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Abstract = Viscoelastic theoretical models (Ti) and wodel theo-
ries (MT) of microbrownian motion in polymer networks are con-
sidered, All dissipative effects in these models and theories
are determined by the forces of mutual friction between con-
tacting segments of the same chain or those of different
chaing, The intersegmental friction introduced in the Ti and
MT under consideration replaces the friction between given seg-
ment and surrounding medium (viscous matrix or solvent) usual-
ly used in most previous uT. According to Guth, hkark and Jaaes
the finite value of the average volume of a cross—linked poly=
mer is attained by the introduction of a effective internal
pressure which prevents the collapse of a Gaussian network,

For this class of TM local small-scale relaxation and diffusi~-
on properties are rather similar to the analogous properties

of a network immersed in an external viscous medium, In the al-
ternative case of long=time motions the introduction of mutual
intersegmental frietion markedly affects the properties and
characteristie times of relaxation processes, Intersegmental
frietion leads to the cutting—off of the relaxation spectra
on the side of large—-scale "inter-cell" relaxation tiues,

INTRODUCTION

The TM and MT for two= or three-—dimensional polymer networks actually taiking
into account the network structure were considered by many authors: Bueche,
Takemura, Ham, Gotlib and Salikhov, Graessley, Ronca and Allegra (See e.g. mo=
nogr aphs (1-33 and original papers (4~8). The basic element of this networks
was the well—=known Kargin-Slonimskii~Rouse multisegmental bead=and=-spring mo=-
del (or a model of Gaussian subchains). In this type of Tii the chains move on
the background of a viscous external medium (“solvent") which is stationary
or moves in the prescribed manner, In these TM the external viscous medium
acts as a distinetive physical quantity or in other words as an independent
dynamical variable, W.uhn and H.Kuhn and Cerf have introduced the internal
viscosity (or internal intra-chain friction) caused by hindered internal ro-
tation, This type of internal viscosity is a local dissipative effect depen—
ding only on short-range neighbour interactions in the polymeric chain,

Another important property of real polymer systems including cross—linked sys=—
tems that should be taken into account in the theory is the existence of the
finite volume of the polymer sample and the maintenance of its value during
deformation for an incompressible rubber—like polymer, In a self-consistent
molecular theory for a model of polymeric chains consisting of interacting
units with a finite eigenvalue (e.g. Ref,9) this condition would be fulfilled
automatically, However, in model (or phenomenological) viscoelastic theories
it is necessary to use simplified methods of taking into account the resulting
effects of finite volume, Only in this case is it possible to avoid excessive
mathetical difficulties in dynamical theory insurmountable for complex multi=-
particle systems, : :

Following the approach of Guth, James and Mark (10,11) the finite value of
the density of a polymer network can be ensured by an effective internal pres-
sure expanding the network and preventing its collapse, In this case at small
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relative deformations of a eross—linked polymer the vectors of mutual distan-
ces between the network elements vary about their average values not equal to
zero, It should be recollected that in an "unstrained" network embedded in an
external matrix (solution) the corresponding average values are equal to zero,

One can formulate some specific properties of Tii for polymer networks embedd~-
ed in an external viscous matrix, In these models two types of relaxation
spectra exist, intra-cell and inter-cell relaxation speectra, The longest times
of inter-cell relaxation spectra depend on the size of the polymer network,
These times rise proportionally to the square of the network dimensions. Very
high unrealistic contribution of longest intercell relaxation times to dyna-
mic compliance appears., The one~dimensional relaxation spectra of dynamic
compliance which appear at shear or uniaxial stretching are characterized by
singularity at long times corresponding to those of the stretching or shear of
the network as a whole,

It should be noted that in unstrained cross—liniked systeus without internal
pressure the situation is slightly different, In this case if a small veloci-
ty gradient of the external medium exists (Ref, 6,12), dynamic effects are
nonlinear in terms of the perturbations of normal coordinates even for the ef-
fects linear in terums of gradient, In a field of velocity gradient Gxe:x:p(iwt)
or Gz exp ((wt) terms x? or - Xz appear in the perturbed cistribution functi-
on, The field perturbs the wmean-square functions ( x* or Xz) rather than
the average projections of the coordinates of units. In contrast to strained
systems/'non-linear" (in the above sense) three-dimensional relaxation spectra
with some weaker singularity at long relaxation times are manifested in visco-
elastic functions (dynauic odulus or viscosity). However, in this case also
relaxation times depending on the size of a network are exhibited in the rele-
Xation properties of the network,

The comparison of results of the existing Ti and T of polymers in a highly
elastic rubber=-like state (including network systems) with the experiaental
data was performed in detail in wany papers, €.g., in well—known wonographs
by Ferry, Bueche, Vinogradov and Malkin (1~3). This comparison shows an in~-
teresting peculiarity, Virtually all the main relationships of dynaaical pro-
perties of cross~linked polymers (the shape of relaxation specira, the depen—
dence of relaxation times on the average molecular weight of the chain seg~
ment between neighbouring junctions, etc.) are fairly satisfactorily descri-
bed by the single~chain theories (or single~chain approximations). In most
theories at least in the first approximation, the correlations or coupling of
motions of different chains really included in a common three dimensional net-
work were not taken into consideration. Hence, we can say that polymer net—
work models with external friction actually taking into account collective
chain motions appear to be inadejuate in some details (e.z. in interpreting
the relationships of dynamic eompliance in the long=-time rangel What is the
reason for the apparent cutting—off of the network relaxation spectra and why
is the one—chain approximation so fruitful? An attempt at the explanation of
these paradoxical facts will be presented below on the basis of the theoreti-
cal models with a straightforwand introduction of intersegmental (or inter-—
chain viseous Iriction,

One of the major problems of Tii and MI' of microbrownian motion both in linear
and cross—~linked polymer systems is the adeqguate description or modelling of
volume intermolecular interactions exhibited during contacts between the seg~-
ments of one chain or different chains which cannot be reduced to external
friction, This problem is of particular importance for concentrated polymer
systems when a mobile solvent is absent or is present in small awmounts, How-
ever, in a concentrated poly:er system the velocity of the effective medium
in the viecinity of a given segment or chain should be a funection of the posi-
tions and velocities of all other segments or chains., In other words there
must be a definite correlation between the velocity of the medium near a gi-
ven segment and the velocities of the particles which form this medium. Ve
will consider the TM's of & eross—linked polymer that are a generalization of
a model of "contact® viscous interaction between contacting units introduced
recently by-Gennes (13) in the theory of the internal viscosity of the macro~-
molecules, In the class of TM in question it is assumed that the average va-
lue of the force of mutual friction of two segments is proportional to the
probability of the formation of contacts and the difference between the velo~-
cities of the particles,

In the most general case we must consider several types of intersegmental and
segment—solvent viscous frietion.
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1. Local short-range internal viseous frietion (. and H,Kubn, Certf).

2. Intersegmental gbut 1ntrachain§ triction (de Gennes),.

3. Intersegmental (and interchain) friction,

4, "Conventional" external friction between segment and solvent,

If the intermolecular contacts are long-lived compared to the times of dynami~-
cal processes under consideration they can be treated as permanent junctions.
In the opposite case of short~lived contacts additional viscous friction ari-
ses, Thus we can emphasize that each Tii of the network system should take in-
to acocount the following main specific features of polymer network (a) Perma=
nent junctions which lead to statistical (conformational) restrictions and dy-
pamic coupling between chain motions. (b) Transient intersegmental interacti-
ons between the contaeting segments which lead to intersegumental friection,

(¢) Steric repulsions which lead to a finite value of the network density
described by the effective internal pressure. (d) Entanglements, The conside-
ration of entanglements is a very important but special problem and is beyond
the scope of our treatment.

THEORY
In a MT for a viscoelastic Th of a three-dimensional network polymer system
with intersegmental viscous friction the equations of motion for segments

that are not located at network junctions are presented in tihe most general
form

% }zk P (oL} f. p 0B A,3) (Fray) p=Toasae) *

- > '
+ B (RRa4;0= T jipuTearjors) = Fovoun(61j.p)

(1)

e
where r?ﬂth is the radius vector of the p~th centre of viscous resistance
(p=th segment in a Rouse-xargin~Slonimskii model of Geussian subchains),
is the coefficient of mutual intersegmental friection of two neighbouring seg-
ments and F on is the random Brownian force., The value of the friction co-
efticient & B{s ghe funetion of the polymer concentration, the local confor-
mational and kinetic microstructure of a polymer chain and barriers to inter-
nal rotation in rotational isomerization. Subscripts {3 , j and p refer
to the numbers of network cells, different chains in this cell and units in
this chain, respectively, The values of P ({«}Jj,p /{g}, R,4)  determine
the average loeal concentration of segment (&py, R , 4 ) in the viecinity of
segment ({t}, j , o ). For a dense network the condition of the constancy
of compi;te local concentration of{all 2?1t§)near any segment of the chain is
fulfilled, i,e, oLy | 3 = conat,
{'3'§4f ({ 3/,/1 P / ij /
It should be noted that Eqs.(1) with constant coefficients independent of ti-
me p ({4}, ], p I{p3,k, 5 ) are valid only in a certain space-time range of
motions. In fact, if characteristic times of the smallest—scale local motions
are less than the lifetime of contact Q%h =0 ntac between a given pair of
kinetic segments, then, in the framework of tﬁgs mo&el the system is "frozen-
in® in some irregular conformation. For the class of local motions with cha~
racteristic times T jx> T pu tyre Secmental motion is developed in the sys-
tem and it is possible to inggoaﬁee in the viscoelastic thery the forces of
intersegmental friction. However, if the values of T are not too high, the
equilibrium distribution Pk near each given unit will not yet be estab-
lished during this time € ., The system remains dynamieally heterogeneous
even for an absolutely regular network, Strictly speaking, an explicit treat-
ment of processes of breaking and restoration of any pair of contacts ({4, j,
B8l h, b ) should be carried out as in the theory of networks with

reversibly broken junetions. Finally the condition of the fulfillment of Bq.l

for a given type of motions at a characteristic time T reduces to the
inequality

T > Trecomsination (J &) > Tr‘up'éure ( j,'ﬁ) (2)

In a regular Gaussian network (e.g. a cubic or tetrahedric network) of a fle~
xible-chain polymer containing N segments between the junctions the number of
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chains included in an average volume occupied by a given chain is proportio-
nal to N*2, The number of cells -n (along a given direction) the chains of
which predgminan 1y occupy the volume of a given chain is N2/®, In other words
at N ~ 10° = 10" the number n is not great and only those chain units in the
cells of the network that are not very distant from each other should be in~ -
cluded in inequality (2), This means that Eq.(1) is best applied to slow rela-
tively large~scale modes of microbrownian motion with the characteristic size
of the order of magnitude of the cell size or greater by a factor of n~ N%/6,
The value of n determines the size of the effective volume of viscoelastic
correlation (in cell units) that will be discussed below, At the same time,
the use of Eq.(1) for small-scale motions also gives physically correct re-
sults averaged over dynamically heterogeneous parts of the network, Actually
Bq.(1) can be used for a fairly wide range of motions with T > 1? upture
by the smoothed description of dynamic properties of the networﬂ. :

At a given density of units in a polymer the value of P({et},j,p (8} k,3) de-
pends on the number of units in the chain between junétions, N, and the funo~
tionality and topology of the network. The guantitative measure of the degree
of average chain stretching by an internal pressure in a network of finite vo-
lume may be presented by parameter

N .-.[53:3/<h*">] ~ NP~ (1/n/)9'i 3)

This quantity )/ is the ratio of the square of the average projectiog of a
particular chain on the axis _of the laboratory coordinate system Ax< to the
mean-square chain length < h=), For phantomn Gaussian networks expanded by in-
ternal pressure the distribution of distances between each pair of units (or
network junctions) remains a Gaussian distribution with respect to the avera-
ge distance for a given pair, The dispersion of this distribution is indepen=-
dent of the average distance and remains the same as for an unstrained Gaussi-
an network, in accordance with the results obtained by James and Guth, Ronca
and Allegrd (Refs,10,11,8).

For units of the same sufficiently long éhain or for neighbouring chains with
a common junection .

/O(/,o,é)"‘q"slzc (c},N, }/) | (4a)

where is the number of units separating two chosen units ( =1p-41)
in one chain or q= +9 it and 9 are counted from the same junction
for adjoining chains). Here G(q 1s a weak function of 9 N and the topolo~
gy of the mutual position of a given pair of units, For units of chains be~
longing to cells located far from each other along the network, {ol} (o, 4,
a.; and {p} (Jgi, P2y Ps ), the value of P weakly depends on the position
of a unit in the chain and is mainly a function of the square of the average
distance between a given pair of cells in}, 13

= 2 , ,
-R{d},{p} ~ (d.t"ﬁi)%*(‘lz_ﬁz)&* (3 “ﬁs)b
p (143 {ph) ~ ex/af- ﬁﬁl,,,ﬁ;/zzs] (48)

A~ )/~'L~ N 4/

wherein numbhers 0(, for & cubic lattice determine the number of the cell
along a given J~th axis, The dispersion of the Gausgian distribution (4B)
does not depend on Ry,, 4} (or on {&) and f,s} ) for distent eells,
The quantity A ~ y-i,,,ﬁ}hg « The (&,) as a funetion of R,z decreases
exponentially with a characteristic scale of decreaseV s ~ N'176= 1L equal
to the size of the above mentioned volume of viscoelastic correlation,
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The distributions of the values of Ops are different for units with different
distance from the network junction. This leads to dynamic heterogeneity of the
chain, However, evaluations show that in cross—linked unswollen polyaers with
constant local density this dynamic heterogeneity is not high. In this case
the properties of symmetry, the classification of normal modes and eigenvec—
tors of Eq.(1) are close to those far regular spatial cross—linked systems
consisting of homogeneous chains between the junctions (4=~6). Eigenveetors

and normal modes of regular cross—linked TM can be used as a first approxima-
tion., Each normal mode will be detgrmined by inter— and intra-cell wave vec—
tors, The inter-cell wave vector 1s given by three components ©4,0:,65
determining the phase shift between the displacements of neighhouring network
Jjunctions, The intra-cell wave number W deterwines the phase shift between
the displacements of neighbouring units (segments) of a given chain, For a cu=
bie network model consisting of homogeneous chains in which all units are un-
der the same dynamic conditions, normal modes, are given by (Ref.6)

Xp (054,043,"('3,/') =§€xp (4,8 +d:6,+0l363) x (
6,Y 5)

* (A *P+ Biem ¥P)~ exp (-A(8¥7¢)

where a(_;,,olz,ol,; is the cell number, subscript j refers to the j=th chain of
the cell, A 1s the reciprocal relaxation time for a given mode (A = T+ )
and constants Aj and Bj are found by solving the corresponding secular equa-
tion under certain boundary conditions in network junctions,

For long chains 1t is often convenient to pass from a discrete to a continu-
ous chain model (see Ref.5,6). The substitution of the solution in the form
of Eq.(5) into Eq.(1) makes it possible to obtain to a first approximation
the expressions for the A elgenvalues and relaxation times T for vari-
ous types of motion., The use of boundary conditions at network junctions
leads to the establishment of a definite relationship-between Y and {64,
6,63} Thus, for a cubic lattice the relationship between ¥ and O 1is gi-
ven by (5,6)

Y= (2mh IN)+ (1 /N)arccos [ 4 (cos BuvcosOprcos 65)] (6

where k = 0, ... §/2 and e; are the wave numbers for inter—cell wmotions,
Apart from normal modes (6) ‘a double degenerate set of intra=-cell motions
exists :

v'= Th/N+4 (k=1,..N)

For these types of motions network junctions do not move,

As a result of the above substitutions approximate expresgions for relaxation
times T (¥) are obtained

e =) . LK (4 - cesV) .
A(V)=T () L‘<J0(é',0[)> (1)

X -

where § <‘P('y,' 9)> 1s the eigen-value of the dissipative function of the
system for a given normal mode averaged over the position of the segment in a
dynamically heterogeneous chain, In other words

C<pd»~URT” o (8)

where U are the eigenvectors (Eq.5) and R is the matrix of the dissipati=-
ve function of the system when only intersegmental frietion exists, The ana-
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lysis of fairly cumbersome expressions for Tf(ﬂf) is based on certain assump-
tions valid either for small-scale motions the scale of which is much smaller
than the chain size between junctions or for slow large-~scale motions the sca-
le of whieh greatly exceeds this size, Naturally, for the motions the scale

of which coincides with the distance between junections only qualitative eva~
luation of properties can be obtained,

RESULTS AND DISCUSSION

Spectrum of relaxation times

In the Ti investigated two ranges of relaxation behaviour appear for the pro-
cesses and times of microbrownian motion,

1) The range of predominantly intra=-cell small-scale motions for which the va=
lue of k (from Eq.(6)) is much greater than unity and the main contribution

to ¥ 1s that of the intra=—cell term 2 ¥ k/N, For these normal modes the
phase shifts of segments of other chains are mutually compensated with res-
pect to a particular segment of a given chain (phase randomization)., This com~
pensation is carried out both by the sumnation of contributions of  segments

of one of the chains with which this chain interacts and by the summation of
contributions of different chains with their phase factors expl[i 6 (d-4)]
The fractions of contacts with chains "foreign" to a given segment are muech
greater by about an order of magnitude or even more) than those of contacts
between the segments of a given chain., This follows from both the theoretical
evaluations of the relative contribution p k ©0f the segments of the same
chain to the local concentration near a givgn segment (Ref,14) and an analy-
sis of ESR experimental data for concentrated solution of spin-labeled poly-
mers (Ref,15(a)) and of intrachain quenching in macromolecules with lumines~
cent markers (Ref.15(b)),

The randomization of viscous interactions of a given seguent with the contac—
ting segments of a given chain occurs to & lesser extent tham in the interac—
tion with the segments of other chains, However, the relative contribution of
intra-chain interactions to {< P(¥)> 1s small and at low Y 1t is of
the order of magnitude of Y %2 (Ref.(13)). On the whole, it may be said that
for small-scale motions the relexation behaviour of the chain (i.e. the depen~
dence of 1/T(Y) ) is (to within the values of ~ sin N¥/NYW) such a be~
haviour as though the chain were located in a viscous matrix with external
friction . This friction is determined on the average only by the velocity of
the particular segment and is independent of the relative velocities of moti-
on of different segments, We also suggest that for macromolecules immersed in
concentrated polymer network the intrachain short-range internal viscosity
§of Kuhn~Cerf type) is low,

2) The second range of relaxation behaviour is that of large=scale inter—cell
relaxation processes the scale of which is larger than the cell size, For the-
se processes the change in the displacement phase in the saue chain is not
great and the units of several chains adjoining one junction may be oconside-
red as one subparticle with the mutual friction coefficientgN, These sub-par=-
ticles form a quasi-~elastic large-grain phantom network the junctions of
which interact with the nearest neighbours at an elasticity constant Kett"
(K/N). The viscous interaction between the particles is determined by afp~~
N& . In this case the low-frequency behaviour of the simplified T of poly=-
mer network is described by the motion of a coarse—-grain network, The dissi=~
pative properties of this network are determined by the mutual "interchain®
friction of it junctions, The }D(ehjs) coefficients for this model net—
work, i.e., for relatively slow large—scale motions of a real network, are
expressed in the foru_pf Eq.(4). Characteristic relaxation times are determi-
ned by wave vectors only and reduce to

;é?g - 231<gﬂr(<3” ceﬁé&"caséﬁa-c4462;) (9)
o~ 4: - S )

/ ey {i - e'xf[- 7(91,*32,*93 )]

where the lz paramneter is equal to coast. ’X"‘, i.e, 'Z ~N4/5 .

1t follows from Eq.(9) that in the range of slow large=scale motions the exis~
tence of mutual intersegmental, or (which is more precise for these motions)

"interchain" friction, greatly affects the dispersion dependence T‘(1§) and
the shape of relaxation spectra for various viscoelastin functions,
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The relaxation spectrum is found to be cut off at souwe maximum time, T,y

Tmmc_='Ce§fN"3~(C/K)N"'” (10)
where rettf" (Cess/Kesy) ~ (C/K)Nz

Here T s the characteristic relaxation time for the finite viscoelas~-
tie oorrefgtion volume For slow large—scale motions when the scale of motion
becomes greater than the characteristic length of viscoelastic correlation
the above TM behaves like a set of Kelvin-Foight elements, In this limiting
case only the effective internal friction between neighbouring subunits
appears,

Diffusion properties and viscoelastic relaxation functions of TM with inter=-
segmental and interchain friction

It follows from the foregoing discussion that 1t is most iaportant to take
into account intersegmental friction in the consideration of the effects cau-
sed by slov inter—cell motions the scales of which are comparable to or ex-
ceed the size of the network cells or the characteristic length of viscoelas—
tic correlation, Thus, the relationships of diffusion motion in the absence
of external fields, e.g. for the mean—square displacement of & network junc=
tion differ from those for a cubic¢c network immersed in an external viscous
matrix (Ref.8) for t 2 T e In particular, these differences will be shown
by the properties of the B8 uctural factor at dynamic scattering of neutrons
for low values of wave vector and high values of time, For a network with in-
tersegmental friction, just as for that with external friction, the mean-squa-
re displacement of a junction tends to a finite value with increasing time
but now the value of l(&%lz”—(ka&ﬂl decreases as a function of time much
faster (according to the exponential law) than for a three-dimensional (cubie
or tetrahedral) network "floating" in solution. In tie latter case the value
of <3130~ 31Vl decreases according to the power law ¢~ %2 , The cor-
responding differences also become apperent in the long-time behaviour of the
struetural factor e.g. for non-coherent neutron scattering, It can be noted
that long-time diffusion behaviour of the above TM depending on the cut—off
of the relaxation spectra is very similar to that of the tree-like network
considered by Ronca (Ref.16).

The discussion of a model of cross-linked systems with mutual intersegmental
friction can also be used for infinite tree-~like networks without rings., It
should be noted that the theoretical analysis carried out hy Ronca (16) should
be supplemented by the consideration of long times corresponding to the stret-
ching from the ends of long tree~like parts of the network, Unlike the tiues
of the relaxation spectrum considered in Ref,16 , these tiwmes will depend on
the size and molecular weight of the network as a whole,. iioreover, it should
be taken into account that, generally speaking, steric limitations prevent
the formation of large isotropic steric branched systeus.

A strong exponential dependence of the expectation time of great fluctuations
of size (or voluue) of a network cell on the fluctuation amplitude is also an
interesting feature of cross—linked polyuer structures,

The greatest differences between the dynamic properties of cross—linked Tii
exhibiting intersegmental friction and "expanded™ by internal pressure and
those of Tl immersed in the external viscous matrix become apparent in the
long=-time behaviour both when the networik is deformed uniaxially by the for=-
ces applied to sample boundaries and in simple shear deformation (HRef.l7). It
should be noted that for the simplest cubic Tii consisting of quasi-elastic
Gaussian chains both types of deformation are characterized by the identical
relaxation spectrum (calculated in the simplest manner for dynamic complian-
ce), This is due to the fact that for Gaussian TM of finite voluwe with line-
arized equations of motion, i,e, in the linear range of the stress—strain
plot, the change in the direction of the system of external forces does not
change the equations of motion and the forms of boundary conditions., As al-
ready mentioned, in both cases a one-dimensional relaxation spectrum appears,
The shape of the relaxation spectrum M. ( (w5 ) for low=frequency motions is
of a typically one-—dimensional type. For complex compliance the value of

K () Teduces to

M (iw)= CZ cos* e 1 (11)
(ey) 2 c + ’C"{QJ)

PAAC 53:8 - F
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where €O 1s the frequency of the external field and the summation is carri=-
ed out over all the values of the wave number G..

1f the external forces are applied to a cross—~liniked Tid as is shown in Fig.l,
then, at uniaxial stretching the motions with &,+ O will appear and O;= B;:
= Wwhereas at shear deformation motions with 63 not equal to zero will

develop and O, = §= 0.
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Fig. 1. Schematic of uniaxial %= we and shear €& <P defor-
mations of polymer network.,

In the TM class in question the relaxation spectrum for compliance is found
to be limited consists virtually of the one~dimensional relaxation spectrum
ot a single chain (for high-frequency contribution; iamersed in a viscous mat-
rix usually described in the literature (1-3,12,17) and the cut off low=-fre-
quency relaxation spectrum,.

The'high-freguency" part (although this division is tentative) ranges from
T n.v(]{/é to T gpp ~(K/S)N#* and the low-frequency contribution ran=-
gesm}rom Tatt~ (K/ISN? {o T nax ~ (KIS)NEP . 1t should be remeubered that
if the uniaxial streteching of g‘xnetwork immersed in a viscous mediuwm is con-
sidered, the "one~dimensional' type of deformation would lead to the appea~
rance of unrealistic values of T max Proportional to the square of the couw-
plete number of chains along a given network direction. The relaxation beha=-
viour of the polymer networik with intersegmental friction is completely de=
termined by the relaxation properties of the finite volume of viscoelastie
correlation in the polymer. The long-range correlations, aotions and times
are cut-off, This faect explains the above-mentioned paradoxical result regar=
ding the approximate validity of “one-chain" models for long-~time relaxation
properties,

In conclusion it should be noted that in the framevorik of the TM and uT con—
sidered here 1t is also possible to take into account gualitatively mutual
steric and topological limitations to chain motion, These limitations have
been reflected in the concept of the "wmotion along a tube" developed by Ed=
wards (18), de Gennes (19) and other authors. To utilize this concept one can
use a modified dissipative function taxing into account the liwmitations to
collective large—scale chain motions caused by the presence of other chains,
At the same time this approach permits the retention of the advantages of vis-
coelastic models,
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