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CHARACTERIZATION OF SPECIAL INHOMOGENEITIES IN POLYMER NETWORKS
BY THEIR PROPERTIES IN THE PRE-GEL STATE
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ABSTRACT: A general theory for heterogeneously branched polymers on the
basis of cascade theory is presented and applied to the examples of fibrin,
glycogen and cured epoxide resins. Full agreement with experiment was achie-
ved for fibrin. The model of densely branched nuclei which are connected
through linear chains gives in the case of glycogen a correct description
of the_?ngular dependence of scattered neutrons only up to values of g =
0.05 A ', where g = (47/)1)sin08/2 with 0 the scattering angle. For the cured
epoxide resin the increase of M as function of € = 1- o/a_ or 1-g/g_ has
been studied. In all cases an agymptotic behaviour ~ 1/ ¢ is founS, but
characteristic deviations at larger ¢ are observed.

INTRODUCTION

In 1953 Professor Stockmayer (Ref.1) made an interesting remark at a confe-
rence on branching. He said, whenever problems appeared in the interpre-
tation of properties of linear chains, branching is made responsible for it
and is made thus a whipping boy. Today 30 years later we have a much deeper
understanding of branching and gelation phenomena, but still the situation
has only changed in that now the whipping boy himself is the point of con-
troversy. This controversy has been introduced mainly by theoretical phy-
sicists who claim that the so-called Flory-Stockmayer theory is in principle
wrong as it gives the wrong critical exponents (ref. 2-5). This claim is
based on the results of the critical exponents of thermodynamically rever-
sible systems and on the confidential belief in universality of these cri-
tical exponents.

It has been often overlooked in this dispute that the classical Flory-Stock-
mayer Eheory (Ref. 6,7) gives very satisfactory results for the increase of

, <8 )_ and the scattering behaviour of the products in the pre-gel state,
and moredver in simple systems also the gel point is correctly predicted
(Ref. 6,8,9). It should be stressed that up to now no other theory could
give a description of equivalent accuracy.

The actual polymer systems are mostly not simple in their branching mecha-
nisms, and here in fact, one has sometimes great difficulties to interpret
the experiments in terms of an idealized theory like the Flory-Stockmayer

or the percolation theory (Ref. 10,11). The chemists had already very early
conjectures on the reasons for the observed deviations, and they have in
fact many experimental indications for the presence of local heterogeneities.
Much effort has been invested in the past to determine such heterogeneities
uniquely and to a satisfactory accuracy, with little success so far (Ref.
12-16).

EXAMPLES OF HETEROGENEOUSLY BRANCHED POLYMERS

In this situation we thought it useful to prepare and study polymeric net-
works with well defined special heterogeneities which also can be treated
theoretically. I shall confine here to three examples.

One type of heterogeneity, we have in mind, is the curing reaction of poly-
mer resins. These resins are undercritically branched polymers. On curing
these densely branched nuclei become cross-linked through bifunctional linear
chains.Fig. 1. A typical example is the epoxide resin formed by the co-con-
densation of a di-epoxide with bis-phenol A. See Scheme 1. At first sight
only linear chains are expected; however, when an epoxide-group reacts with

a phenolic OH-group a new functional OH-group is created, and this again can
react with an epoxide-group though with a much lower rate than the phenolic
OH-group. This additional OH-group causes extensive branching and can be
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described satisfactorily by Gordon's branching or cascade theory (Ref. 32,34)

Chain lengthening step:

0 9}
/\
HO—R1-OH + CH2-CH-CHZ-O-R2-O-CH2-CH-CH2
OH [0}
———ELD HO-R,-0-CH,-CH-CH,-0O-R,-0-CH,-CH-CH
1 2 2 2 2 2
Branching:
-R1-O-CH2—?H-CH2-O-R2- + CHZ-CH-CHZ-O-RZ—
OH (o}
k2
—_— -R1-O-CH2-CH-CH2—O—R2
O-CHz-CH-CHZ—O-Rz-
OH

Scheme 1 : Formation of epoxide resin. k1 is the rate constant

for a chain lengthening step and k2 that for branching.
The mentioned curing reaction differs from the process treated by Dufek and
his coworkers (Ref.16, 18-20) who considered the curing of the bis-phenol

diglycidic ether, which is a monomeric resin only.

a b

Fig. 1 : (a) Model of a heterogeneous network; (b) detailed structure
of a highly branched nucleus.

The second example of a heterogeneously branched polymer which we studied in
detail is glycogen from a shell fish,called edible mussels.Glycogen is a
densely branched polysaccharide which is used in organisms as an energy
store. The chemical structure is given by Fig. 2. Please note, if we desig-
nate the functional groups in C1, C4 and C6 position of the sugar ring by

A, B, B, then A could react with B exclusively, and all other reactions
would not be allowed. Thus condensation of this monomer with unlike functio-
nal groups deviates substantially from the simple Flory-Stockmayer bran-
ching models, for reasons which I shall explain a little later. Also this
homogeneous branching model could be treated exhaustively by the cascade
theory(ref. 21). We have measured M , {S“) and the particle scattering
factor by light scattering and cohe¥ent nefitron scattering (Ref. 23), and
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fairly good agreement was found with our model calculations. See Fig. 6.
Then, however, we came across a paper by Schramm (Ref. 24,25), who deduced
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Fig. 2 : Chemical structure of a section of glycogen. The letters
A,B,C,D denote the functional groups.

from degradation experiments with the enzyme o-amylase that glycogen from
shell fish is strongly heterogeneously branched (Ref. 26). Here is not the
place to show how this could be prooved experimentally, I only wish to men-
tion that we repeated these experiments and found indeed about 22-30% of

the material resists a complete degradation. The resistant product has M =_q
48 kg/mol, M_= 6.48 kg/mol, and a diffusion coefficient of D_ = 7.21 Y10
cm2/s. It has a branching density where every third unit is a“branching
unit. For comparison,the molecular data f ?75 undegraded glycogen are

M, = 1630 kg/mol , M_ = 260 kg/mol, = 14.7 nm and D_ = 1.27 10
cm2/s. Thus, again we have a heterogenel%y of the type given By Fig. 1.
Here we are faced with the problem to derive a theory which takes account
of these heterogeneities and also gives the right angular dependence of the
neutron scattering experiments.

-7

The third example is again a biological material and is concerned with the
network that is formed during blood clotting. Experiment shows(Ref. 27-29)
that this fibrin network consists of long and fairly thick fibrillic elements
which are . linked through trifunctional branching points. The fibrils have
typical lengths of 550 nm and are thus in the order of the wavelength of

the light. Here the scattering behavior can no longer be described by a
homogeneous branching theory. As will be shown in the following,also this
type of inhomogeneity can be treated by the same theory as for the two other
examples.

TYPES OF HETEROGENEITIES

First, however, I have to make a few remarks on what we understand by
heterogeneity. Generally speaking, heterogeneity is defined by the sudden
change of a property when passing from one point in space to another one.
This definition embraces heterogeneities (i) in the optical density or re-
fractive index, heteronegeities in (ii) density and (iii) branching density.
In polymer science we have in addition to deal with (iv) heterogeneity in the
chain length which connect the branching points and (v) a heterogeneity in
flexibility. A rod for instance shows significantly different behavior than a
flexible Gaussian chain, and this last type of heterogeneity turns out to be
the most difficult to treat theoretically.

The simplest heterogeneous polymers are poly-co-condensates and they offer no
difficulties to the theory already in the old Flory-Stockmayer notation.
Heterogeneity in branching even in homopolymers occurs when substitution
effects become effective, i.e. when the reaction of the f similar functional
groups are changed after the reaction of one or more functional groups of the
same monomer. This sort of reaction has all features of a first order Marko-
vian process or a linear Ising model, and of course, a so called mean field
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theory will not be capable of describing the local heterogeneities. However,
the so called Galton-Watson process (Ref. 30), developed more than a hundred
years ago (Ref. 31), or what we call now the cascade theory (Ref. 32), is a
first order Markovian process par excellence (Ref. 33). In fact this first
shell substitution effect could be solved in 1964 by Gordon and Scantlebury
(Ref.34&35)with the aid of cascade theory.

This sort of local heterogeneity persists only over a short range, although
it has substantial influence on the gelpoint, and it has not yet been de-
tected directly by scattering experiments (Ref. 16). This will be possible
only if the wave-length used of the radiation source is in the order of the
correlation length of the heterogeneity. This situation is on the other hand,
different for the three examples mentioned before because here the domains of
different properties have dimensions in the order of the radiation source
wavelength.

THEORETICAL

Turning now to the mathematical treatment of the more extended heteroge-
neities we need a graphical representation by which we can make clear to
ourselves what is going on. Physicists prefer to use lattices in the three
dimensional space as a framework an which the various polymers and monomers
are thrown at random. Fig. 3.

Fig. 3 : Branched macromolecules placed on a lattice (left). Note:
The units in the shells of 1st, 2nd etc. next neighbours appear on
generations in the rooted-tree representation of the macromolecule.
The arrows indicate which unit was selected to become the root of
the tree.

However, this point is crucial, because we are dealing here with long range
correlations, we do not wish to introduce unconsciously a sort of
correlation in the very beginning of our theory. Actually the statistics of
how monomeric units are linked together has nothing to do with the Euclidian
space, but only with connectivity and this problem is only one-dimensional.
Therefore I prefer to use here the tree representation where already in the
graph it is made clear that we are dealing here with a probabilistic problem
rather than with a problem in space. A rooted tree is obtained by selecting
at random one monomeric unit and considering it as the root of the tree.
Instead of speaking in terms of 1st, 2nd etc. shells of nearest neighbours
we have now generations 1, 2 etc.

The next question is how to introduce long range correlations which would
describe the extent of a domain of the same property, expressed in terms of
generations. The answer is very simple and known to everybody from daily life.
Consider for instance the road network of a big town. In former days we were
allowed to use these roads in both directions with our cars, and to get from
one point to another we could choose the shortest path. However, the town
concils have been forced in most towns to introduce a system of one way roads
and no~left-turn restrictions. By this simple labeling a long range correla-
tion is introduced, because one may be forced to take a long distance path
although in an unlabeled network the path may be very short.

In terms of molecules this correlation may be illustrated by the polyconden~
sation of monomers with the two unlike functional groups C and D, where C

can only react with D and vice versa, but not with itself. By this re-
striction we have introduced some order such that the one chain-end bears
always a C group and the other a D group. The labeling is thus equivalent
to a correlation length which describes the extent of a domain with special
defined properties. The chains can now become coupled with domains of another
structure, for instance with a branched nucleus that was formed by the poly-
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condensation of monomers with a functional group A and two alike functional
groups B, where A had reacted exclusively with B groups only.Let us intro-
duce probabilities of reaction : y for the reaction of a C-group with a D-
group. (1-y)w, for the coupling reaction of the chain end-group C with an A-
group of the Eranched domain, and (1-y)w, for the coupling reaction of a D
chain-end with an A-group of the brancheé domain. Labeling is achieved by
multiplying vy with s, and (1-y)w, with s,, if the reaction of a C functional
group 1is considered, gnd similar Ean be dgne for the other functional groups.
We can now go one step further and sum all these labeled events which can
occur with one functional group, and if we make the convention that the dif-
ferent s-parameters can be differentiated within the range of s = O and

s =.1 we obtain a continuous function which is called a probability genera-
ting function. This proceedure leads for the four functional groups A, B, C
and D to the generating functions )

Fp = (1=a) (1-pp) + (1-a)ppsp + asg (1a)
Fy = (1-8) (1-pg) + (1-B)p S. + 8BSy (1b)
Fo = (1=y) (1-wg) + (1-y)wpsp + vsq (1e)
Fo= (1=y) (1=wy) + (1=y)w,s, + vsj (1d)

For normalization reasons we have added also that no reaction took place

at the end groups which have been multiplied with s © = 1 etc. The follo-
wing scheme gives a survey over the various kinds o? reaction and their pro-
babilities.
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Scheme 2 : Possible types of reaction between the various functional
groups of a tri-functional and a bi-functional unit,and the correspon-
ding probabilities of reaction.

The labeling technique has led us to the very powerful probability generating
functions by which even very complex probabilistic problems can be solved
with ease. .

MOLECULAR WEIGHT, MEAN SQUARE RADIUS OF GYRATION AND PARTiCLE SCATTERING
FACTOR

Applying the rules of generating functions (Ref. 33) we find that the weight
average molecular weight is given by the equation

(=]
M, = @-[1+ ggj;’”] B = (M, + SR M) (2)

where we have used a vector-matrix notation: - n = (n,,n ,...nN) is the compo-
sition vector and contains the mole fraction n, gf %on meric units of the
kind 1 in the polymer etc.,M = (M01, resoM N) is the corresponding co-
lumn vector of the N various®monomsr m8iecula9 weights, and the doubly under-
lined symbols denote matrices. The matrix C contains the various probabi-
lities of the two types of monomers with the different functional groups of
another monomer, and P is a transition matrix whose elements are the pro-
babilities of reaction of a special functional group of a monomer in the

n-th generation to another special functional group of a monomer in the

n+1 th generation,if one of the functional groups of the monomer in the n-th
generation was linked to the n-1 th generation. These transition probabili-
ties can be easily read off from the Scheme 2.
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A B C D
c 28 a 2(1-B)pc (1-a)pD Monomer 1 )
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28 (o] 2(1-B)pC (o] A functiigai g
_ group linke
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Eg. (2) expresses clearly the Markovian character of the branching process
and the relationship is very convenient in computational work. It also in-
cludes the random Flory-Stockmayer case of homopolycondensation of f-func-
tional monomeric units. Here we have only one component and the matrices
C and B reduce to scalars with the only elements of and o(f-1). Thus

Mw = MO(1 + af/ 1=a(f-1) ) = Mo(1+a)/ 1-a(£-1) (5)

which in fact is Stockmayer's famous formula (Ref. 7). Note the formal
equivalence between eq. (5) and eq. (2). The Flory-Stockmayer theory turns
out to be the degenerate Ising case where no correlation at all exists,
all groups of the f-functional monomer can react at random with any other
functional group of another monomer.

The particle scattering factor which describes the angular distribution of
scattered light or neutrons can likewise be expressed in the vector-matrix
notation, if ideal flexibility of the subchains in the polymer can be as-
sumed, i.e. Gaussian statistics. Then cascade theory shows (Ref. 22,36)

MP, (@) = (nfe +ce (1- 2)7'] M) (6)
t
with 0= 18 , &= ($1/02:03/.-.0y)
and ;= exp(-b5q’/6) (7)
where b. is the effective bond length of the j-th type of monomer and
q = (4n?A) sin 0/2 with 0 being the scattering angle.

The mean square radius of gvration follows erm the particle scattering

factor from the condition (52% = -3[&Pz(q)/dq ]q2=0 which yields

@%=p§ﬂy[g(yg'2g%]) (8)
with B =1-b and b= (b),b5,...b0" .

Egs. (2),(6) and (8) are very convenient for numerical calculations but are
restricted to Gaussian statistics for the subchains within the branched
molecule and can therefore not be applied to molecules like fibrin where

one component consists of rigid fibrils. No general solution for P_(g) and
&2, has been possible for rigid branched structures. However, if the differ-
ent domains of a heterogeneously branched molecule are linked through

freely moving hinges, a solution is obtained which has the same formal
structure but where the matrix P¥ has a different meaning.

= . L IP -1
MpP, (@) = (n-[o + co¥(1-pe" ™ ] m ) (9)
The diagonal matrix of our special example has the two different elements
(in general there are N elements)

¥ _ < n-1 . ¥ _5.on-1
D S S B M S Y (10)
with $p = <351n qrnb)/qrnb> and $n1 = <Xsin qrnl)/qrnl;> (11)
The matrix gﬁ*’is similar to P but now contains the coupling
x 0 o] 2(1-8)p o]
_ | o o} (1-8)ps  (1-a)p
B = (1—y)wA o] o] ¢ o] D (12)
0 (1=y)wg o] o

elements only.
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(a) (b)

Fig. 4 : (a) Representation of a branched block-copolymer as a full
rooted tree, (b) corresponding reduced rooted tree of the same polymer.

Fig. 4 shows the graph representations which correspond to the non-reduced
and the reduced matrices P and g*: Note the matrix C remains unchanged, thus
the graph of Fig. 4b does not fully represent the zero's generation correct-
ly. The factorization of eg.(9.) has great advantages. (i) If we know the
mechanism of polymerization of the various homo-blocks and if we know how
these blocks are coupled, then the solution is eg.(9), and we have no longer
to go through the details of the theory. (ii) The evaluation is greatly
simplified because of the zeros in the diagonal area of g*, and the inversion
of (1 - P¥) can in some cases be carried out by hand. (iii) The sums in

eq. (10) are easily solved for Gaussian statistics where b = (¢,,)0 and
on1 = ( ¢11)n , and for subchains which do not obey Gaussian statlgtics, the
sums can be approximated by Laplace integrals or directly calculated by
summation on a computer. The sums converge rapidly if the extent of the
homoblocks is not too large, i.e. if o and +y are not too close to unity.

APPLICATION TO FIBRIN AND GLYCOGEN

The transition matrix P in eqg.(4) contains 7 different link probabilities
which, however, are not fully independent of each other. The restriction
imposed on the branched domain that functional group A can react with a
group B only within the domain implies the necessary condition o = 28.
Furthermore we have to take into account that the number of B+ C linkages
must equal the number of C»B linkages, and similar holds for the A #D

bonds which yields

2(1-B)pc-wA = (1-a)prB (13)

For the remaining 5 link probabilities , five different properties have to
be measured. Suitable quantities are the composition of the copolymer, the
molecular weights M, and M, , the mean square radius of gyration (S%& and
the diffusion coefficient Dz of the individual blocks and the total polymer.
Finally, the angular dependence of scattered light or neutrons can be used
for a determination of the link probabilities. Often some of the link pro-
babilities can be determined from kinetic measurements. In many cases only
some of the mentioned quantities are accessible to measurement, and reasonable
assumptions have to be made. Such a case is met with fibrin and the interme-
diate fibrin structures because within a rather short time (about 5 hours)
before clot formation occurs the aggregation process could be followed by
light scattering only (Ref. 27). We thus had to use observations from other
experiments to complete the picture of a model. Electron microscopy (EM),
for instance, showed that the branching domains consist actually of one
branching unit, thus o = B = 0. The fibrin monomexn is a symmetric molecule
where two alike parts are held together by disulfide bonds, and this im-
plies equal reactivity of both ends of the rod-like molecule, i.e. w, = w,.
We made now the additional assumption that also the A-group of the b@anch?ng
unit has the same reactivity, i.e. pc = wp = wg. This leaves us with the
branching probability pc and the chain growth probability y as the only un-
known parameters, and these had to be found from the light scattering meas-
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urements. These LS measurements gave information on the increase of (S%%

as function of M, ; they further revealed a rod-like or fibrillic struc-

ture for the chains between the branching points and they showed that the
branching probability ps increases from a very low value at short length up to
pc = 1 when a certain rod-length is reached. Finally from the asymptotic
behaviour of the angular dependence of the scattered light a side-by-side
aggregation was found, and the extent of lateral aggregation could be de-
termined without assumptions. '

2
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Fig. 5 shows a series of experimental data of (S%& as function of M,. A
very satisfactory fit with our theory became possible with a fibril length
of 550 nm and a lateral aggregation, Lat, whicg proceeds with a power

a = 1.1 of the molecular weight, i.e. Lat = My~ (curve 2). Curve 1 shows
the increase of (S%& when no lateral aggregation is assumed and curve 3
results for a = 2.5 . The initial steep part of the curve is determined by
the fiber growth and the flat part at large M, is caused by the branched
structure. A much flatter initial part ‘results if flexible interconnecting
chains are assumed. Also the angular dependence is correctly described by
our theory with the same parameters. The curves have been published else-
where and are not reproduced here.

The angular dependence is a fairly sensitive check for the validity of a
model. This will be shown now with the example of glycogen. We have invested
much effort into the determination of the various relevant parameters. The
data of My , My and D, of highly branched macrodextrines allowed the
determination of o = 28 and the effective bond length of the repeating
unit, by = 1.27 nm. Furthermore, since no free chains are present in the
glycogen we have wg = 1, which means that all chains are coupled with their
C-end to a B-group of a macrodextrin. Then we have the experimentally deter-
mined mass fraction of the macrodextrins and this allowed the elimination

of pe. The remaining two unknown link probabilities wp and y had to be
found from the molecular weight and the mean square radius of gyration.

At a first sight this should cause no difficulties. However, the problem

is a little more complex since we do not know the correct value of the
effective bond length of the linear chain and we have to some extent to

take a certain excluded volume into consideration. Finally we do not know
the correct value of the effective bond length of the linear chain and we
have to some extent to take a certain excluded volume into consideration.
Finally we do not know whether the interconnecting chains are monodisperse
in length, i.e. y =0 , or polydisperse. A description of the structure by
theory appears therefore to be highly ambiguous. This is, however, not
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the case, because the conditions that none of the various probabilities
must not exceed unity implies strong restriction such that most of the
assumptions do not give a solution.This is to say, within the allowed

region of probabilities the radius of gyration is found to be either
too large or too short. We have not yet checked through all the various

possibilities and the result shown in Fig. 6 has only preliminary character.
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Fig. 6 :

The curve labeled"heterogeneous" was found with monodisperse chains with an

effective bond length of 1.2 nm for the monomer unit and with a maximum
excluded volume effect i.e. {89, chain?Pwld‘ According to this fit the
’ X

glycogen molecule consists of 31 macrodextrines which bear on the average
2.25 chains of 18 monomer units in length. The agreement is not fully
satisfactory, and this may result from an oversimplification of the present
model. Possibly the macrodextrins are connected through slightly branched
chains rather than through strictly linear chains. Further calculations are

in progress.

CURING OF EPOXIDE RESINS

The last example to be discussed differs from the two others because the
branched nucleus of the epoxide resin is itself already a co-polymer. We
have not yet enough experimental data at hand for a close comparison of
theory with experiment, but some theoretical aspects may be of interest. The
molecular weight can be calculated from eq. (2) with the matrices

(o} 2a (0] (e]
c = 2(1-p) B 2pB 2p8B 2(1-8)qg . (14)
[0} 2y (o} (e} i
and
(o] o (0] (0]
(1-p) B p(1+8) p8 (1-8)a
B = (1-p) (1+8) p(1+8) P 0 (15)

o] Y 0o 0
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Here are ao the extent of reaction for a phenolic OH group, g the extent
of reaction of an epoxide group, y the extent of reaction of an acid group
of adipinic acid, which is taken as curing agent. p is the probability of
reaction for a secondary OH group of the reacted epoxide group and (1-8)g
is the probability for the reaction of an epoxide group with an adipinic
acid group. The first row in C refers to bis-phenol, the second to the
di-epoxide and the third to adipinic acid. The four columns correspond to
reactions with a phenolic OH-group, with an epoxide group, with a secon-
dary OH-group of a reacted epoxide and to the reaction with the acid group
of adipinic acid respectively. In the non-cured resin, we have y = g = 0O,
i.e. the last row and the last column in the matrices C and P are missing.

First we notice that gelation takes place when My tends to infinity. This
leads to the condition of the gel point

l1 -2l =0 (16)

by which a critical extent of reaction for the phenolic OH group,?®.,or
of the epoxide group with an acid group of the curing agent q¢ is defined,
assuming full reaction of the adipinic acid, i.e. Y = 1.

Fig, 7 Plot of the relative
increase of the molecular
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In Fig. 7 we have plotted the relative increase M /M_ of the molecular
weight against € = 1 - a/a or ¢ =1-4g/q., rgspgctively. The para-
meter b = ky/kq is a measufe for the extent 8¢ branching and is closely
related to the branching probability p of the resin. M_ is the average
molecular weight of the epoxide and bis-phenol monomer units, and in the

cured resin, we have M_ = M inwhich is the weight average molecular
o w,resin

weight of the resin before curing. In all cases the same asymtotic be-
haviour at large M is_observed with critical exponents of v = 1 in the
relationship M _/M"~ ¢ Y. It is now of interest that (i) this asymtotic
behaviogf is re¥ch&d for linear, alternating copolymer resin not before
e = 10 “; (ii) a deviation towards higher M /M_ is obtained for the
linear product but a deviation towards lower"moRecular weight for the
highly branched resin; (iii) on curing the asymtote is reached earlier
with the higher resin molecular weight than with the lower one.

Measurements of M , {S% and D_ are in progress and will be combined with
kinetic measuremefits al%eady pe%formed. It will be interesting whether -+the
predictions of the theory are observed in the experiment.
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