-to-sol tran-
sitions belong to a single universality class, apart from a few possible exceptions. In per-
colation theory as defined above, at least two different universality classes are known:
d = 2 and d = 3 systems. (Also higher dimensions have been studied and belong to different
universality classes, but they are of no relevance to gelation (Ref. 17). Table 2 summarizes
our present knowledge of these universal properties; for completeness we included liquid-gas
transitions (where the Van der Waals equation is a classical theory and the modern Ising mo-
del theories are the analog of percolation; the two—dimensional Ising exponents are exact,
the others are numerical estimates.)

Table 2 Numerical values of critical exponents and susceptibility ratio

Model y v t C/C_+
Classical 1 1 1/2 3 1

d=3,percolation 0.4 1.7 0.8 1.7 9' d=2,percolation 0.14 2.4 1.3 1.1 200

Classical 1/2 1 1/2 — 2
d=3,Ising model 0.3 1.24 0.63 — 5
d=2,Ising model 1/8 7/4 1 37.7

We see that for both gelation and liquid—gas transition drastic differenOes occur between clas-
sical and modern exponents. Since the two—dimensional Ising results are exact and not just a
spurious result of insufficient accuracy, and since three-dimensional liquid-gas experiments
agree roughly with the corresponding Ising exponents, we can conclude that classical theory
fails for liquid—gas transitions. However, for three dimensions the exponents are closer to
their classical values than in two dimensions. Similarly, three-dimensional percolation expo-
nents are closer to classical gelation than two—dimensional ones. The differences in the ex-
ponents are much larger than the differences in the exponents for linear polymers, where for
the radius of gyration R5 of chains with s links and excluded volume effects the classical
Flory theory predicts a value only two percent above the modern prediction:

Rcs°6(classical) , Rcs059(modern) (9)

According to Cotton (18) experiments were able to distinguish between these nearly equal expo-
nents and to. confirm modern theory. Thus an experimental distinction between the drastically
different percolation and classical gelation exponents should be possible, too.
(The reader can calculate exponents missing from Table 2 by scaling laws, Eqs. (5,6); for ex-
ample, = 1 + y/ is about 5 in three-dimensional percolation. Inspection of classical theory
shows that it also follows the scaling laws with the exception of hyperscaling: In 3 dimensi-
ons, dv is not equal to y+2 classically. Only in six dimensions is hyperscaling compatible
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with classical exponents, and one expects, Ref. 17, classical exponents to be valid for per—
colation in more than six dimensions.)

Why does classical theory follow the scaling laws, which usually are not employed in classi-
cal theories. The reason is simple: The cluster size distribution follows the assumption (6a)
and thus gives all the scaling laws following from that equation. Application of Stirling's
law to the factorials appearing in the classical results for N5 gives (Ref. 7,19)

Nccs5"2exp (—const (10)

and one immediately sees that this result agrees with Eq. (6a) if -r=5/2 and =1/2. Thus one

can regard classical theory as a special case of percolation theory apart from hyperscaling.
Only the exponents differ, not the scaling laws. Of course, for three- and two—dimensional
percolation the detailed shape of the scaling function f in Eq. (6a) is more complicated than
the simple Gaussian curve of Eq. (10). See Stauffer (5) for details.

The cluster radius R9 according to scaling should vary as s at P=P for large clusters,
which means

Rccs1'4 (classical) , Ros04 (percolation) (p=p, d=3) (11)

in three dimensions. Computer data confirm roughly the percolation prediction (Ref. 11). The
classical result, with its exponent 1/4, was also known already (Ref. 20) . Of course, no ex-
periment, however accurate, will ever confirm this classical predicition for s-*°°, since it
would require than the density within the cluster approaches infinity if the cluster size s
goes to infinity. This inconsistency vanishes for higher dimensions, and therefore it is
quite possible, although not yet confirmed directly, that the classical result in Eq. (11)
will be correct for d larger than six dimensions . In three—dimensions , on the other hand, the
cluster radius must increase at least as 1/3 for large s, a condition fulfilled only by

percolation theory.
The elastic constant in both classical (Ref. 21) and percolation (Ref. 3) theory varies as the

conductivity of a mixture of conducting and insulating bonds; only the exponents (3 versus
about 1 . 7) differ.
The viscosity (more precisely, the intrinsic viscosity) does not seem at present a suitable
quantity to distinguish different theories. One may assume the viscosity to be a suitable
average of the viscosity due to the contribution n5 of macromolecules of a given size s. Free

draining gives fl5xR and a weight average, the equivalent sphere limit gives fl5aR and a num-
ber average. (See Refs. 20,22,23 for details.) In the first theory we get

r 2 —2v 1.3
nLR5sN5(p_p)

= (percolation) and log(P_p) (classical);

in the other theory we have

n=R3N4s.N clog(p—p) (percolation) and finite (classical)

Closer inspection (Ref. 22) shows that the second choice should be better near the gel point
where the molecules become large. But still these theories neglect interaction betveen diffe-
rent macromolecules. Perhaps it is better to regard the viscosity as the analog of the con-
ductivity of a random mixture of superconducting and normal conducting links (De Gennes (24)).
In that phase percolation predicts the viscosity to diverge as (p_p)0.7 in three dimensions.
Thus the viscosity cannot help us much in distinguishing between classical and percolation
theory, at least not at present, since it is not yet understood theoretically.

DISCUSSION

With so widely differing predictions for the critical exponents it should, at first sight, be
easy to find from the existing literature which describes reality better. Why is this not the
case?

Experiment

In real experiments, most of the chemical literature in the past did not concern itself with
critical behavior as discussed here, and thus little information was gained by Brauner (25)
from a short literature review except that there does not exist. a wealth of information con-
firming the exponents cf the then widely accepted classical theory. More recent experimentsare reviewed by Adam (26) at this conference and give a more optimistic outlook. We thus
mention here only one recent result: The Freiburg group (27) measured gel fraction and mole-
cular weight simultaneously, Eq. (4b), for p above p , and found 6-14, in excellent agree-
ment with 6-1=4.0±0.8 from percolation theory but ngt with the classical prediction 6-1=1.
But other data agreed better with classical theory, and the exponent 6 was perhaps an "acci-
dent". Clearly progress could come quicker if in the future the chemical literature would
report sol-gel phase transition experiments in log-log plots near the gel point, after the
unique phase transition point has been determined as accurate and unbiased as possible.
The Colchester group (9) pointed out that experimental determinations of critical exponents
can be seriously wrong. Their discussion centers not on gelation but on phase separation in
polymer solutions, which we did not cover here. For gelation, the difference between the two
competing theories (=1.O classically, =O.4 for percolation) is larger and thus easier to
measure than for phase separation (=O.5 classically, =O.3 in modern theories) .Critical
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exponents for phase transitions other than percolation have been discussed in numerous papers
in the last 20 years, and in general an accuracy of ±0.1 can be achieved in good experiments
where the position of the phase transition point has been determined carefully.

In a few cases like the two-dimensional Ising model or the ideal Bose gas in d dimensions the
critical behavior can be calculated exactly (Ref. 28) and has been proved to differ from
classical theory, whereas it agreed within minor error bars with earlier numerical studies.
For gelation we already mentioned that the classical exponent p=1/4 (Ref. 20) for the radius
of macromolecules right at the gel point cannot be true geometrically in three dimensions
since it would require the density to grow to infinity. Thus the pessimistic view cited by
Gordon and Turkington (9) "Ulteriora in rerum natura nec evinci nec cognosci possunt" (free
translation: Don't trust those theoretical physicists) does not apply to all critical pheno-
mena.

Of course the Colchester group could be right (but so far has presented no evidence) that ge-
lation is a phase transition very much different from most other phase transitions, and that
it is not possible, by the general methods which were successful in other cases, to distin-
guish between the competing theories through careful experiments. If this statement were true,
it would still not justify the belief (Ref. 7) that critical phenomena are described by clas-
sical theory. Also, if one mistrusts the universality hypothesis, as the Colchester group (9)
does, then one should believe in that type of theory where universality is valid less, and
that is percolation; for in classical theory we have =1 for all dimensions, whereas in per-

colation theory varies with dimensionality d.

Theory

To what extent do computer simulations and other calculations on more realistic models than
percolation (as described above) confirm or reject one of the previous theories?

Most computer simulations for percolation assume a lattice where all points are equal. But
gelation happens not on a lattice, and is often a copolymerization of bifunctional and multi-
functional monomers. In a general field theory (Ref. 29) this copolymerization had the same
critical exponents as percolation, and that theory needed no lattice. More directly relevant
to three dimensions is a Z'bnte Carlo study of polymers growth reported at this conference
(Ref. 30) which showed that for rather large concentration of multifunctional units the corre—
lation length (average radius) is described by the exponent v=O.8 of percolation theory and
not the classical exponent v=1/2, whereas for a smaller concentration the exponent v is even

larger.

Percolation on a lattice usually allows bonds between nearest—neigbors only. No change in
critical exponents was observed thus far if bonds over larger distances were allowed (Ref.31).
In the limit of very long-ranged bonds the lattice structure becomes unimportant, and one
approaches percolation on a continuum (Ref 15). In contrast to earlier assertions by Stauffer
(4) based on the Ginzburg criterion, recent speculations (Ref. 31) suggest that even in this
limit the usual percolation exponents hold. A direct test by Monte Carlo simulation in a con-
tinuum is in preparation (Ref. 32). It seems likely, that the lattice structure is not very
important for percolation exponents, for it turned out to be quite unimportant for liquid—gas
critical points (Ref. 12) and linear polymers (Ref. 33, 18).

Simultaneously to chemical bonding processes, thermal concentration fluctuations can happen,
which may lead to a combination of gelation and phase separation. A recent classical theory
(Ref. 34) predicted a phase diagram which was confirmed experimentally (Ref. 35). At the ge-
lation line the same exponents as in simple percolation seem to result according to more de-
tailed theories of this site-bond percolation problem, which is a more realistic gelation
model (Ref. 36). In this review we ignore these complications, since H.E. Stanley is present
at the conference.

Both classical and percolation theory usually assume that each bond is closed or open random-
ly, without reference to its neighbors. If instead correlations exist between different bonds,
according to some thermal equilibrium probability exp (-energy/kT), then (Ref. 37) this cor-
related percolation problem does not blong to the same universality class as random percola-
tion. Perhaps correlated percolation is a better model for reversible gelation in thermal
equilibrium, and correlated site—bond percolation should be even more realistic.
For irreversible gelation, the macromolecules grow in time, and both percolation theory and
classical theory assume that a random distribution of closed bonds results. That assumption
is questionable; for example Monte Carlo simulation (Ref. 38) of such a growth process at
very lowp ("growing animals") gave macromolecules much more compact (p=1/d for d=2 and 3)than
those in percolation theory for the same p ("random animals"). Quite possibly (Ref. 39) both
percolation and classical theory are wrong for this reason, and we need a calculation as a
function of time for this kinetic process.
Finally, it should not be forgotten that this whole discussion centered about critical beha-
vior, and in particular critical exponents. If one is merely interested in the position of
the critical point, or in the structure of phase diagrams, then perhaps classical theory is
sufficient, even though exceptions exist for other phase transition (Ref. 40). Present perco-
lation theory does not make "universal" predictions for the percolation thresholdspc. See (15).
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CONCLUS ION

For liquid-gas transitions, experiments have indicated for nearly one century (see Levelt
Sengers (41), for a historical review) that classical theory is wrong; but these data were not
taken seriously for a long time because classical theory was widely accepted. Only for about
20 years, in a development widely ignored by the chemical literature on gelation, have the
critical exponents at these and similar phase transitions been measured carefully and taken
seriously without such theoretical bias. These experiments, and numerical "experiments like
series expansions etc, have in turn lead to the now widely accepted concepts of scaling, uni-
versality, and renormalization group, which can be regarded as a generalization of classical
theory. Gelation seems to be the last bastion of classical theory where the more modern con—
cepts are not yet fully taken into account. It would be nice if for gelation we would not have
to wait another 50 years until unproven theories are challenged by experiment. The progress
during the last year (Ref. 26) makes a much quicker resolution likely. At present the outcome
which seems most likely to me would be that for some materials classical theory results to be
valid, for other cases percolation—like exponents are found, and for some gelation experiments
both competing theories are wrong.

I thank W. Burchard for many critical discussions over the course of many years, and him,
M. Adam, A. Coniglio, M. Gordon, L. de Seze and H.E.Stanley for advance information on their
work, and W. Klein for correcting my English.

APPENDIX
A SHORT INTRODUCTION TO SCALING AND UNIVERSALITY

This appendix explains on an elementary level the formalism of modern phase transition theory
(without renormalization group technique). The reader can inform himself in Ref. (28) on appli-
cations and variants.
Let i and j denote points on an infinite simple lattice with coordination number z (= number
of nearest neighbors for each lattice site). Si is a variable which we identify with a spin
(localized magnetic moment) and which can take on the values +1 (magnetic moment upward ori-
ented) or -1 (spin down). Equivalently, S=l can mean an occupied lattice site and S=-l an
empty one in the lattice gas model, where molecules jump freely from one lattice site to the
other. An interaction energy J tends to make nearest neighbor spins parallel, and a magnetic
field H (corresponding to a chemical potential in the lattice gas) wants to align all spins.
In this Ising model the interaction energy E is therefore (with magnetic momentl =1):

E = —JS.S. — H. S. (Al)1J 1 1
where the first sum runs over all nearest-neighbor pairs. Thermal probabilities are proportio-
nal to exp(-E/kT) and have to add up to unity. Thus for 3 = 0, when we can look at each spin
separately, the probability for Si to be in the direction of the field H is
exp (H/kT) / (exp (H/kT) + exp (-H/kT)), and the average magnetization M per spin is the difference
of the "up"-probability and the 'down-probability:

M = <Si> = tanh(H/kT) (A2)

For JO the mean—field approximation (which corresponds to the van der Waals equation)neglects
the influence of Si on its neighbor S if one calculates the interaction energy -JSjS. Thus
S in Eq. (Al) is replaced by its average value <S>=M giving

E = ... S.(H+J. <S.>) = Hff. Si (A3a)

with the effective field

Heff=H+JjM=H+MzJ (A3b)

Comparison with Eq. (A2) gives immediately the self-consistent equation for M:
M = tanh(Hff/kT) (A4a)

For small M and small H we can expand the hyperbolic tangent:
M = H/kT -

4(H ff/kT) 3+ ... = (zJ/kT)M + H/kT -
4(zJ/kT) 3M3 + ... . (A4b)

With the abbreviations T=zJ/k and C=lTc/T we get for small C:
H/kT = CM + 4 M3 (A4c)

The spontaneous magnetization M0=M(H=O, T>Tc) is M0=/; the susceptibility X0=dN/dH at zero
field for T above Tc is X0=l/ckT, which is known as the Curie-Weiss law; and the critical iso-
therm H(TTc) is given by H/kTc= (l/3)M3.

If we define generally the critical exponents , y,6 by M00(—C)8, x0xc, and H(Tc)XM6 we thus
have found the classical exponents of table 2:

8 = 1/2, y = 1, 6 = 3 (A5)

These exponents are not changed if we generalize Eq. (A4c) to the Landau expansion
H/kT = acM + bM3, or: Free energy = fMdH = F0 + 4 acM + bM (A6)

with two constants a and b fitted on experiment.
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Since these exponents are known to be wrong we try to generalize these classical results. Ob—
viously we can write Eq. (A6) as

H/kT = M3f(e/M2), f(x) = ax + b

or

H/kT = M6f(c/Ml) (A7)

since S=3 and =1/2 classically. The scaling assumption now simply asserts that Eq. (A7) is
valid with general exponents and , and with a general scaling function , to be fitted on
experiment. Just as the classical result (A6) this scaling assumption is supposed to be valid
only asymptotically for small H, small M and small e.

Eq. (A7) is just one of many cases where a quantity Q depends on two variables x and y and is
assumed asymptotically to have the form

Q = xCf(y/x') (AS)

with two free exponents ct and ct' . For example, our Eq. (6a) for the numbers of macromolecules
is such a case, and the radius R5 may vary as

R5 = sP(EsG),
or the correlation function g (which for gelation is the probability that two monomers at dis-
tance r belong to the same macromolecule) is

-25/v 1/vg(r) = r 4(cr ).

As an exercise we now derive Eq. (5): The inverse susceptibility l/X0 varies as E' by defini-
tion and equals dH/dN; it is finite for M-*O and T above Tc. Thus the scaling function f in
Eq. (A7) must behave for very large arguments in such a way that H°M. This is the case if
f(x°)x since then HccM6(/Ml/S)S, or 1/XccCôi. Thus y5(6—l), as required.

Universality is a generalization of the Landau ansatz (A6) with its two free prefactors a and
b. It asserts that different materials can be grouped into few universality classes such that
within one class the scaling assumption (A7) takes the form

H/kT = aMf(bc/N1/) (A9)

where only the factors a and b, not the exponents and the function f, depend on the particu-
lar material.
Analogies between the magnetic language used here and other phase transitions can be seen from
table 1. For percolation, Stauffer (5) gives an introduction to the scaling theory of clusters.

We see that scaling and universality can be presented as a simple phenomenological generali-
zation of classical theory, with unknown exponents to be determined experimentally.
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