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MOLECULA.R ORIGIN OF CONSTANTS IN THE THEORY OF RUBBER—LIKE
ELASTICITY CONSIDERING NETWORK CHAINS STERIC IWTERACTION
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Laboratory of Physics, The Scientific Researñi Institute
of Tyre Industry, Burakova 27, Moscow 105118, USSR

Abstro — A theory of rubber-like elasticity is suggested,
ed on the "ohanne]." model simulating the network chains
steric interaction. The theory describes well the stress—
strain dependences for various types of deformation. In
particular, for an uniaxial tension the theoretical depen—
dences are straightened in Mooney—Rivlin coordinates. The
two elastic constants of the theory are expressed in terms
of the network moleoular parameters. Dependences of these
constants on the network density, temperature, swelling
ratio and chemical structure of a polymer are discussed.

IRODUCTION

The problem of divergences between the classical theory of rubber—like
elasticity and experimental data has been actively discussed in scientific
literature for many years. LateLy the increasing number of authors has been
inclined to see the reasons for these divergenoes in the network chain ste—
rio interaction not taken into account by the classical theory. Historically
Flory (Ref. 1) was the first who tried to take into consideration the steno
interaotion of chains. As early as in 1944 he pointed out that chain entan-
glements could be considered as additional effective network junctions.
Since that time the entanglement concept has been widely used. Its various
aspects were discussed in the review of Grassley (Ref. 2). Nevertheless,
this concept does not embrace the whole problem of the chains stenic inter-
action for, at least, two reasons. Firstly, in a block elastomer every chain
is contacting the surrounding chains along its whole contour, i.e. steno
interaction distribution is practicalLy continuous. It is this reason that
makes the assumption of the chain contour changes being affine under an
instantaneous deformation, used in the theory of nonequilibnium properties
(Ref. 3), a realistic one. As for the entanglement theory (Ref. 2), it assu-
mes that entanglements are separated by large distances from one another.
Secondly, though entanglements are limiting, similarly to junctions, the
number of acceptable chains conformations this limitation is of a different
nature due to a possibility of sliding in the contact points. This prevents
us from identifying the entanglements with reallY chemical junctions.

In the recently published works (Ref. 4,5) Flory rather thoroughly dis-
cussed the nature of network chains steno interaction, but has come, in our
view, to an erroneous conclusion that such an interaction could be accounted
for by applying a restriction only on the junctions' fluctuations. A theory
based on this, with a corresponding choice of parameters, is qualitatively
simulating regularities witnessed for a cross—linked rubber under a uniaxial
strain. Unfortunately, these parameters could not be directly associated
with the structure of both the network and its chains.

We believe that to account for the steric interaction there is a more per-
spective direction of using the "channel" or "tube" model (Ref. 6,7) ensur—
iilg simulation of steno interaction along the whole contour of the chain.
The physical idea on which the above works are based is very similar to that
used in a number of previously published works by the author (Ref. 8—Il)
where a high elasticity theory suggested was satisfactorily fitting the
experiment in describing strain dependencies of different types. Applying
the "channel" model to the authoi2s ideas (Ref. 12, 13) made it possible for
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the theory to become more strict,altbough it has not changed the final inter-
relations. Unfortunately, the problem sniution in the works (Ref. 12, 13) re-
presents but the first approximation. Finding higher approximations is hin-
dered by mathematical difficulties in an analytical as well as in a numeri
cal solution. This prevents us from making more precise the strain depen-
dence of free energy component conditioned by steric interaction and, which
is the main point, from expressing the preceding coefficient through moleou-
lar parameters. In the present paper an attempt is being made to overcome
thisdifficultyby simplifying the model.

PHYSICAL PREMISES OF THE THEORY

It is assumed in the classical theory of rubber—like elasticity (Ref. 14)
that the chain interaction is taking place only in the network juncti-
ons, so the chains can adopt all the conformations possible with a certain
junctions location. A situation true for a real block elastomer could be as-
sumed to be as that shown in Fig. 1. Here the thick line denotes a frag—

ment of the chain under consideration. The chain is contacting its neigh-
bours all along its contour. A change of its conformation can occur due
to: a) presence of free volume element in vicinity of chain; b) exchanging
places of its segments with the segments of neighbouring chains; c) a mutual
displacement of the chain fragments with the fragments of neighbouring
nhains In the same direction.
In the last case there arises from the neighbouring chains an elastic reac-
tion (of a kinetic nature) tending to bring back the chain under considera-
tion to its former position. In the equilibrium state analysis it is the lat-
ter type of steric interaction that matters, so the chain location in a
block elastomer can be assumed to be as is shown schematically in Fig. 2,
and the chain displacement limitations are caused not only by entanglements
(denoted by "a") but also by chains crossing the given chain ("b"). Due to
such limitations the chain fluctuates near its certain location ("channel")
whose conformation is determined by the molecules interlocation in the net-
work's formation moment. Obviously, the neighbours are limiting the chain

Fig. 2. The chain in a block elastomer (scheme). 1 — the chain
under consideration; a — entanglements; b — crnssing chains.

Fig. 1. Packing of macromolecules in a block elastomer.
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fluctuations only in the direction normal to the channel contour. Pluotua—
tions along the channel axis are free since they do not necessitate chart-.
gee in the neighbours' location. That is why the chain turns out to be uni-.
£ormLy, on the average, elongated along its whole contour.

The situation described can be reproduced with the help of the model shown
in Fig. 3. Here the thick line denotes one of the chain's possible oonfor-'

Pig. 3. The model of "channel". 1 — channel; 2 -. the chain
under consideration.

mations and the light line -. the channel contour. The chain is divided into
a certain number o equal fragments — submolecules whose junction points are
connected to the channel b springs simulating the reaction of neighbouring
chains. The springs are rigidly fixed to the chain and freely sliding along
the channel contour. It is assumed that : a) the chains are Gaussian;
b) the distribution function of channel coziformations is the same as for
the isolated chain fixed in the same points; c) when the material is
strained the deformation of all the channel contours is affine.

For the final formulation of the model it is necessary to make two more
statements. Firstly, since the channel conformation is determined by the
distribution function of the channel dividing points only, a need arises
to speoially denote the term of "the channel axis direction in a given
point". For such term we suggest the direction of a straight line connecting
adjacent points dividing the chain. It is possible to show that this
ensures a uniform, on the average, tension of the chain along its whole con-
tour, which is Tequired by the physical meaning of the problem. Such
directions are shown in Fig. 3 by thin continuous lines. Secondly, as it was
shown by James and Guth (Ref. 14), fluctuations of junctions in the phantom
chains network do not depend on the network's deformation, so its entropy
can be calculated assuming the junctions are fixed in their average loca-
tions whose displacements under deformation are affine. In the given case
the situation is different. Since the junctions fluctuations are determined
by fluctuations of the chains connected by these junctions, then in a real
cross—linked elastomer these fluctuations must be considerably smaller than
in a phantom chains network due to steric limitations imposed on the chains.
Because these limitations are anisotropic (across the channel only), the li-
mitations imposed on the junctions fluctuations should depend on the anglesat which the chains are adjoining each other in the junctions and, in gene-
ral case, should also be anisotropic. Under the network deformation the
angles at which the chains are meeting in their junctions are changed, which
in its turn causes the junction fluctuations change.• The network's entropy
change conditioned by the above should also be considered in the theory. The
reasoning given is very close to the ideas developed by Flory in his already
mentioned works (Ref. 4, 5). Although limitations imposed on the junctions
are caused by the intermediate chain fragments fluctuations limitation, we
believe it is erroneous to disregard the fluctuation limitations of the
chains themselves and, connected with this, entropy change, as is the case
with Flory.
The above reasoning creates necessary preconditions for the mathematical
formulation of a problem but, as was stated already, the problem in the such
form is unsolvable.Therefore,we make twosimpliEyingsuppositions,being aware
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that they wi].1 ohange to a certain extent the fira]. result. First, let US
assume that the channel axis direction in every point of its division is
the direction of a straight line oonneotirg the chain's ends. Suoh direo—
tions are shown in Fig. 3 by thin dotted lines. Second, let us neglect the
junctions fluctuation change under the network deformationS, which makes it
possible to view the junctions as fixed in their average locations. To eva
luate the influence of these simplifications on the final result does not
seem possible, but due to them the problem becomes solvable if the chain is
divided into an arbitrary number of fragments "m + 1 ". At the moment we
shall not oonneot " in " with any parameters of the network structure. This
wi].l be dealt with in the Discussion.

THEORY

Let us denote the chain ends connecting vector by =X t+ Yj Zk , the
vector connecting the chainsbeginning with the "1" point of its division

by , and the vector connecting the chain's beginning

with the "i" point of the channel's division by . If a
sample is subjected to a deformation in respect of A, A2, A3 along the

three mutually perpendicular directions then, in accordance with the suppo-

sitions made in formulating the model, the vectors and are trans-

formed into R' and , respectively:

'= ) X -iXYj+ A3k; '= A1 jt+ika2jT+ A31 i (1)
The problem is to find out the network's free energy, F

— —*2 2
2)

where r,e,R

(3)
17? is the number of dividing points, j*/ is the number of the chain's statis-
tical segments, e is their length, ) is the number of chains in the unit
volume, k is Boltzmann's constant and T is the absolute temperature.
The subscriptes r , and R near the angular brackets in (2) signify
that the averaging should be carried out on all possible conformations of
the chain at a given location of the channel, on all possible locations of

the channel and orientations of the vector

If the rigidity of springs in the model shown in Fig. 3 is denoted b k',
then the function of the chains conformations distribution at a given loca-
tion of the channel can be written as:

Wr (i,... d 2rP{ [r2+
÷(??)2÷+ (/)2J)ep{...Ji..fh2÷

L2+ La 1) ct'
+fl2 +nj r,,,

The last exponent in the expression (4) is the Boltzmann's factor taking
into account a decrease in the probability of chain's conformations exis-
tence as the chain deviates from the channel. Here r is the normalization-. -p .factor, and h. is the projection of the vectors —'/ on the plane perpen-
dicular to the vector ', i.e.:

(,)

It is easy to see that the distribution function (4) can be presented as a
product of two functions — the distribution function for projections of the

.4
submo].eoules lengths onto the vector R



Theory of rubber—like elasticity 1585

r R)d1c/f.. di=

rRP{m/R+ ('R- t÷.. +(IIrmR)2j}dcdcR... drmR (6)

and the distribution function for projections of the vectors r onto the

plane normal to the vector R':

-. a a

rsPf cmTh:+(- i) .. .+ (r— 1,5)+ rms3-
/c - /)2 )a., +F-2JJ th (7)

where
=

R'J"j/k'2 ij'ij/i2; j'
(8)

Thus the averaging on all possible conformations of the chain at a given lo-
cation of the channel comes to the solution of two problems: a one—dimen-
sional problem for the chain with freely fluctuating division points and
two—dimensional problem for the chain whose division points are linked with
the channel by means of springs. The graphic scheme of the second problem
is shown in Fig. 4. Such a division of the distribution function, leading

Fig. 4. The channel model projection onto the plane perpen-
dicular to R': 1 — the channel; 2 — the chain under conside-
ration.

to a considerable simplification of the mathematical aspect of the problem,
proves to be possible only after the simplifying assumption of the channel's
axis being parallel in all its points to the vector R'. Otherwise the co-
ordinates of all the submolecules become part of the Wr function, in the

form of products, and the analytical averaging by the latter seems impos-
sible. Now the expression for F can be written in the following form:

FFR+F kTomf(+(RR)2++(IhImR)+
(9)

Averaging of the expression within the first angular brackets is not dif-
ficult • It is obvious that

<r ÷(r2R- .+ (I'I - rmR))r = - den JrR/dotrn (10)
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where

drmR (ii)

Using the transformation

(.12)

the exponent index in (6) is reduced to a diagonal form, and after integr
tion we have

(13)

from which

<÷(cR)2. +(lk"I. (14)
Since this expression does not depend on the coordinates of the channel
division points and

<X2> =<Y2) =<Z2)=<R2>/3 (15)

then, after substituting it in (9), we have

FR=m)kT/2 +(vkT/2)(<Ra>/Ne2)(A+)+A) (16)
which differs only by a constant (that can be neglected furthermore) from
the expression for the free energy, arising from the classical theory of
rubber-.'like elasticity. Thus the classical component of free energy is con
neoted with the deformations of chains in the "longitudinal direction".

To average the expression in the second angular brackets in (9) we shall use
the same method:

• .+(r ) r5> = den rs/m (17)

=SSs,d's dç5 (18)

To reduce the exponent index in the distribution function Vt' to a diagonal
form it is convenient to use the method of Jacoby (Ref. 15) in accordance
with which the diagonalized square form can be expressed as:

(19)

where are the angular minors of the i order of the original square form
Since the Jacobian of this transformation equals to unity

as in the case of the equation (12), then

(20)
and

den /d = (den /drn)/2 ÷ Ld(cøm+i /m)J/n (21)

For cø the following recurrent correlation is correct:

cØ = (2m+ (22)

and it is expressed by polynomials of Chebyshev (Ref. 16) of the second
kind:

U=Sinh(f-#1)5/Sinh8 (23)

Here a new designation was introduced:
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tc=tc'/2/cT (24)

Direct calculations are easily showing that algebraic complements for the
ii element of the determinant &,,have the form of:

64 = t) (1 + !c/2c4m)tJ3 (i +
at ji and

= oC'U(1+k/2o)Um(j+K/2) (25)
at 1j.
With the help of these expressions we can calculate ?4U8ing the formula
for the bordered determinant (Ref. 17):

ITt rn
2fl1-= K K C11 e8

1=1 -1=1

rh j-1 - -,
(e'e') (26)

f-1 i:1

Substituting expressions (23) and (26) into the formula (17) and takinginto account the correlation (8) we get the foUowing:
— 2 —, — 2

(r2+(r r) + (r- + = (dcJ/dcirr)/2+

÷ ,ç2 £ /c U)/doçj +
1. =1

rn i-I
÷2K2{(E'Jf'1J)/R'2){d(Ui.1 /omL)/dcçj

(27)
j=1 i=4

The first summand in the right hand part can be neglected henceforth, since
it does not depend on A. The expression (27) should be averaged by the

distribution function We determining the probability of the channel divi-

sion points location:

— —, __, I

we(e,,ea.. e)ci€de2... c/=
=(m + 1)32(cZ ftr)3m2exp (°tm Ra/(m÷1))ep {-.c%r, {+

-+ - 2 —p —, a — — 2 -' d'÷...+(QEn,i)(RQm) JJc1de2i.. em (28)
The change of variables

_, -
= p -f (/& i), ÷(t/?-i-2)p÷-. . .+(i/m),5+ (i/m+I) R (29)

analogous to the change of (12) leads to the following form of:

Vv/32,... nt)d/3'idI5d1=
3/2 3m/2=(m+ 1) (o/rj ezp (otrn R a/rn ÷ i)ep {-, f2p2+rn-i-I a ____Pm+ (30)

Let us consider now the scalar product in the expression (27):

rn—i rn-f-. —, -I \ 'I(ER'JLeR'J= (kXj÷e)(fkJ1PJ÷eR1)/o e=.,
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m..i rni= j÷e) fA2A3 (kZ k)(#e+e) +

÷ " k (" X 4 ftZ) (J#e ZJt 1A (uikY- l..+kXXujkY.tç 1)
Here

—0 .-. ..;' —,

p1=U€ ÷u.J.#wik; PAiUj1+ajtA3Wik (32)
When averaging by the distribution function all the members containing

multipliers of the £4 /4j or the U type result in zero, and

<) =<U>=<W(> i/2cy (?-i.1) (33)

Then, after summation over k and i, we have:

L(m-j÷ 1) f(A1-i.A+ A)R AX A Y2 A3Z2J/2dm (m+1) (34)

where j.i. Substituting the result into the formula (27) we have the
following:

Q+(i- )2 (F 1'fl7f)+ (d/ddm)/2+

+ (2c/vkT)[A-A:+ A:—(A1x AY2+AZ2)/(Axz÷.y2I.AZ2)J (35)

where denotes the sums independent of

jkTh ci ftt(m.-t÷i)
L

m- I +

÷2 v' ç (m-+i) 4r
(36)LL- rn+1 oCyrJfmJj=•t i

The expression within the square brackets of formula (35) is identical with
the respective expressions obtained earlier (Ref. li—U) where it was

averaged by orientation of the vector R. Using the result obtained in
those works we can put down the following:

=kTm<c-i(- r2
>r,R

=

÷2C{A.+(Aa/)F(ç3,)+A2/-A E(e)J, (37)

where F((3,) and E((,ae.) are incomplete elliptic integrals of the first and
the second kinds, respectively:

inj3_________

E(a)= (38)

which modulus . and argument ft are determined by the correlations:

a[a(Aa....A)]/{A(A— A)J; Sinj3 =./KFX/A1 (39)

AsymmetrY of the expression (37) with respect to is connected with the

assumption XA2A3 made when averaging by orientation of the veotorR

although the initial expression (35) is completely symmetrical. Denoting in
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the axpreseiofl (36) U, by byperbolic functions and making suimnation we get
after differentiation by oc the foUowirg:

cc=

I r i (m-i1)2 -I)

Sinh2(rn-/)8JJ
(40)

where

8'=Cosh1(1-t'Ic/2ocm) (41)

Assuming m]. we find out that

Ce::: ()kT/4)(K/K+2c'4)2 (42)

which fits the result obtained earlier for the first approximation (Ref. 12,
13). Starting from m=2 the value of Cnth(rn#i)8 is practically equal to
unit which makes it possible to simplify considerably the formula (40):

ç(vkTK2/32c* Sinh8 )f(m-t i)Sinh2 6'- Cosli 2c5'-3] (43)

Thus finally the free energyof the deformed network takes the following
form:

c+j =c (A+A+A)+
+2C{A ÷(A2A/v'X)F(@,H' A2y%-A3 E(@)e}

(44)

where

C1 = (v k T/2)(<R 2)/Ne 2) (4)
and C is determined by the expression (43).

DISCUSSIO N

Geometric_interetation of F versus A
E expression for thelree energy is a suni of two components of which
the first is connected with changes of the chain "longitudinal" dimensions
and the second with those of "lateral" ones. This revives to a certain
degree the ideas of Kuhn (Ref. 18) who assumed that the entropy decrease of
chains under deformation is connected with the change of their "length",
"width" and "thickness". And though later on Kuhn refused to take into
acoount the two latter constituents (Ref. 19), he pointed out that steric
interaotion of the chains should lead to the network modulus increase as
compared with the classical theory prediction. One may consider that in the
present paper an attempt is being made to quantitatively express these con-
siderations of qualitative nature.

It turns out that the deformational dependence of the free energy constitu-
ent due to changes of chain lateral dimensions is different as compared
with the constituent connected with changes of the chain lengths. To
understand the reason for this as well as the reason for why the increase
of the division points number, assuming the channel axis is parallel to the

end—to—end vector ', does not change the nature of the F deformational

dependence it will be helpful to analyse the model from the geometric point
of view. Moreover such ana'ysis will enable us to have a notion of degree
of the final result deviation caused by the assumption of the channel axis

being parallel to the vector R'.

For the sake of simplification let us assume that the rigidity of springs
in the model shown in Fig. 3 tends to infinity. Such an assumption will not
distort the geometric analysis essence. Then in accordance with the simpli-
fying assumptions made in the present work the chain division points will

slide along the family of straight lines parallel to the vector R" , as it
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Fig. 5. The geometric scheme equivalent to the channel model
in the assumption o the channel axis being parallel to the
chain en&-to—end vector. K-.oo ; a the initial state;
b — the state under strain.

is shown in Fig. 5a. Lo.ation of these straight lines in respect of R is
determined by vectors 9. which modulus is a characteristic of their dis—

2 —
tance from R . Values of Icjj are determined by the distribution function

of the channel division points which, in accordance with the assumption made
in the model formulation, is supposed to be identical with the distribution
function for the isolated chain which ends are fixed in the same points.
When the sample is strained (Fig. 5b) the vectors are transformed in

accordance with the same law as the vector R

t-÷ A2 + k A' (46)

but in a strained state it is not I 9 I but
(47)

that are charaoterising the distance between the channel and the axis of

chain. And it is the differenoe in the transformation laws of R and

that causes a different nature of the deformational dependence of F as com-

pared with F. The law of changing under strain (47) is a eommon one for
all the channel division points. It is this circumstance that leads to a
situation when the type of deformational dependence of F is preserved with
any number of the division points m. But this is correct onLy with the
assumption of the channel axis being parallel to the end—to—end vector.
Without this assumptionwhen the channel axis is located at different angles
to R in various points of its division such a uniformity of ohanging
under strain is broken.
An analysis of scheme in Fig. enables us to make two more important con—
olusions. Firstly, since the type of the radial distribution function for
intermediate points of the chain, determining the distribution of j, does

not depend on the distance between the chain's ends (Ref. 20), then the

increase of R should lead to the decrease of angles between the ohannel's
axis and the straight line oonnectng the chain's ends. Therefore F3 to a

certain degree should depend on(R2)in contrast to the result obtained in the

present work. Furthermore, under high strains when increases, the

channel axis tends to be parallel to R'. It may be concluded from this that
refusal of simplifying assumption of the channel axis being parallel to the
end—to—end vector leads to a correction of the deformational dependence F

obtained in the present work, and first of all under small deformations.

A =2

a
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Secondly, it i known that the value of additional (with respect to the
olas$ioal one) constituent of stress in rubber under tension is decreasing
with an increase of deformation. The reason for this is easily understood
when considering Fig. 5. With an increase of deformation the angle between

the vector R and the direotion of elongation is decreasing, the channel is
"forced" close to the straight line connecting the chain ends, and the

ehange of determining the value of is continuously decreasing.

Ana is of the d ef ormational d epqndeo
A toroug comparison o? consequences o Ehe expression (44) with experimen-
tal data for various types of deformation was carried out elsewhere (Ref.ll).
It was shown there that the theory is in a good agreement with experiment in
all cases, it being possible to describe the experimental results of Treloar
(Ref. 21) for uniaxial and biaxial deformation and shear obtained with the
same rubber, using the same values of C1 and C. Small divergences in de—

scribing the curves of two—dimensional extension and shear are seen only
under small deformations. This fact acquires now especial interest in con—
neotion with the above made analysis. Here we shall confine ourselves to the
consideration of the uniaxial defoimation only. The dependenoes of stress
under uniaxial extension fe and compression t'c on A , resulting from the

expression (44), have the following form:

f=24

2t 4:Aten;JAfc i( A C[A2+4(1A3)3/2 i-TA4
Calculated on their basis the dependence of p/'/2(A1/A2) on i/A at

C1 =0 and C0=I is shown in Fig. 6. In agreement with experimental data the

dependence possesses a well expressed linear part within the range of 4/A
changing from 0.2 to 0.85. Beyond this range the experimental data in the

08

Fig. 6. Theoretical dependence of stress on extension ratio
for the uniaxial deformation in the Mooney—Rivlin coordina-
tes. The dotted line approximates a linear part of the depen—'
deno e.

region of extension can not be obtained with a sufficient accuracy, but as
it was pointed out elsewhere(Ref. 11) there are indirect indications of
deviations from 1inearit beyond that range. In the region of compression the
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value of p Is increasing from 0.533 at X =1 to i.o at A —
This contradicts the scarce experimental findings existing for the region.
Thus , according to the data of Rivlin and Saunders (Ref. 22) , the value of
in the region of compression is praotioally constant • It is noteworthy that
the mentioned divergence between theory and experiment reveals itself only
in the presentation of data in the Mooney—Rivlin coordinates. In the ordina—
ry coordinates, as was already mentioned, the data for various strain types
are quite satisfactorily described at the same values ofC and Cc• In the

region of extension the dependence of (p on 1/A is practically equivalent
to the dependence resulting from the empiric theory of Mooney—Rivlin (Ref.
23, 24) which has served as a basis for processing numerous experimental
data. For the constant C2 of this theory a whole number of regularities was
established. It is expedient therefore to find out a connection between Cc

and C2, without forgetting that such a connection is correct only for the

extension data because only In this case the theoretical dependences of
Mooney—Rivlin and those obtained in the present work coincide. The linear
part of dependence of (p on 1/A in the region of extension can be described
with high accuracy b the linear equation (the dotted line in Fig. 7):

( Je/2(A — 1/At) - C1 -s- C [- O.06f2 -I- o.8232/AJ (5)
while in accordance with Mooney—Rivlin we have

(/7CifCa/ik (51)

Hence C0=l.605C2. This correlation will be used when comparing the theore-'

tical value of Cc with the experimental one.

Mo lecular s iicanoe of ramet ers K and rn
The expression (T?or C does notallow yet to find its numerical value
since it contains two unkown parameters K and m. So far it is clear, from
the reasoning during the model formulation, only that K is characterising
elastic properties of the medium surrounding the chain under consideration
and that m should be large enough to provide limitation of fluctuations
along the whole contour of the chain. It is obvious that introduction of
distributed interaction of the chain with its surroundings is not desirable since
it will oause difficulties in expressing K in terms of molecular parameters.
In the distribution funotion Wr& expressed by the equation (7) K determines

the fluctuation decrease of intermediate points of the chain as compared
with isolated chain. Therefore we should have analysed at the molecular
level such a deorease of chain fluctuations, caused by the presence of
neighbours, and in accordance with that, chosen the value of K. But this
represents an extremeLy difficult task. In the present work a more simple,
though less strict, way for expressing K and a in terms of molecular para—
meters has been ohosen. If one takes into account only the closest neighbours
with which the chain is directly oontaoting, then it is natural to take m as
the number of neighbouring chains deformed during a displacement of the
chain under consideration. These can be the chains forming the entanglements
or simply crossing the given chain, i.e. all the cases shown in Fig. 2. Then
the parameter K'=2kTR should be ascribed with the significance of "lateral"
rigidity of the neighbouring chains, i.e. of proportionality factor between
the applied force and the chain fragment displacement in a radial direction.
The latter can be found out from the radial distribution function for an
intermediate link of the chain (Ref. 20):

w(r)dr=2ezpf3/Vr2/2i(Af.?)eaJ dr
From this:

''=3NkT/i (N ?)ea; Ic 3N/21 (Al— 1)e2 (53)
and

/ç/o'm= /1(iv—)(m÷') (54)
Obviously K should be averaged over all the values of 1. since neighbouring
chains can contact the given chain in any of their points. Let us assume
that the contacting chains are divided into the same number of submolecules
as the chain under consideration andperform averaging over the lues of K in
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the all division points, i.e.
PT,

K I 'v.' tc m-1 1ç—' I
z: =; ,

: = --- 4 f: (rn 1JII C

2::f
The parameter m will be evaluated from a comparison with experimental data.
In the work by Boyer and Miller (Ref. 25) there is given a generalised
dependence of C2/C on 2C1 established on the basis of experimental data of

many authors for vuloanizates of natural rubber. We shall assume the front

factor <R2)/Ne2in the formula (45) as equal to unit and choose the value of

C4 =0.166 MPa which corresponds to 100 monomeric units in the chain. In ao

cordance with the above mentioned dependence the values C2/C1 =0.6 or

Cc=0•i•6 MPa correspond to this value of C1. By varying m we find out that

the formula (43) gives this value at m=12. This value, to which approxima-'
tely 8 monomeric units in the submolecule are oorresponding, is seemingly
overstated since in calculating of k/am only closest neighbours had been

taken into account. In practice K should be larger because the reaction from
a contacting chain under strain can be conditioned not only by its own rigi-
dity but by rigidity of chains beyond this one as well.

Dependence of C0 on the network's density

ways on the network's density:
at low densities 2> C1 and its increase is faster, but with increasing den-
sities the increase of C2 becomes slower and from a certain value 1, C2
reaches a constant value. In this region c'2 C1. This regularity, at least
qualitatively, follows from the theory suggested. In accordance to formulae
(43) and (45) the values of C1 and Cc are proportional to ). But with the

increase of ) the contour length of chains decreases, hence m decreases
too. This leads to a slower rate of increase for C0.Figure7 shows the depen-

dence of C0 on C1, calculated by formulae (43) and (45) at <R2>//Vez= I
The same figure contains a generalized experimental dependence of Cc on C1

for vuloanizates of natural rubber calculated from the data given elsewhere
(Ref. 25). Both curves are located approximately in the same manner. A quan-
titative deviation can be connected not only with the approximate nature of
the theory but also with that experimentally found values of C1 are not pro

C'
MPa

Fig. 7. Dependence of C0 on C1: 1 — a theoretical curve in
accordance with the formula (43); 2 — a generalized experi-'
mental dependence for vuloanizates of natural rubber in
accordance with the work (Ref. 25).

o.4

a i

C, MPa
0.3
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portional to \) as it is assumed in the formula (4.) . passing onto vuloani—
zates of other rubbers should lead to the change of soale along the ordina—
te axis in Fig. 7, since a change of molecular mass of a monomeric unit
should lead to a change of chain length at a given network's density and,
consequently, to the change of m.

Dependence of C0 on swelling ratio

of rubber—like elasticity are fastly
decreasing at rubber swelling (Ref. 26). The reason for this is easily
understandable when 'the formulae (43) and (45) are compared. The first one
does not contain the front factor, and already due to a decrease of chains
concentration in a swollen rubber C0 is diminishing proportionally to Z1

(a fraction of rubber in a swollen system). For C1 this effect is to a

considerable degree balanced by an increase of the front factor as a result
of which C1 is changing proportionally to V"3. Besides, swelling leads to

chains drifting apart and, hence, to a decrease of contacts number of each
other, i.e. to a decrease of in. It is natural to assume that due to a de—
crease of number of contacts along the chain's oontour the value of in will be

diminished proportionally to ?4"! But the remaining contacting chains can
drift away from the chain under consideration due to introduction of solvent
molecules among them. Let us assume this effect to be also proportional to

though this assumption is already not so obvious • As a result of this,

in is assumed to be proportional to t.2k The dependence calculated on the

basis of these assumptions is shown in Fig • 8 (curve 1). Since in literature
on the subject (Ref. 27) the value of C2 is calculated by the formula:

p je/2/,.h1'3(A 1/A2) Q 4 C2/A (56)

then, for the sake of comparison with experimental data, the value of Ctç."

against V. is ploted in Fig. 8. It drops practically linearly with a
decrease of 4. A linear part is extrapolated to V=O.l on the abscissa

axis. Such type of dependence qualitatively corresponds to the data obtained
by Gumbrell, Mullins and Rivlin (Ref. 27), though the dependence plotted by
them is located somewhat lower than the theoretical one (curve 2).

Fig. 8. Dependence of C.c"3on ?. : 1 —the theoretical curve

calculated by the formula (43); 2 — the data of Gumbrell,
Mullins and Rivlin (Ref. 27).

Dependence of C0 on cross—sectional area of polymeric chains

data, had

0.6
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shown that at a given density of network (at equal C4values) the va1u of C2
is decreasing with the increase of orosssectiona1 area of polymeric chains
A. This tact i8 also naturally interpreted on the basis of the formula (43).
An increase of A leads to a decrease of m for two reasons: due to a decrease
of chains length (at a given i.)) inversely proportional to A, and due to de-
crease of the number of contacts per length unit of the chain (the number o

contacts being inversely proportional to Ah/2). As a result, m should be

changed proportionally to Dependences of C0 on A/ANR (ANR— a cross—

sectional area of polyisoprene) are shown in Fig. 9 for C4 =0.166 MPa

(curve 1) and C1 =0.04 MPa (curve 2).. In the first case an increase of six

Fig. 9. Dependence of C0 on the cross—sectional area of

chains A according to the formula (43): ANR the value of A
for natural rubber; 1 C =0.166 MPa; 2 — C =0.04 MPa.

times the original value of A/AWR leads to a decrease of nine times

of the original value of C0, in the second case to a decrease of six times

the original value. This qualitatively corresponds to the conclusion made by
Boyer and Miller, in accordance with which an increase of C1 leads to a more

pronounced dependence of C2 on A. But quantitatively the experimental depen—

dences are more pronounced. With A increasing six times the original value,
C2 is decreasing approximately fifteen times at C1 =0.05 MPa and thirty five
times at C4=0.1MPa.

CONCLUSION

The discussion does not cover all the possibilities of comparing the theory
with experiment. Thus, from comparison of the formulae (43) and (45) it is
obvious that C4 and C0 should have different types of temperature dependence

since the latter does not possess the front factor. Really, the literature
data (Ref. 28—30) witness for this difference. Furthermore, basing on the
simplified model accepted in the present work it is possible to develop a
theory of birefringence in rubbers similarly to the way which had been used
elsewhere (Ref. 12, 13), and to analyse the dependence of C4 and C0 on con-

ditions of the network's formation (cross—linking in the extended state and
cross—linking in a swollen state with a subsequent extraction of solvent).
But the comparison made here and elsewhere (Ref. 11) will be enough already
for declaring that in all cases the theory leads to a satisfactory agreement
with experiment. This enables us to believe that the pbysical premises lying
in the theory's basis are correct and the model chosen is satisfactory in
conveying their essense. Speaking about quantitative deviations found,

0.I
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mainly, in comparing dependences of C with ecper1ment, It is still d1ff1-'

cult to say to what extent they are preconditioned by simplifications
Introduced in the model and to what extent they are connected with a
simplified treatment of parameters K and m. The author sets clarification
of the above question as his task for the nearest future.

— the author expresses his sincere gratitude
o Dr. V.P. Popov for discussing the results of the present
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