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Abstract — Viscoelastic theoretical ixiodels (TM) and iode1 theo-
riMs (hIT) ct niicrobrownian motion in polymer networks are oon
sidered. All dissipative effects in these models and theories
are determined by the £w'ces of azutual friction between con
tacting segments of the sazae chain or those of different
chains. The interseguenta1 friction introduced in the T1 and

under consideration replaces the friction between given seg—
inent and surrounding medium (viscous atri or solvent) usual—
ly used in most previous T. According to GaUl, hark and J&aes
the finite value of the average volunie ot a cross—linked po].y—
iner is attained by the introduction of a effective internal
pressure which prevents the collapse of a Gaussian network.
For this class of PM local small—scale relaxation and diffusi—
on properties are rather similar to the analogous properties
of a network iiziniersed in an external viscous ediuei. in the al
ternative case of long—time motions the introduction of mutual
intersegmental friction markedly affects the properties and
characteristic times of relaxation processes. Intersegmental
friction leads to the cutting—off of the relaxation spectra

on the side of large—scale thinter_celll relaxation times

INTRODUCrT ION

The TM and kIT for two— or three—dimensional polymer networks actually taking
into account the network structure were considered by many authors: Bueche,
Takemura, Ham, Gotlib and Salilthov, Graessley, aonca and Allegra (See e.g. mo-
nographs (1—3) and original papers (4—8). The basicelement of this networks
was the well—known kargin—Slonimakil—Rouse inultisegniental bead—and—spring mo-
del (or a model oi Gaussian subchains). In this type of T the chains move on
the background of a viscous external medium (L*solventtL) which is stationary
or moves in the prescribed manner. In these TM the external viscous medium
acts as a distinctive physical quantity or in other words as an independent
dynamical variable. W.iO.thn and H.uhn and Cerf have introduced the internal
viscosity (or internal intra—chaln friction) caused by hindered internal ro-
tation. This type of internal viscosity is a local dissipative effect depen
ding only on short—range neigibour interactions in the polymeric chain.

.nother important property of real polymer systems including cross—linked sys—
teius that should be taken into account in the theory is the existence of the
finite volume of the polymer sample and the maintenance of its value during
deformation for an incompressible rubber—like polymer. In a self—consistent
molecular theory for a model of polymeric chains consisting of interacting
units with a finite eigenvalue (e.g. ReX.9) this condition would be fulfilled
automatically. However, in model (or phenomenological) viscoelastic theories
it is necessary to use simplified methods of taking into account the resulting
effects of finite volume. Only in this case is it possible to avoid excessive
mathetical difficulties in dynamical theory insurmountable for complex multi
particle systems.

Following the approach of Guth, Jaaes and Mark (10,11) the finite value of
the density of a polymer network can be ensured by an effective internal pres-
sure expanding the network and preventing its collapse. In this case at small
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relative detorinatlons of a cross—linked polymer the vectors oX mutual distan—
ces between the network elements vary about their average values not equal to
zero. It should be recollected that in en lunstra1nedL network enibedded in an
external matrix (solution) the corresponding average values are equal to zero,
One can formulate some specific properties of or polymer networks ernbedd—
ed in an external viscous iiatrix. In these models two types of relaxation
spectra exist, intra—cell and inter—cell relaxation spectra. The longest times
of inter—cell relaxation spectra depend on the size of the polymer networ1.
These times rise proportionally to the square of the network dimensions. Very
high unrealistic contribution of longest intercefl relaxation times to dyna—
mule compliance appears. The one—dimensional relaxation spectra ot dynamic
compliance which appear at shear or uniaxial stretching are characterized by
singularity at long times corresponding to those the stretching or shear of
the network as a whole.

It should be noted that in unstrained cross—linked systams without internal
pressure the situation is slightly diUerent. In this case if a small veloci—
ty gradient of the external. medium exists (flef. 6,12), dynamic effects are
nonlinear in terms of the pert'urbatins of normal coordinates even for the ef—
fects linear in teriis oi gzadient. In a field of velocity gradient Gzep(iw)
orGzezp(iu')terms or —xz appear in the perturbed distribution funoti—
on. The field perturba the uean—square functions ( xz or xz) rather tnan
the average projections of the coordinates of units. in contrast to strained
systems'non—linear" (in the above sense) tbree—dimmiensional relaxation spectra
with some weaker singularity at long relaxation tines are nianifested in visco—
elastic functions (dynamic nodulus or viscosity). iowever, in this case also
relaxation times depending on the size of a network are exhibited in the rela—
zation properties of the network.
The comparison of results of the existing. TM and iT of poiyaers in a highly
elastic rubber—like state (including networi systems) with the experimmiental
data was pertormied in detail in n any papers, e.g., in well—kno mionog'aphs
by Ferry, Bueche, Vinogradov and Malkin (1—3). This comparison shows an in—
teresting peculiarity. Virtually all the niain relationships of dynamical pro—
parties of crosslinked polymers (the shape of relaxation spectra, the depon—
dence of relaxation times on tne average miolecular weight of the chain seg—
muent between neighbouring junctions, etc.) are fairly satisfactorily descri—
bed by the single—chain theories (or single—chain approximations) . In most
theories at least in the first approxiuation, the correlations or coupling of
motions of different chains really included in a common three dimensional net-
work were not taken into consideration. Hence, we can say that polymer net-
work models with external friction actually taking into account collective
chain motions appear to be inadequate in some details (e.g. in interpreting
the relationships of dynamic compliance in the long—time range,). What is the
reason for the apparent cutting—off of the network relaxation spectra and why
is the one—chain approximation so fruitful? An attempt at the explanation of
these paradoxical facts will be presented bel on the basis of the theoreti-
cal models with a straightforwand introduction of intersegmental (or inter—
chain viscous friction.
One of the major problems of TM and ill' of microbrownian motion both in linear
and cross—linked polymer systems is the adeqmate description or modelling of
volume intermolecular interactions exhibited during contacts between the seg-
ments of one chain or different chains which cannot be reduced to external
friction. This problem is of particular importance for concentrated polymer
systems when a mobile solvent is absent or is present in small amounts. how—
ever, in a concentrated polymer system the velocity of the effective medium
in the vicinity of a given segment or chain should be a function of the posi-
tions and velocities of all other segments or chains. In other words there
must be a definite correlation between the velocity of the medium near a gi-
ven segment and the velocities of the particles which form this medium. Vie
will consider the TM's of a cross—linked polymer that are a generalization of
a model of tcOntactfl viscous interaction between contacting units introduced
recently byGennes (13) in the theory of the internal viscosity of the macro-
molecules, In the class of TM in question it is assumed that the average va-
lue of the force of mutual friction of two segments is proportional to the
probability of the formation of contacts and the difference between the velo-
cities of the particles.

In the most general case we must consider several types of intersegnental and
segment—solvent viscous friction.
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1. Local short-range Internal viscous friction (. and ff.icuJrn, Cerf).
2.Intersegmental (but intrachain) friction (de Gernies).
3 • Intersegmental (and interchairi) friction. .

4. SConventionalit external friction between segment and solvent.
It the intermolecular contacts are long—lived compared to the t1zes of dynami
cal processes under consideration they can be treated as permanent junctions.
In the opposite case of short—lived contacts additional viscous friction sri—
sea. Thus we can emphasize that each TM of the network systeia should take in—
to account the following main specific features of polymer network (a) Perina—
nent junctions which lead to statistical (conforinationai) restrictions and dy—
namic coupling between chain motions. (b) Pransient intersegmental interacti—
ons between the contacting segpients which lead to intersegsental friction,
(c) Steno repulsions which lead to a finite value ot the netwer density
described by the effective internal pressure. (d) Entangluents. The conaido—
ration of entanglements is a very important but special probla anl is beyox
the scope of our treatment.

THEORY

In a itT tor a viscoelastic TM of a three—dimensional network polymer systn
with intersegaental viscous friction the equations oi riotion for segments
that are not located at networ& junctions are presented in tne most general
form

c:z, (fdJ1j1 p /(83 4 ,:$)
— ) I

(ft1k,

÷ K =

where r(IPJ•J,p is the radius vector of the p—th centre of viscous resistance
(p—th segment in a ouse—iarginSlonimskii model of Gaussian subchains),
is the coefficient of mutual intersegmental friction of two neighbouring seg-
ments and 9. w is the random Brownian force. The value of the friction co-
efficient 1 he function of the polymer concemtration, the local conf or—
mational and kinetic microstructure of a polymer chain and barriers to inter-
nal rotation in rotational isomerization. Subscripts , j and p refer
to the numbers of network cells, different chains in this cell and units in
this chain, respectively. The values o p(t.I3,.j,p I() A, 4) determinethe average local concentration of segment (Cp, , ) in the vicinity of
segment ()6j p ). For a dense network the condition of the constancy
of complete local concentration of all units near any segment of the chain is
fulfilled, i.e. ,p((43,j,p/(pJ1 conat.

It should be noted that Eqs.(l) with constant coefficients independent f ti-
me p ((.tJ, ], p /{pj1 !, . ) are valid only in a certain apace—time range of
motions. In fact, if characteristic times of the smallest—scale local motions
are less than the lifetime of contact between a givem pair of
kinetic segments, then, in the framework of tfis model the system is 5frozen—
inLi in some irregular conformation. For the class of local motions with cha-
racteristic times 'wr segmental motion is developed in the sys-
tem and it is possible to intfodice in the visooelastic thery the forces of
intersegnental friction. However, if the values of 'V are not too high, the

equilibrium distribution ,PJI'. near each given unit will not yet be estab-
lished during this time ' • The system remains dynamically heterogeneous
even for an absolutely regular network. Strictly speaking, an explicit treat-
ment of processes of breaking and restoration of any pair of contacts ((4.1, ,j,

,b / £j3), £, ) should be carried out as in the theory of networks with
reversibly broken junctions. Finally the condition of the Zlflllment of Eq.]

for a given type of motions at a characteristic time reduces to the
inequality

't > i8i*. (J,*)> 'rrupture (jY) (2)

In a regular Gaussian network (e.g. a cubic or tetrahedric network) of a fle—
rible—chain polymer containing N segments between the junctions the number of
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chains included In an average vo1uiie occupied by a given chain Is proportlo
nal to N • The number of cells —n (along a given direction) the chains of
which pr edminan1y occupy the vo lume of a given chain Is N LIE, other words
at N '' 10 10 the nuuiber n is not great and only those chain units in the
cefls. of the network that are not very distant froia each other should be 1n-
oluded in inequality (2). ThIs means that Eq,(i) is best applied to slow rela-
tively large-scale modes of zniorobrownlan znition withthe characteristic size
of the order of magnitude of the cell size or greater by a factor of n. N'6.
The value of n determines the size of the effective volu.ine of viscoelastic
correlation (in cell units) that will be discussed below. At the same time,
the use of Eq.(1) for small-scale motions also gives physically correct re
suits averaged over dynamically heterogeneous parts of the network, Actually
Eq.(l) can be used for a fairly wide range of motions with 'V> ruptureby the smoothed description of dynamic properties of the network.
At a given density of units in a polymer the value of frt'ot.LJ;p/1ftk,o) de-
pends on the number of units in the chain between junctions, N, and the func-
tionality and topology of the network. The quantitative measure of the degree
of average chain stretching by an internal pressure in a network of finite Vo-
lume may be presented by parameter

Lz/<k2>J N'3 (/n'i (3)

This quantity, is the ratio of the square of the average projection of a
particular chain on the axis,of the laboratory coordinate systea ' to the
mean—square chain length < h'). For phantom Gaussian networks expanded by in-
ternal pressure the distribution of distances betiieen each pair of units (or
network junctions) remains a Gaussian ditribution with respect to the avera-
ge distance for a given pair. The dispersion of this distribution is indepen-
dent of the average distance and remains the same as for an unstrained Gaussi-
an network, in accordance with the results obtained by James and Guth, aonca
and Allegrd. (Refs.lO,ll,8).

For units of the, same sufficiently long chain or for neighbouring chains with
a common junction

,O (,p
'' 32 Q

(q ,IT Y) (4A)

where q, is the number of units separating ta chosen units (j, 1,0 —'1)in one chain or q= pt5 if p and are counted from the same junction
for adjoining chains). Here G(q) is a weak. function of ci,,, I! and the topolo-
gy of the mutual position of a'given pair of units. For units of chains be-
longing to cells located far from each other along the network, &.J (o4,2,.3) azI (p) (ft, fi, j3 ), the value of p weakly depends on the. positionof a unit in the chain and is mainly a function of the square of the average
distance between a given pair of cells

•R(dj,fj
- ( (33

p ((cL3 (j3i')'. exp'C- I)/2LJ (4B)

4/3N
wherein numbers o( for a cubic lattice determine the number of the cell
along a given j—th axis. The dispersion of'the Gausian distribution (4B)does not depend on (or on (ciJ and p) ) for distant cells.The quantity4 • The/(R) as a function of R. decreases
exponentially with a characteristic scale of decrease s,js,TL/ fl' equal
to the size of the above mentioned volume of viscoelastic. correlation,



Microbrownian motion in polymer networks 1535

Vie distributions of the values oX p3 are different for units wltn d1terent
distance from the network junction. This leads to dynamic heterogeneity oL the
chain. Eowever, evaluations show that in cross—linked unswollen polyners with
constant local density this dynnic heterogeneity is not high. In this case
the properties of simmetry, the classification of normal modes and elgenvec-'tore of iQ.(l) are close to those ' re&ular spatial cross—linked systems
consisting of homogeneous chains between the junctions (4—6) . bagenvectors
ari normal modes of regular cross—linked TM can be used as a first approxirna
tion. Each normal mode will be detrniined by inter— and intra—cell wave vec-
tors, The inter—cell wave vector is given by three components &&
determining the phase shift between the displacements of neighbouring network
junctions. The intra—cell wave number 1ë determines the phase shift between
the displacements of neighbouring units (segpients) of a given chain. For a cu—
bi network model consisting of homogeneous chains in which all units are un-
der the sane dynamic conditions, normal modes, are given by(ReX.6)

(c*&,cj) mZzp E: (4L6!L*d2O2*o393)J)c
(5)

(Aj e /3je e tp (- A cö i'J )
where is the cell number, subscript j refers to the j—th chain of
the cell, A is the reciprocal relaxation time for a given mode A
and constants Aj and Bj are found by solving the corresponding secular equa-
tion under certain boundary conditions in network junctions.
For long chains it is often convenient to pass from a discrete to a continu-
ous chain model (see Uef.5,6). The substitution of the solution in the formof Eq.(5) into Jq.(l) makes it possible to obtain to a first approximation
the expressions for the eigenvalues and relaxation times 'V for vari-
ous types of motion. The use of boundary conditions at network junctions
leads to the establishment of a definite relationship b etween !i'' and (4..

Thus, for a cubic lattice the relationship between '' and is gi-
ven by (5,6)

1ë C2n*/N)+ (i/iT)arccasE4(cos&O*c..os95)3 (6)

where k = 0, •.. i/2 and are the wave numbers for inter—cell motions.
Apart from normal modes (6) a double degenerate set of intra—cell motions
exists

'''= irk/JtJ"i (A=i)N)
For these types of motions network junctions do not move.

As a result of the above substitutions approximate expressions for relaxation
times 't (3fl) are obtained

2K( (7).- ________

where <p( 0)> is the eigenvalue of the dissipative function of the
system for a given normal mode averaged over the position of the segnent in a
dynamically heterogeneous chain. In other words

p(z Y> RU (8)

where are the eigenveotors (Eq.5) and is the matrix of the dissipati-
ve function of the system when only intersegmental friction exists. The ana—
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lysis o:C fairly ousabersome expressions for Z?C) is based on certain assump—
tions valid either for small-scale motions the scale of which is much smaller
than the chain size between junctions or for slow large-soale motions the sea—
le oi which greatly exceeds this size. Naturally, for the motions the scale
o:f which coincides with the distance between junctions only qualitative eva—
luation of properties can be obtained

RSULTS AND DISCUSSION

$pectruni p:C relaxation times
In the TM investigated two ranges of relaxation behaviour appear for the pro—
ceases and times ot microbrownian motion.
1) The range o predominantly intra—cell small—scale motions Lor which the ye—
lue of IC (fromEq.(6)) is much greater than unity and the main contribution
to ' is that of the intra—cell term 2 7T k/N, For these normal modes the
phase shifts of segments of other chains are mutually compensated with res—
pect to a particular segment of a given chain (phase randomization) . This oom'
pensation is carried out both by the summation of contributions of.segnients
of one of the chains with which this chain interacts and by the euaation of
contributions of different chains with their phase factors expL O(A)J
The fractions of contacts with chains "foreign'2 to a given segrnent are imoh.
greater by about an order of magnitude or even more) than those of contacts
between the segments of a given chain. This follows from both the theoretical
evaluations of the relative contribution of the segments of the seine
chain to the local concentration near a given segsient (iief.l4) azil an analy—
815 of ESR experimental data for concentrated solution of spin—labeled poly—
mers (Ref.15(a)) and of intrachain quenching in macromolecules with luuiines—
cent markers (Ref.l5(b)).

The randoniization of viscous interactions of a given segment with the contac—
ting segments of a given chain occurs to a lesser extent than in the interac—
tion with the segnients of other chains. However, the relative contribution of
intra—chain interactions to (pCW)> is small ani at low '' it is of
the order of magnitude of 5/.çRef.(l3)), On the whole, it may be said that
for small—scale motions the relaxation behaviour of the chain (i.e. the depen-
dence of l/V(!() ) is (to within the values of ' sin N(/N) such a be-
haviour as though the chain were located in a viscous matrix with external
friction • This friction is determined on the average only by the velocity of
the particular segment and is independent of the relative velocities of moti-
on of different segments, ie also suggest that for macromolecules immersed in
concentrated polymer network the intrachaln short—range internal viscosity
(of .uhn—Cerf type) is low.
(2) The second range of relaxation behaviour is that of large—scale inter—cell
relaxation processes the scale of which is larger than the cell size. For the-
se processes the change in the displacement phase in the same chain is not
great and the units of several chains adjoining one junction may be conside-
red as one subparticle with the mutual friction coefficientN. These sub—par-
ticles form a quasi—elastic large—grain phantom network the junctions of
which Interact with the nearest neighbours at an elasticity constant
(1/N). The viscous interaction between the particles is determined

• In this case the low—frequency behaviour of the simplified TM ci poly-
mer network is described by the motion of a coarse—grain network. The dissi-
pative properties of this network are determined by the mutual "interchain"
friction of it junctions. The p(odfl) coefficients for this model net-
work, i.e., for relatively slow large—scale motions of a real network, are
expressed in the formf Eq.(4). Characteristic relaxation times are deterini—
ned by wave vectors only and reduce to

___________________ (9)

Li e'xpE- (Q't+ e.:)J]
where the parameter Is eqial to CMSt.', i.e. i\T115
It follows from Eq,(9) that in the range of slow large—scale motions the exis-
tence of mutual intersegmental, or (which is more precise for these motions)
"interchain" friction, greatly affects the dispersion dependence 't () andthe shape of relaxation spectra for rarious viscoelast±r functions.
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The relaxation spectruni is found to be cut ofl at soiie rnaxirnui

T,flQ e''(JK)N (10)
where eff (ei'/1< ei') 1 1{)
liere :ts the àlaaracteristic relaxation time Lor the finite viscoe1as
tic oorretion volume.For slow large-scale motions when the scale o iiiotion
becomes greater than the characteristic length of viscoelastic correlation
the above PAl behaves like a set of kelvin'Foight elements. In this limiting
case only the effective internal friction between neigibouring subunits
app ear S.

Diffusion properties and viscoelasticrelaxation functions of TM with inter
segmental and interchain friction
It follows fromi the foregoing discussion that it is tiost iiportant to take
into account intersegmental friction in the consideration of the eflects cau—
sed by slow inter—cell motions the scales of which are coiparable to or ex—
ceod the size of the network cells or the characteristic length of viscoe1as
tic correlation. Thus, the relationships of diffusion motion in the absence
or external fields, e.g. for the mean—square displacement of a network juno—
tion differ from those for a cubic network immersed in an external viscous
matrix (ief.8) for t ' • In particular, these diUerences will be shown
by the properties of the uctural factor at dynaaic scattering of neutrons
Xor low values of wave vector and high values of time. For a network with in—
tersegmental friction, just as for that with external friction, the mean—aqua—
re displacement of a junction tends to a finite value with increasing time
but now the value of I <8ra)p._Vi4>t*, I decreases as a function o time much
faster (according to the exponential law) than for a three—dimensional (cubic
or tetrahedral) network "floating' in solution. In ti'ie latter case the value
of I<r2>-Jr%1 decreases according to the pover law t'1z • The cor—
responding differences also become apparent in the long—time behaviour of the
structural factor e.g. for non—coherent neutron scattering. It can be noted
that long—time diffusion behaviour ot the above TM depending on the cut—off
of the relaxation spectra is very similar to that of the tree—like network
considered by Ronca (Ref .16).
The discussion of a model of cross—linked systems with mutual intersegmental
friction can also be used for infinite tree—like networks without rings. It
should be noted that the theoretical analysis carried out by Ronca (16) should
be supplemented by the consideration of long times corresponding to the stret-
ching from the ends of long tree—like parts of the network. Unlike the times
of the relaxation spectrum considered in Ref.l6 , these times will depend on
the size and molecular weight of the network as a whole. Moreover, it should
be taken into account that, generally speaking, steno limitations prevent
the formation of large Isotropic steric branched systems.
A strong exponential dependence of the expectation time of great fluctuations
of size (or volume) of a network cell on the fluctuation amplitude is also an
Interesting feature of cross—linked polymer structures.

The greatest differences between the dynamic properties of cross—linked Tm
exhibiting intersegmental friction and Ltexpandedu by internal pressure and
those of PM immersed in the external viscous matrix become apparent in the
long—time behaviour both when the network is deformed uniaxially by the for-
ces applied to sample boundaries and in simple shear deformation (Ref.l7). It
should be noted that for the simplest cubic TM consisting of quasi—elastic
Gaussian chains both types of deformation are characterized by the identical
relaxation spectrum (calculated in the simplest manner for dynamic complian-ce). This is due to the fact that for Gaussian TM of finite volume with line-
arized equations of motion, i.e. in the linear range of the stress—strain
plot, the change in the direction of the system of external forces does not
change the equations of motion and the forms of boundary conditions. As al-
ready mentioned, In both cases a one—dimensional relaxation spectrum appears.
The shape of the relaxation spectrum j. ( ) for low—frequency motions is
of a typically one—dimensional type. For complex compliance the value of

(a.)reduces to

CZCO.24LX (11)
(O) () (Q)
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Fig. 1 • Schematic oX uniaxial and shear deXor—
matlons o:t polymer network.

In the TM class in question the relaxation spectrum for coiiipllance is found
to be limited consists virtually of the one—dimensional relaxation spectrum
of a single chain (for high—frequency contribution) immersed in a viscous matrrix usually described in the literature (1—3,12,17) and the cut off low—fre-
quency relaxation spectrum.

The"high—freqqency't part (although this division is tentative) ranges fromto 'eff and the low—frequency contribution ran-S
gas irom ef /</W2o ?'. R/N'3 . it should be remembered that
it the uniaxial stretching of %etwork immersed in a viscous medium is con-
sidered, the bone_diu1ensionalLt type of deformation would lead to the appea-
rance of unrealistic values of r max proportional to the square of the com-
plete number of chains along a given network direction. Tue relaxation beha-
viour of the polymer network with intersegaental friction is completely de-
termined by the relaxation properties of the finite volume of viscoelastic
correlation in the polymer. The long—range correlations, motions and times
are cut—off. This fact explains the above—mentioned paradoxical result regar-
ding the approximate validity of u one_chaintl models for long—time relaxation
properties.
in conclusion it should be noted that in the framewor of the TM and iT con-
sidered here it is also possible to take into account qualitatively mutual
steric and topological limitations to chain motion. These limitations have
been reflected in the concept of the 'motion along a tube's developed by Ed-
wards (18), de Gennes (19) and other authors. To utilize this concept one can
use a modified dissipative function taking into account the limitations to
collective large—scale chain motions caused by the. presence of. other chains.
At the same time this approach permits the retention of the advantages of vis-
coelastic models.
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where cs.) is the: frequency of the external field and the summation is carri-
ed out over all the values of the wave number ..If the external forces are applied to a cross—linked TM as is shown in Pig.1,
then, at uniaxial stretching the motions with 0 will appear and 02:

whereas at shear deformation motions with G5 not equal to zero will
develop and & = & 0.

Z (9)
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