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Abstract - Normally the growth of sparingly soluble electrolyte crystals

in aqueous solution follows a parabolic rate law, rate (c - c)2. At non-

equivalent concentrations, and in general, rate (fl1' - K1)2 where

11 = ionic product, K5 = solubility product, and V = ci. + for the electro-

lyte It is shown how this can be explained by the Burton-Cabrera-

Frank theory adapted for electrolytes, assuming that the ions are adsorbed

in electroneutral (equivalent) amounts on the crystal surface. The absolute

rate is controlled by the integrating process and the activation energy

corresponds to the removal of one water molecule from the hydration shell

of the cation in the case of 1,1 and 1,2 electrolytes. For 2,1 and 2,2

electrolytes the ratio between the activation energy and the energy of

removal of a water molecule from the inner hydration shell is between 1.4

and 1.7.

INTRODUCTION

Marc1 observed that the growth rate of potassium sulphate is proportional to (c - c5)2, and

Davies and Jones2'3 found the same dependence for silver chloride. Davies and Jones 2,3 further-

more observed that for independent variations of [Ag+J and [Cl} the rate was a function of

the product [AgJ [CC]. The generalization of these results to an AB electrolyte is

rate (flu/V — K)2 (1)

where fl = ionic product = [A][Bj, K = solubility product (= value of fl at saturation) and

v = n + 3. Eq. 1 has later been confirmed for a large number of substances, especially by

Nancollas4 and coworkers.

The parabolic character (with the power 2.0 on c - c) has been confirmed for electrolytes

of different valence types, and it makes it likely that the mechanism of growth is a surface

spiralstep centered at a screw dislocation. This mechanism has been verified by van Enckevort,

Bennema and van der Linden5 by observation of low-height growth spirals on crystals grown in

aqueous solution.

The classical paper by Burton, Cabrera and Frank6 (BCF) deals almost exclusively with cry-

stal growth in gas phase at relatively small supersaturation, and has only a few prudent

suggestion concerning growth from solution, and nothing at all about electrolytes. The ionic

product dependence was discussed by Davies and Jones3, but their explanation is unacceptable

because it assumes that the individual ions behave differently when the solution is subsatu-

rated and when it is supersaturated.

The following steps may be rate—determining — as well as combinations of them: Transfer of

growth units -
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1) From the bulk solution to the solution just outside the crystals

2) From the solution into an adsorption layer

3) From the solution or an adsorption layer to the growth step (surface nucleus or

spiral)

4) From the solution, adsorption layer or growth step to the growth site in the step

This leads to the following kinetics:

1) This is called transport controlled growth, and has been treated in Ref s. 7-9.

The linear growth rate ± dr/4t is proportional to c - c and to a function

of crystal size and shape.

2) This is surface controlled growth with a linear rate law, ± c -
C5

3) The rate is proportional to (c - c5)/y (c - c )ln(c/c5), y = step distance,

or y1 = (planar) step density.

4) The rate is proportional to (c - c)/(xy) (c - c5) (c/c) ln(c/c), x0 = kink
distance, or x1=(linear) kink density.

(1) and (2) are linear rate laws, linear in c - c; (3) and (4) are parabolic rate laws meaning

that for c/c5 1 the rate is approximately proportional to (c - c5)2 or (S - 1)2, S c/c.
For s > 1.5 the approximation (S - 1)2 is much better for (4) than for (3).

If two or more of the four mechanism have combined influence on the rate they will be conse-

cutive, and the mechanism that would be slowest at equal driving force will be not rate-

determining. It follows that if the kinetics change with the supersaturation, a transition

from parabolic at low to linear at high supersaturation will be actual. For small crystals of

sparingly soluble electrolytes transition from (3) or (4) to (1) has been observed, and for

larger, moderately soluble crystals transition from (3) or (4) to (2) seems to be usual, al-

though distinction between (1) and (2) is not always clear.

In the following we shall need the expression for the kink distance (see figs. 1 and 2)

= a Sexp(a2cY/kT) (2)

and the step distance of a growth spiral

y0 = 4ir[1 + (3S)iR
where the radius of the critical surface nucleus is

Rc = v/(kTlnS) (4)

S = supersaturation ratio c/c5 or (ll/K5)', a = molecular diameter, usually calculated

from the molar volume as a = (Vn/VL)'3i L = Avogadro constant; a = interfacial tension crystal

solution.

THEORY OF GROWTH RATE

As we have observed a very accurate parabolic law at much higher supersaturation than those

where (3) is "parabolic" we shall in the following base the development on the case (4). The

rate expression may be divided into two factors, a kinetic term proportional to c - c, and a

term 1/(x0y0) which may be called "thermodynamic" because x0 and y are calculated by assuming

equilibrium between the spiral step (at the center) and the kinks (locally) - and the solution.

The derivations of the expressions for x0 and y0 are very close to the classical treatments,

and may be found in the appendices 1 and 2. The kinetic term has not been treated before for

the growth of electrolytic crystals.
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As the kinetic factor is proportional to S - 1, we shall try to develop a theory for the

rate j of integration of growth units into the kinks with a rate proportional to S - 1, or

for an AB-electrolyte:

JcAcB —K5 (5)

We shall first see how close we can get without paying attention to the electric charges. This

may be considered as the theory for growth of a binary non—electrolyte AB which in solution is

dissociated into the molecules A and B. The most obvious way of expanding the BCF theory to

this case is to express the fluxes of A and B molecules into and out of the kinks by

=
kAcAnA A = knB ; =

kBcBnB ;
= kn (6-9)

where nA is the number of growth sites into which an A molecule would fit, etc.; nA + =

the total number of growth sites.

If the majority of the molecules entering into the growth sites come from an adsorption layer

the same equations will be valid for the concentrations c7ad and cBad in the adsorption layer

(cAad is defined as the surface concentration divided by the adsorption layer thickness,

the definition of which is not critical for our conclusions below).

If the two species independently are in adsorption equilibrium with the solution so that

cAad = KAadcA ; cBad = KBadcB (10-11)

then the equations are directly applicable with redefined rate constants containing the ad-

sorption coefficients [e.g. kA(new) = KAadkA(Old)] The net currents are

C - f =
kAcAnA

-
knB B E - f =

kBcBnB
-

knA (12-13)

For the formation of a pure AB crystal it is necessary that A = B Eliminating nA and nB one

obtains the total current of growth units to the crystal

2n (kAkBcAcB - kk)= A + B = 2A =

kAcA+ kBcB + k + k
(14)

This is in general not a function of the product cAcB as was found empirically for electrolytes.

At equilibrium A = B = 0 and consequently

cAnA/nB = ki/kA KA cBenB/nA = k/kB KB (15-16)

cAecBe = kk/kAkB =
KAKB

= K (17)

Then Eq. 14 may be written, for the current of ions per kink,

2kk (cc —K)ABAB 5j = J/n =

kAcA ÷ kBcB + k + k
(18)

Close to equilibrium the concentrations in the nominator may be approximated by their (constant)

equilibrium values and Eq. 18 becomes of the form j '-
cAcB

-
K5. This is of course a function

of the product cAcB, but not the correct empirically found function, Eq. 5. We must conclude

that when the solute is treated like a binary non-electrolyte the kinetic factor does not have

the form found empirically. Therefore the electric charges must exert an essential effect.

What can this be?

Firstly, the electric charges on the ions will make them more disposed for adsorbing at the

crystal surface, cations above anions and vice versa. And secondly, as we cannot have any great

net electric charge, they must adsorb in equivalent amounts (see Appendix 3), so that for the

electrolyte AaB we have cAad/cBad = ct/s. We take for simplicity a symmetric electrolyte AB
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so that CAad = CBd Applying Eq. 18 to the concentrations in the adsorption layer we find

2kAkB(cad - C2d) 2kAkB (CAad + cAade) (cAad - cAade)=
(kA

+
kB)cAad + k2

+k =
kA

+
kB cAad + (k + k) / (kA

+
kB)

(19)

This is of the same form as Eq. 5 if:

(k + k')/(kA +
kB)

=
cAde and cAd/cAd = cAcB/KS (= S) (20-21)

Satisfaction of Eq. 20 is equivalent to having nAe = nBI as can be seen from Eqs. 15-16. Phy-

sically this means that A and B ions are equally strongly bonded at kinks. This is not sur-

prising. Consider for instance a NaCl lattice. An A ion and a B ion, each of them in a kink,

will have the same distance to all their corresponding neighbours in the crystal. The signs of

all the electric charges are changed, but this does not change the forces, or the bonding energy

The equality of mAe and nBe also means that the very crystal (in addition to the adsorption

layer) is electroneutral.

If Eq. 21 is multiplied by cAade squared, and cAad = cBad inserted, we get

c •c =Kcc (22)
Aad Bad aAB

where

K c /K = (c c )/(c c ) (23)a Aade s Aade Bade Ae Be

This is nothing but the condition for equilibrium between the adsorption layer and the solution,

with Ka = the adsorption equilibrium constant. When Eq. 20-21 are fulfilled, Eq. 19 may be re-

duced to

2kAkB (cAad - cAade)=
kA +

kB
kV(cAd - cAade)

= k.V c (S - 1) = k.V (K K )(S - 1) = k.V K c (S - 1) (24)iwAade iw as iwads

where K K is the adsorption coefficient,. V the molar volume of the solvent; and k.
ad a w 1

2v1k k /(k + k ) is the integration rate constant on mole fraction basis; K V c is the molEw AB A B adws
fraction of the solute near the growth site - at solubility equilibrium. For the electrolyte A(

k. vV 1(cE/kA + s/kB)' (25)

Conclusion of the discussion

The empirically found rate law, 1 (S - 1)2, can be explained as follows on the basis of the

BCF theory. One of the factors (S - 1) comes from the density of kinks on the crystal face,

(x0y)1, where x = kink distance, y0 = step distance. For S values well above 1 the classical

approximation (xy) lnS is not accurate enough. Instead one should apply

(xy) ' S(1 ÷ (3S))1lnS (26)

which is surprisingly well approximated by S - 1. The other factor (S - 1) in (S -.1) is

of kinetic nature. It is proportional to the net flux per kink of ions from the solution into

the crystals. In order to get a factor of the form obtained empirically (with S = (fl/K)1")
it was found necessary to assume a considerable degree of adsorption of ions on the crystal

surface, equivalent amounts being adsorped of the constituent ions, and the adsorption layer

has to be in equilibrium with the solution. Furthermore the numbers of A- and B-kinks at

equilibrium must be equal which is in accordance with the very high correspondance between the

geometry and electric charges around an A and a B ion ituated in their respective kinks. Thes

assumptions allow us to derive the right form of the kinetic factor.
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THE ABSOLUTE RATE

The flux j (Eq. 24) is the rate of integration of ions into the crystal lattice per kink. With

the kink distance x and the step distance y0 the number of ions to be added at each kink in

order to complete one layer of ions is x0y0/a2 where a2 is the area accupied by one ion (assum-

ing for simplicity a NaC1 lattice and cubical growth units). See Fig. 2. This takes the time

xy/a2j and displaces the surface by the distance, a. Consequently the linear growth rate is

= aI(xy,/a2j) =
ja3/x0y0 (27)

Inserting j (Eq. 24), x (Eq. A4), and y0 (Eq. A36) into Eq. 27 we obtain

0k.K c V kT(S — 1)S lnS= iadW =kgg(S) ; (28)
4iraoexp(a o/kT)[1 + (3S) ]

where K°d is the adsorption coefficient for contact adsorption (see Appendix 4) and where

k.K° C V kT
k = 1 ad sw

; g(S) = (1 + 3)(1+ (3S))1(S- 1)SlnS (29-30)
g

4vaciexp(a ci/kT) (1 + 3

TABLE 1. The function g(S) - and (S - 1)2 and (S-1)lnS for comparison

5 1 1.1 1.5 2 5 10 20

g(S) 0 0.0102 0.266 1.098 18.047 87.409 355.60

(S — 1)2 0 0.0100 0.25 1 16 81 361

(S - 1)lnS 0 0.0095 0.20 0.69 6.44 20.7 56.9

Reich11 and Reich and Kahlweit12 have suggested that k. could be equal to the rate constant for

removal of a water molecule from the (inner) hydration sphere of the cation - the rate constant

for the similar process at the anion being much larger and thus not rate-determining. They

found agreement with kinetic data on T1Br, but not for other substances. We shall return to

this question later in conneOtion with the comparison with empirical rates.

The adsorption coefficients K°d for contact adsorption (where the ions are partly dehydrated

and thus are supposed to require less activation energy for entering a growth site) are not

known, but may be estimated on the basis of ion pair constants, as the forces bonding ion pairs

and adsorbed ions are probably rather like (the water molecules screening against the electro-

static forces from the neighbouring lattice ions), whereas the geometry is quite different for

adsorbed ions and ion pairs. The ratio between the adsorption coefficient and the ion pair con-

stant depends rather much on the ionic type, as explained in Appendix 4.

Introducing the ion pair constant into Eq. 29 the expression for the over-all rate constant

for + Bb -, AB(cr.) becomes

kg = kK1c5kTM(a,b)/{ac1exp(a20/kT)J (S.1. unit m/s) (31)

where 1/M(a,b) 4v(1 + 34)n(a,b) 20n(a,b) (see Eq. A88)

M(1,1) = 4X103 , M(1,2) = M(2,1) = 5X104 M(2,2) = 2X104

The value of the irterfacial tension may sometimes be determined from the induction period

of homogeneous nucleation, and related phenomena, as shown by Nielsen4, Nielsen and Sang13

and Nielsen and Söhnel'4. As shoWn in the paper with Söhnel14 there is a good correlation be-

tween the solubility and the interfacial tension of ionic crystals (which excludes silver
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halides). Later work (not published yet) has shown that there is an even better correlation

between c and a2c. Therefore, if a is not known from experiments with the actual electrolyte

it may be estimated from the empirical relationship

exp(a2a/kT) = 16.7(c/mol m3)°'27 (32)

or

a a2[11.6 - 1.12 ln(c/mol m3)JxlO 21 (33)

(with a in meter the unit for a becomes J/m2 or N/m); a is calculated as (V/vL)3 where V

is the molar volume, V the number of ions in a formula unit (V = a +.. ) and L is the Avogadro

constant.

In Table 2 a few representative examples are given of the empirical rate constants kg and

the corresponding values of k. that satisfy Eq. 31

TABLE 2. Representative kinetic data, 25 °C, aqueous solution

Electro-

lyte

c
s

3
mol/m

a

pm

a

2
J/m

K
I

3
m /mol

r

pm

k
g

nm/s

k.
1

—1
5

kw
—1

s

Gi'1
*

Gw

AgCl 0.013 278 0.09 0.00044 0.2—0.7 1.2—2.7 0.85 1.2X109 10 d 1.06

Ag2MoO4
0.095 318 0.14a 0.1 b 1.2—2.0 1.1—1.8 14 1.0X109 10 d 1.05

CaF2
0.25 239 0.28 0.025 b 0.4—5.0 2—4 0.004c 1.0X106 3X108 1.68

BaSO4
0.010 350 0.135 0.20 1.7—6.0 5—30 0.0025 4.0X106 7.2X108 1.65

a estimated, Ref. 14, Fig. 4; b estimated, Fig. 3; c rather uncertain; d estimated.

The last column provides a test of the Reich-J(ahlweit hypothesis that the dehydration of the

cation is the rate-determining phenomena. We define the (free, or Gibbs) energy of activation

by means of the Eyring equation for a unimolecular reaction rate constant, kr:

kr E (kT/h)exp(_G*/kT) or G* = kTln(kT/hkr) (3435)

In Table 2, G has been calculated by means of Eq. 35 from kr = k.a/v, and G* from k, the ratE

constant found by Eigen and Maass for the removal of a water molecule from the inner hydration

sphere of the cation. For silver ion we have used the value for potassium ion; these two ions

are almost of the same size.

The values found for the ratio G/G* (Table 2) show that for electrolytes with a univalent

cation the activation energy for the integration jump is the same as for the removal of a

water molecule from the hydration shell of the cation, and for divalent cations the ratio is

between 1.4 and 1.7, which may be taken as an indication that more than one water molecule mus

be removed at once in order for the ion to jump from a near-by resting position (presumable

contact adsorbed and partly dehydrated) into the growth site. This appears to be reasonable,

and confirms the assumptions.
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APPENDIX 1. The kink distance

According to Burton and Cabrera'8 the addition of a growth unit at a step may be regarded as

the formation of two kinks. Thus, if the Gibbs energy of adding a growth unit is , the Gibbs

energy of formation of a kink is /2. (Addition of a growth unit from a saturated solution and

from a growth site are energetically equivalent).

ct

b

C

Fig. 1. Formation of a pair of kinks (a -, b), LG = = 2a2ci.

Displacement of two kinks (b - c), iG = 0.

The transfer of a growth unit from one kink to another is energetically neutral, but results

in the displacement of the kinks. See Fig. 1. With a sufficiently large kink pooi the movements

of the individual kinks are in reality independent. Therefore the kinks may be regarded as a

one-dimensional gas, with the linear density

l/x = a1exp(-/2kT)

At solubility equilibrium

2= 2a o

and at the supersaturation ratio S

= 2a2 - kTlnS

Inserting Eq. A3 into Al we get the expression for the kink distance

x0 = a Sexp(a2a/kT)

APPENDIX 2. The step distance

(Al)

(A2)

(A3)

(A4)

In the Burton-Cabrera-Frank (BCF) theory6 for the spiral controlled growth it is assumed that

the dependence of the lateral velocity on the curvature of the step is given by

u u(l - R/R) (A5)

where Rc is the radius of a critical nucleus, and R is the curvature radius of the step. This

equation is based on an approximation which is only valid for S 1, and it is an excellent

approximation for the values 1 < S < 1.3 at which the BCF theory has usually been applied. But

in this work we have made growth kinetic experiments at higher supersaturations than previously

normal, and therefore have to reconsider the validity of Eq. A5.
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The radius of a critical surface nucleus is given by

Rc = Ov/(kTlnS) which may also be written S = exp(Ov/kTRc) (A6-7)

The equilibrium supersaturation SR at a step with radius of curvature R is given by the ama—

logous equation which may be transformed as follows

R/R R/R
SR = exp(av/ kTR) = [exp(ov/ kTRc)]

c = c
(A8)

The current of growth units into a kink is assumed to be proportional to 5, and the net current

to S - 5R If the kink density is proportional to f(S) the lateral velocity of a straight step

(R = °° R = 1) is

u = k1(S
— 1)f(S) (A9)

and the lateral velocity of a curved step is
R /R

u = k1(S
- = u(S - - 1) = u(S - S C )/(S - 1) (MO)

Letting S = 1 + x we have.

R/R R/R R R R
= (l+X)c (All)

R /R

(l_--)[l÷-2] (A12)

Fig. 2. Schematic drawing of a growth spiral showing the kink distance, x0,

the step distance, y, and the step height, a.

For S 1 Eq. Al2 becomes identical with Eq. A5. For S > 1 the two expressions only agree at

R >> Rc(S - 1)12. For smaller R-values the velocity calculated by Eq. Al2 is greater than acco

ding to Eq. A5. The correction of the error will thus lead to a spiral with the same u, but a

greater angular velocity, and thus shorter distance (y0) between the turns, and consequently

a faster growth rate than the rate one would calculate by using Eq. A5 at high S values. In

the BCF treatment Eq. A5 is used in both the limits r 0 (near the center) and r °° (distant
from the center). The error is only essential for the first few turns of the spiral. Fortuna-

tely it is possible to solve the problem by the CF method using the exact equation for u/u,,

at r 0 and an approximated equation which converges to the exact form at r - . The exact

equation (exact relative to the premises of the model) Eq. AlO may also be written

R = R
+ 15 ln{l —

5 1

a_]
(A13)

The. shape of the spiral is expressed in a rotating polar coordinate system, and when the shape

is constant and the coordinate system has the same angular velocity w as the spiral the
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equation for the spiral does not contain the time,

0 = 0(r) (A14)

The angular velocity is

w = (u/r)[1 + (r0t)2] (A15)

where 0' dO/dr.

The mathematical expression for the curvature of a curve in a polar coordinate system is

= (20' + r20'3 + rO'')/[l + (r0)2j3/'2 (A16)

where 0'' a d20/dr2. Inserting Eq. A15 and A16 into A13 the result is

23
=

R
+

RlnS
-

u[i +(r0)2] ]
(A17)

We follow the BCF method and fit an approximated solution of the form

0' = a + b/(1 + cr) (A18)

to the differential equation so that it satisfies the equation with terms in r for r -' 0 and

with terms in hr for r -, . For r 0, assuming that 0' and 0'' remain finite we cancel terms

with r2 in Eq. A17 and find

1 s-i r
20' + rO'' =

R — 5lnS
Rcu=

(A19)

From Eq. A18 follows in the limit r 0

0' a + b(1 - cr) = a + b - bcr rO'' -bcr (A20—21)

20' + rO'' = 2(a + b) — 3bcr (A22)

Eqs. A19 and A22 agree if

a+b=—--- and bc=51•—--— (A23-24)2R 35lnS R uC Coo

For r -' °° terms in r2 are cancelled from Eq. Ai7 and the resulting equation

i 1 i r s—iln!i— (A25)r R R1n5 S uO
C C 0O

may be solved for 0'

r In—i
0' = (w/u) (S — 1) — s

c
(A26)

In the limit r -, oo we have

R /r (R /r)lnS
S = e C = 1 + (R/r)lnS (A27)

for S however large. This is the more economic approximation that replaces Eq. A5. Now we have

R lnS -,
0' = -— Ii + —

I (A28)u R lnS ui r S-i=
1 r S-i

For r -+ Eq. A18 may be written

0' = a + b/cr (A29)

which agrees with Eq. A28 when a = w/u ; b/c = wR (lnS)/u (S - 1) (A30-31)

According to the BCF method we now assume that 0' may be used with constant coefficients for

all r values, so that the coefficients a, b and c, and w as well may be expressed in terms of

uoo and S by solving the set of four equations, A23-24 and A30-31:
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W 1 (J)a=—= b= = (A32—33)U
R[2 + 2(3S)] u(3S) R[2(3S) + 2]

Us-i Co

C = ; U) = (A34—35)
R (3S)lnS R [2 + 2(3S)]C

The step distance is the r increase for tO = 2v. For r -, 00

tr 27r 2r
(A36)=

LO/2v
= = = 4v[1 + (3S)

c

The correction factor to the BCF value of y is
0

y (corrected) 1 + (3S)
f= ° = (A37)

y(BCF) 1 + 3

TABLE 3. Examples of f values (Eq. A37)

S = 1 2 3 10 100 00

f = 1 0.8928 0.8453 0.7497 0.6706 0.6340

We observe that the correction is not particularly great. The main result of the investigation

in this appendix is to remove the uncertainty. We must, however, remember that even these

results are still approximations, and may contain a mathematical error of the order of 10-20 %

for S = 10.

APPENDIX 3. Adsorption layer electroneutrality

In the discussion of adsorption on an electrolyte crystal we disregarded any influence of a

possible electric potential difference between the crystal and the solution. At adsorption

equilibrium the following equations are valid for the electrolyte AaB

'Aad = Asoln Bad = 1Bsoln (A38-39)

where the electrochemical potentials are given by

= + RTlna. + z.F4. ; i = Aad, Asoln, Bad, Bsoln; j = ad, soln (A40-41)1 1 1 1 J

Multiplying Eq. A38 by a and A39 by and adding, terms with cf cancel because azA + ZB = 0

and the result may be written (with (A)ad aAad etc. and dropping indices soln)

(A)a (B) = K (A)a(B) (A42)ad ad a

Equation A42 will keep its validity even if 4 changes although a change in will imply that

at least one of the ratios (A)/(B) and (A)d/(B)d changes, too. For V = a + K is identi-
cal with the adsorption coefficient Kad introduced in appendix 4.

Inserting Eq. A40 into Eqs. A38-39 and solving both of the resulting two equations for

ads - solv we get expressions of the type

RT (A) RT (B) d
= E + — ln

(A)
= E + lz IF ln (B) (A43)

A ad B

We now approximate activity with concentration. Multiplying the two expressions for i with

z and IzI and adding we get
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RT [A][BJ d
(zA + IzBI)L14 = E + -i-- in

[BJ[A]d
(A44)

There is no reason to believe that an increase of [AJ/[BJ will decrease {A]d/[B]d. Therefore,

a tenfold increase of [Al/EB] will not change the logarithm by more than in 10, and conse—

quently will not change by more that (RTlnlO/F)/(zA ÷ IzBI) < 0.03 V. Somewhere in the

experimental range - but not exactly at equivalence - the crystals have no electric charge.

In all the experimental range we may therefore assume that the net electric charge q on the

crystal is not larger that corresponding to an electric potential of the order of 0.03 V. For

a sphere with radius r in a medium with the dielectric constant , q = 4ircr& (A45)

With r = 0.1 vim, = 0.03 V, c =
CM 0 = 7X10 10 C/Vm Eq. A45 gives q = 4ir(7x10 10) (10) (0.03)C

—17 2
= 2.6x10 C. This charge is partly due to the difference between the charges on adsorbed

cations and adsorbed anions and partly to nonstoichiometric composition of the crystal lattice.

The crystals may be assumed to have close to perfect lattices and relatively few kinks in sur-

face steps compared with the number Of adsorbed ions, and so q is given primarily by the ad-

sorbed ions which, according to the Paneth-Hahn-Fajans rule (see ending of appendix 4) in our

case are mainly the constituent ions, and we have

q = q - Iqi = F'adAJad -
IZBIB]ad) (A46)

where Vad = the volume of the adsorption layer. With Vad = 4ir(0.1 im)2(1 nm) = 1.3x1022 m3,

[A] c3 0.1 mol/m3, Kad = 600 we calculate q = FVdzAKd[A]
= 105x1.3x1022x2x600x0.1= 1.5x1015C.

So we have

z [A] — Iz [B] q 2.6x1017A ad B ad = — =
15

<< 1 (A47)

ZA[A]d q 1.5X10

For most of the experimental conditions the ratio is even smaller. Therefore we may conclude

that the ions are adsorbed in equivalent amounts, and that the adsorption layer is electroneutral.

APPENDIX 4. Adsorption coefficients

1. Ion pair constants

The ion pair equilibrium constant is defined by

K1 =
eq

(A48)

In Fig. 3 we have plotted in a logarithmic diagram the equilibrium constants K1 for the ion

pairs AB as a function of the solubility of the electrolytes ABS. Empirical values (from the
16,19literature ) are plotted with solid (black) symbols, and values calculated from the ionic

radii and charges .by the, Bjerrum theory192° are shown with open (white) symbols. The following

patterns are obrious:

1) Most of the empirical points lie within three horizontal bands about one decade wide, one

band containing the points for ion pairs of ionic type 1,1, one for ionic types 1,2 and 2,1,

and one the points for 2,2 ion pairs. The three bands center around the values, K1 = 3X104,
0.03 and 1 m3/mol, respectively.

A clear exception to this three band pattern is the silver halides, and also the thallous

halides show a tendency to mingle with ion pairs of higher ionic type. This is obviously a

consequence of the covalent bonding, and reminds of the similar effect displayed in the inter-

facial tension (Ref. 14).

2) Simultaneously most of the points lie within a band about one decade wide, with the slope -1.

This pattern is even followed by the silver and thallous halides as well. In order to see what

kind of information this is we notice that the degree of dissociation of an ion pair a satisfies
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K1
(1 - a)/a2C (A49)

(which may be shown by inserting [AB] = (1 - ct)C, [AliBi = (aC)2 into A48). - Taking logarithms

we get

log K1 = —log C + log 1(1 - a)/a21 (A50)

Eq. A50 shows that a straight line with slope = -1 in the logarithmic, diagram Fig. 3 corres-

ponds to points at which the ion pairs are equally much dissociated. The lines corresponding

to a = 0.5 and 0.95 are shown in the diagram. The very clear correlation between ion pair

formation, solubility and interfacial tension may be taken as evidence that these phenomena

are very closely related and are caused by nearly the same forces.

I 1 1 NaOH 16 MgCO24

2 30
— 2 AgF 17 T1Br

•\O 27 3
NaNO3

18
CaHPO4

\\
4

KNO3
19 MgF

28 26 25 2022 — 5 T1F 20
SrSO4

K

—

6 6 MgSO4 21
BaC2O4

Log 16 12\ 7
KSO4

22
SrC2O4m m

—2 - 26V 18 I VA1'\ - 8
Na103

23 MgOH
15• 9 KC1O 24 CaF

1 iO \ • 4
16 \\ 5S 02 10

CH3COOAg
25

PbSO4

28 0 . 11 AgS0
26

CaCO3
-.4 — 0 14 \o 1\ 12 CaOH 27

CaC2O4

I i I 13
CaSO4

28 AgC1

— 4 — 2 0 2 .. 4 14 TlCl 29
BaSO4

tog(/moL m 15 T1SCN 30 AgBr

Fig. 3. Ion pair constants as a function of solubility - logarithmic diagram. Ionic types:

• 1,1; A 1,2;V 2,1; 12,2. .A I empirical values16; 0Ocalculated (Bjerrum theory19'20)

This is the basis for the following attempt to estimate the extent of ionic adsorption by means

of these forces. We find the analogy to ion pairing greater than to interfacial tension or

solubility, and shall explicitely express the adsorption coefficients in terms of ion pair

constants.

According to Eigen and Tamm2' a 2,2 valent ion pair in aqueous solution may have n = 0, 1 or

2 molecules of hydration water between the two ions, see Fig. 4

Cation Anion Water molecule Ion pairs with n intermediate water molecules

Fig. 4. Schematic drawing of the structure of hydrated ions and ion pairs.

The ratio between the numbers of the three kinds of ion pairs is approximately 1:10:10. For the

estimates to be made in the following we shall assume all ions and water molecules to be spheres

with the same radius (rw) and volume (vw). When the position in space of the center of one of

the ions of an ion pair is given, the center of the other ion may be anywhere on a spherical

surface with radius (2n + 2)rw. A sphere with radiusr running through all these positions

describes the volume

vn = [(2n + 3)3 - (2n+ 1)3]v (A51)
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or v = 26 v , v = 98 v , v = 218 v . If the coordination number of nearest neighbours ofo w 1 w 2 w
an ion is 6, the number of statistically different positions in the first shell is 6. The

number of different possible position in the other shells may be set equal to the volume

ratios v1/v and v2/v,,, so that we have the statistical weights

n6 98and218 (n=0,.land2)

The probability of finding a B ion on a position in the bulk solution is equal to the mole

fraction of B ions

x = [BJv (A52)B w

The probability of finding a B ion in a position where the energy is lower by e is (according

to the Boltzmann distribution law)

xB(e) = xBexp(e/kT) (A53)

When e0 is the dissociation energy (in aqueous medium) of an AB contact ion pair (n = 0) the

probability that an A ion has a B ion in one of its six nearest neighbour position is

0 = 6
xB exp(e0/kT) (A54)

and the probability that an A ion is a member of an ion pair with n intermediate water mole-

cules is

n
= n xB exp(e/kT) (A55)

For the chemical equilibrium

A + B AB(ion pair) EABI
K1[A)[B] (A56-57)

If we distinguish between ion pairs according to n = 0, 1 or 2

=
K()EAJ[BJ (A58)

K1(0) + K1(1)
+

1(1(2)
=

K1 (A59)

K1(2) = [AB] (0) : LAB] (1) : [ABI
(2)

= A,o : A,1 A,2 = P exp(e0/kT) : etc. (A60)

The fraction of A molecules that form any kind of ion pair with a B ion is

=
A,0 + + A,2 fAl"U — = [ABJ/[A] =

K1[BJ (A61—62)

For small concentrations A << 1 and

K[B] ; K n
= A n'LAJ = Vp exp(e/kT) (A63-64)

When the ratios are assumed to be

[ABJ(0) [ABJ(1) [ABJ(2) = 1 : 10 : 10 (A65)

it follows that

A,O = r A =
r K1LAj f,2 = - K1[B] (A66—67)

p0 exp(e/kT) = fAQ/xB
=

-fr K1/V p1 exp(e1/kT) =p2exp(e2/kT) =4K1/V (A68-69)

exp(e0/kT) = T Ki/Vw
= -j-; K* K*

Ki/Vw (A70)

exp(e1/kT) = 98x21 k* -j K* ; exp(e2/kT)
=

218x21 K* -j- K* (A71—72)

e0 - e1
= kT ln ---J = 0.5 kT ; e1

-
e2

= kT ln = 0.8 kT
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Taking K = 1 m3/mol as a representative value for a 2,2 electrolyte and V = 1.8x105 m3/mol

for water, K* 5.6x104 and

e0 kT ln(K*/126) 6.1 kT ;
e1

= 5.6 kT ; e2 4.8 kT

It is remarkable that the dissociation energies are nearly the same for the three kinds of ion

pairs in spite of the very different ion-ion distances. In vacuum the potential energy of two

ions would vary as r', which is in the ratio 1 : 4 : 4 or 6.1 : 3.05 : 2.03. The values of

e1 and e2 are very close to the bond strengths of hydrogen bonds (3-5 kT) and it is very rea-

sonable that the bonding of these ion pairs is hydrogen bonding, which conveys the forces

between the two doubly charged ions through two intermediate water molecules.

A similar effect is not observed with 1,1 ion pairs, where only contact ion pairs are of

importance. K1 being typically 3X104 m3/mol

exp(e0/kT) = K1/6V
= 2.8 e0 = kT ln 2.8 = 1.0 kT

If ion pairs with n = 0 and 1 are taken into account, then even e0 =
e1

= 0 would lead to a

too large value for K1

K1 = K1 0+K1 1 = V(p0 +
p1)

exp(0) = (1.8x105 m3/mol) (104) (1) = 1.9x103 m3/mol

and larger en values would give yet larger K1 values.

We cannot in a similar straightforward way decide about the relative importance of the ion

pair types for a uni- and a bivalent ion, but the simplest way to generalize the above results

will be to assume that each bivalent ion can convey its electrostatic attraction through one

water molecule, and univalent ions cannot. So, for 1,2 ion pairs the types n = 0 and 1 should

be considered. For 1,1 pairs we have e0 - e1
=

e0
= 1.0 kT and for 2.2 pairs e0 -

e1
= 0.5.

In lack of better arguments we assume that for a 1,2 ion pair e0 —
e1

= the mean value, 0.75kT

so that A,0"A,1 = (p0/p1).exp(0.75) (6/98)X2.12 = 0.130 ,o = 0.115 A,1 = 0.885

K1 0 = Vw 6 exp(e0/kT) K1 1 = Vw
. 98

exp(e1/kT) K1 = Vexp(e0/kT)[6 + 98 exp(—0.75)] =

52Vexp(e0/kT) exp(e0/kT) = K1/52V
= K*/52 exp(e1/kT) = exp(e0/kT) exp(-0.75) =

K1/110 V = K*/110. With the typical value K1 = 0.003 m3/nol

e0 = kT ln[0.03/(52.3X1.8X105)] e1 = 2.7 kT

2. Adsorption coefficients

The main assumption that allows us to make an estimate of the adsorption of ions on electrolyte

crystals is that the energy of an adsorbed ion is similar to the energy of an ion paired ion

with the same number of intermediate water molecules. This is due to two effects of the water

molecules, they convey forces through hydrogen bonding and they screen against the repulsive

forces from neighbouring ions to the bonding ion in the crystal surface. More specifically the

energy in each of the three layers closest to the crystal is equated to minus the dissociation

energies e0, e1 and e2, but the steric factors are all set equal to unity for n = 1 and 2, and

equal to a/v and s/v, respectively, in the contact layer. So we have

[AJad(0) = [AJ(a/v)exp(e0/kT) (A73)

[A]d(l) = [Aiexp(e1/kT) ; = [Aiexp(e2/kT) (A74-75)

and similarly for [Bid. Inserting Eq. A73-75 we find for a 2,2 electrolyte

aK* K* K*
Kd(O) [Aid(o)I[A)=j--— Kad(1) 206 Kd(2) 458 (A76-78)

fi 1 i\ K* K*
Kad = + + K* = — — (A79)

For a 1,2 electrolyte (and, mutatis mutandis, a 2,1 electrolyte)

[AJdO = [A](a/v)exp(e0/kT)
= [A](2/3)K*/52 [BiadO = 1/3)(*'52 (A80—81)
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Kad 0 = ([A12d O[Bjdo[A)2[B)1)h13 = (2213/3)K*/52 = 0.53 K*/52 K*/100 (A82-83)

[Aidi = [A]exp(e1/kT) (A84)

Käi = exp(e1/kT)
= K*/110 Kad = K*(1/100 + 1/110) K/50 (A85—86)

Finally, for a 1,1 electrolyte only contact adsorption counts, so that

K = K = (ct/v)exp(e /kT) = K*/12 (A87)
ad,0 ad 0

We are most interested in the contact adsorption coefficients which may all be expressed by

K°d = K1/Vn(a,b) ; n(1,1) = 12; n(1,2) = n(2,1) = 100; n(2,2) = 250 (A88)

TABLE 4. Adsorption coefficients and ion pair constants (Aa+ and Bb_)

a,b 1,1 1,2 & 2,1 2,2

K1/m3 mol io - io io2 - io1 0.2 - 6

K* K /v1w 5 — 50 500 — 5000 1O4 — 3x105

Kad
K*/12 = 0.5 - 5 K*/50 = 10 - 100 K*/iOO = 100 — 3000

K°d
K*/12 = 0.5 — 5 K*/100 = 5 — 50 K*/250 = 50 — 1000

Adsorption specifities
From the arguments above it follows generally speaking that adsorption is strong if the ions
being adsorbed and some of the ions of the crystal are able to form strongly bonded ion pairs.
And ion pair constants obviously increase with decreasing solubility when different electroly-
tes are compared. A corollary of this is that when the adsorption of different ions on the
same electrolyte crystal are compared those ions that are able to form the least soluble salt
with the constituent ions of opposite electric sign will be most adsorbed. This is the Paneth-
Hahn-Fajans rule22.
As the electrolytecrystaLswe are growing in our experiments always represent the least

soluble of the salts that can be formed by the ions present it follows that the majority of
the ions in the adsorption layer are the constituent ions.
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