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Abstract — Aromaticity can be interpreted as extra
stabilization of a cyclic unsaturated molecule arising from
cyclic conjugation of m-electrons. The extra stabilization
energy is estimated relative to the m-electron energy of a
hypothetical reference molecule formed by the "localized"

m bonds. It is termed the resonance energy due to
aromaticity. Our graph theory of aromaticity defines this
type of resonance energy exactly. Diamagnetic
susceptibility due to ring currents can be formulated in
the same graph-theoretical terms. This formula reveals
that aromatic stabilization and diamagnetic susceptibility
exaltation arise from the same cyclic interactions of 7
electrons. For conjugated systems, both monocyclic and
polycyclic, the susceptibility due to a ring current
induced in any of the m-electron rings is roughly
proportional to the contribution of the ring to the
resonance energy, multiplied by a factor proportional to
the ring area squared.

INTRODUCTION

Originally, the term "aromatic" was associated with a fragrant odor of a
structurally diverse group of compounds (1). This attribute was then
replaced by the tendency to undergo substitution reactions (2). The aromatic
compounds were naturally restricted to the cyclic unsaturated systems with
this tendency in common (3). Later, the idea of special stability came to
play a significant role (1). Benzene is very stable; there appeared to be no
reason why three double bonds in the classical Kekule structure should not
readily undergo addition reactions. In fact, this compound has much larger
heat of formation than some reference compounds imagined so far (2,4).
Aromaticity is now often identified with this property of lower molecular
energy (2,4,5).

Attempts to describe how stable a given aromatic compound is in terms of
molecular orbital (MO) calculations have been centered on the concept of
resonance energy. Delocalization energy is a kind of resonance energy,
defined in valence bond theory (6). It is given as the calculated additional
bonding energy which results from delocalization of m electrons, originally
constrained to isolated double bonds in a Kekulé structure. However, almost
all compounds, even ones which are very unstable, were found to have large
delocalization energy. Furthermore, the calculated delocalization energies
were not in the experimental order of stability (7).

Dewar et al. were the first to overcome these faults (8). They found that
the calculated atomization energies of acyclic polyenes can be expressed as
sums of bond energies, implying that the bonds in such compounds are
localized; the corresponding "polyene'" C-C and C=C bond energies differ from
those expected for "pure single'" and '"pure double" carbon-carbon bonds,
respectively. This result leads to the definition of so-called Dewar
resonance energy (8,9) as the difference in energy between a given aromatic
compound and a corresponding '"localized" structure (e.g., benzene and 1,3,5-
cyclohexatriene); the energy of the latter structure was estimated as a sum
of "polyene'" bond energies. There was a good correlation between Dewar
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resonance energy and experimental stability for many compounds (8-10). Hess
and Schaad showed that Dewar resonance energy can also be defined in terms of
Huckel molecular orbital (HMO) theory (7,11,12). The success of definition
of Dewar resonance energy rests primarily on the apparent additivity of bond
energies in acyclic polyenes.

The next step forward was to formulate Dewar resonance energy without using
empirical "polyene' bond energies, namely, to construct a non-parametric
theory of aromaticity. Analytic aspects of aromaticity do not emerge from
sophisticated MO theory, because the detailed complexity of the calculations
hides them. However, they had a lucky chance of emerging from treatments
which focused on molecular topology. For polycyclic hydrocarbons, Dewar
resonance energy correlates well with particular structural features of the
molecule (2,13). The HMO theory of conjugated systems can be reduced to a
graph-theoretical formalism (14,15). This formalism was found to allow an
exact mathematical definition of the m-electron energy of a '"localized"
reference structure. We then managed to construct a graph theory of
aromaticity on this basis (16,17). The London theory of diamagnetism due to
ring currents (18,19) was incorporated in this theoretical framework (20-22).
It was made clear that diatropic compounds, i.e., compounds with diamagnetic
ring currents, often have strong conjugative stabilization. In this paper, a
general survey of this theory of aromaticity is made in conjunction with
diatropicity.

STABILITY OF BUTALENE

As an illustration of the theory, let us consider aromatic character of
butalene. 1Its conjugated system K is shown in Fig. 1. The HUckel secular
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Fig. 1. Butalene and its conjugated system K.

determinant can be set up in the usual way (23), and it can be expanded to
give a polynomial in (a-€) as follows:
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Here, € is an energy variable; Bij is a resonance integral between bonded

carbon atoms i and j; for simplicity, all carbon atoms are assumed to have a
constant value for the Coulomb integral o, but this is not a necessary
condition for the present theory.

As we may see from eq. (1), all coefficients of the polynomial are
expressible in terms of closed cyclic products of resonance integrals (24-27).

The simplest closed cyclic product is just of the type BijB'i’ which

corresponds to the m bond between carbon atoms i and j. Such a bond-type
product of resonance integrals represents an interchange of m electrons
between the two carbon atoms. This will be called a bond interaction. Seven
bond interactions appear in eq. (1), since there are seven m bonds in K. As
shown in Fig. 2, they are:

B
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Fig. 2. Bond interactions in K.

In addition to these bond interactions, there are another type of
interactions. They are expressed as closed cyclic products of more than two
resonance integrals. These products appear in pairs like Biijk"'Squqi and
Biqup"'Bijji' Pairing produc?s are equal in magnitude, because BijfBji;
these are products of resonance integrals around the same m-electron ring.
Such a ring-type product of resonance integrals represents a clockwise (C+)

or counterclockwise (C°) displacement of all m electrons located around the
ring concerned. Therefore, this will be called a ring interaction. Three
pairs of ring interactions appear in eq. (1), corresponding to three possible
ways of choosing one m-electron ring from K. As shown in Fig. 3, they are:

C1=8) 4843832821 (7C1 )81 2853834841 (=C1 )

C2=B 34845856863 ("Co ) =P36865P54B45("C, ) and
C3=B14B45856863832821 ("Cs ) =B12873836865854841(<C3 )

These ring interactions are underlined in eq. (1).

Let X=(e-a)/B, where B is a standard value of the resonance integral for

carbon-carbon 7 bonds, and the polynomial in eq. (1) is reduced to a much
simpler form:

2,4
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This type of polynomials in a dimensionless form are called characteristic
polynomials (28).

The equation PK(X)=0 can be solved, and the six roots determined. The jth
largest root Xj is related to the jth m-electron MO energy of butalene. Its
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Fig. 3. Ring interactions in K.

magnitude depends upon all coefficients of PK(X), each coefficient being

expressed in terms of bond and/or ring interactions. If any of these
interactions change in magnitude, the six roots will also change to a
varying extent. Here, we assume that all bond interactions are constant, but
that all pairs of ring interactions can be treated as independent parameters.
Then, Xj can be expressed hypothetically as a function of three pairs of ring

interactions, i.e.,

xj=xj(cl,c2,c3). (3)

This is not the result of logical reasoning, since all the ring interactions
are not independent of each other; they are not independent of the bond
interactions, either. Then, if Cl's take their respective values in real

butalene, the jth m-electron MO energy will be expressed in the form:

since Xj=(ej—a)/8.

For acyclic polyenes, no ring interactions appear in the coefficients of the
characteristic polynomial, since there are no m-electron rings. In this
view, the non-existence of ring interactions may be essential to the
""localized" nature of m bonds in these compounds. Conversely, it is highly
probable that ring interactions bring about delocalization of m bonds in
cyclic conjugated systems. Since both aromatic and antiaromatic molecules
always have cyclic conjugated systems (8,29), aromaticity and antiaromaticity
might be attributed to the ring interactions.

This way of chemical thinking leads to the central postulate, that is, if all
ring interactions happen to vanish in a cyclic conjugated system, all the =
bonds would be localized as in acyclic polyenes. This postulate asserts
that, if there were no ring interactions in butalene, the jth wm-electron MO
energy would change to:

ejo=u+Xj(0,0,0)B. (5)

In practice, the value for X.(0,0,0) is given as the jth zero of the
following polynomial, obtained by setting all Ci's in the coefficients of
PK(X) equal to zero:
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In other words, X (0,0,0) is the jth root of the equation R (X) =0. R (X) is
termed a reference polynomial for the conjugated system K (16 30), wh1ch may
be interpreted as a characteristic polynomial for the reference structure
with "localized" w bonds.

Next, let us calculate explicitly the m-electron MO energies of butalene and
its reference structure. For simplicity, we assume that there is no bond
alternation in K, so that all resonance integrals can be set equal to B. In

this case, Bi=82 for all m bonds, and Ci=8m, where m is the number of carbon

atoms constituting the ring. A characteristic polynomial for butalene
becomes:

P (X)=x®-7x*+7x%-1, (7

The m-electron MO energies obtained from this polynomial are shown in Fig. 4.
Six m electrons are put into the first three MO's, giving a total m-electron
energy of 60+7.6578 for butalene. A reference polynomial for this compound

becomes:

R () =X®-7x%+11x2 -3, (8)

The resulting m-electron MO energies are compared in Fig. 4. Six roots are
again placed in the first three MO's, giving a total m-electron energy of
60+8.2618 for the butalene reference structure. The resonance energy is
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0
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Fig. 4. m-Electron MO energies of butalene (a) and
its "localized" reference structure (b).

defined as the difference between these two total m-electron energies. Here
and hereafter the term 'resonance energy" is used in Dewar's sense (8,11).
It is -0.6048 for butalene, where B is an absolute value of B. A large
negative value of the resonance energy indicates that butalene might be much
more unstable than common acyclic polyenes with no ring interactions. In
fact, this compound is very unstable, and cannot be isolated from the frozen
matrix (31). As far as butalene is concerned, agreement between theory and
stability thus appears acceptable (32).

GENERAL DEFINITION OF RESONANCE ENERGY
The above definition of resonance energy can be extended easily to include

all cyclic conjugated hydrocarbons (16,30). Let a given hydrocarbon contain
N carbon atoms and u m bonds in the conjugated system G. Different bond
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interactions are defined for all these m bonds. If v pairs of closed cyclic
products of more than two resonance integrals can be chosen from G, v pairs
of ring interactions are defined by them. This means that there are v ways
of choosing an annulene-like m-electron ring from G. Expansion of the
secular determinant yields a characteristic polynomial of the same type as
eq. (2), and this is denoted by PG(X). Coefficients of PG(X) can be

expressed in terms of u bond and v pairs of ring interactions and B.

Our formalism requires that all bond interactions be constants, but that all
pairs of ring interactions can be treated as independent parameters; we
assume that each pair of ring interactions can take any value independently

of other interactions in the same conjugated system. This is a trick to
tackle the problem of aromaticity. Suppose Ci denotes a pair of ring

interactions in the ith m-electron ring, and N roots of the equation PG(X)=0
can be expressed formally as functions of v pairs of ring interactions, i.e.,

e A L AR R ®)

where Xj's are numbered in decreasing order. When Ci's really take their
respective values in G, the jth m-electron MO energy is given by:

€5=0+X; (C1,Cpp vt n sy, C LB (10)

The total m-electron energy for G is then:

N
E;Zgjej, (11)

where gj is the number of 7 electrons in the jth m-electron MO.

On the other hand, the m-electron MO energies of the 'localized" reference
structure are given formally by:

ej°=a+Xj(0,0,...,0,0)B. (12)

These MO energies are numbered anew in increasing order. The reference
polynomial RG(X) is obtained by assuming all Ci's in the coefficients of

PG(X) to vanish. In practice, the values for Xj(0,0,...,0,0) are the roots
of the equation RG(X)=0. These roots are always real numbers (27,33). The
total w-electron energy for this reference structure is:

N
o_ o_o
ETT = Zzagj ej . (13)
J=

Here, gjo is the number of 7 electrons in the jth m-electron MO, which must
be chosen so as to minimize Eno (34). We are finally led to the resonance
energy defined by:

RE=-(Eﬂ~Eﬂ°). (14)

This resonance energy represents the contribution of all ring interactions to
the total m-electron energy; it is an extra stabilization energy of G to be
expected in comparison with a '"localized" reference structure, defined by eq.
(12). Both egs. (11) and (13) apply not only to neutral conjugated systems
but also to ionic ones (16,30,35-37).

For conjugated hydrocarbons with no alternation of w-bond lengths, all
resonance integrals can be set equal to B. In this case, a reference
polynomial greatly simplifies to (14-16):



Aromaticity and diatropicity 1121

N2l y
R0 =X+ D7 (-1)p(5yxT2, (15)
j=1

Here, [N/2] is a maximum integer not larger than N/2, and p(j) the number of
ways of choosing j disjoint w bond from G. This formula is of general use
for simplifying the computational procedure. It is noteworthy that eq. (15)
also gives a definition of a characteristic polynomial for acyclic polyenes
(14). This indicates that a characteristic polynomial for an acyclic polyene
is exactly the same as its reference polynomial. Therefore, the resonance
energy vanishes for such a system. Thus, our theory satisfies Dewar's
requirement that acyclic polyenes be nonaromatic with no resonance energy
(8). Furthermore, the reference polynomial defined by eq. (15) is either an
even or odd function of X, depending upon the number of conjugated carbon
atoms. Consequently, the energy levels are symmetrically disposed about X=0;
when Xj is a root of the equation RG(X)=0, -Xj is also a root. In this view,

the reference structure defined for any conjugated hydrocarbon can be
regarded as a kind of alternant hydrocarbon (38). A characteristic
polynomial can be readily obtained, if necessary, by expanding:

N
P00 []1x(cp,CpennnCy g C0T, (16)
j=1
in which Xj's are given by solving the secular equation for G.

One of the best ways of testing the validity of our theory is to compare the
calculated resonance energies with those of Hess and Schaad (11), both based
on the simple HMO model. The latter ones have been accepted as being of
Dewar type, since the energies of the '"localized'" reference structures were
estimated with empirically chosen "polyene" w-bond energies. In fact, our
resonance energies (16,35) correlated very well with those of Hess and Schaad
(11), with a correlation coefficient of 0.967 for 40 typical hydrocarbons
(TABLE 1). Such an excellent correlation (39) unanimously justifies the
expectation that our resonance energies would be of Dewar type. We can now
say that the reference polynomial, as defined by eq. (15), really represents
a "localized" structure with polyene-like 7w bonds; bond interactions are the
only source of '"localized'" w-bond energies in acyclic polyenes and in the
reference structures of cyclic conjugated systems alike. Mathematically,
this comes from the fact that RG(X) for cyclic conjugated systems is defined

in the same manner as PG(X) for acyclic polyenes with "localized" w bonds.

Therefore, the resonance energy defined by eq. (14) can naturally be
associated with aromaticity or antiaromaticity, depending upon the sign.

In general, an aromatic compound is characterized by the appreciable positive
resonance energy, and an antiaromatic compound by the appreciable negative
resonance energy (8-13). However, if two compounds have resonance energies
comparable in magnitude, that of smaller size will be more stable (11,12).
Thus, when compounds of different size are compared, the percent resonance
energy (%RE) , rather than the overall resonance energy, is particularly
suitable (40,41). The %RE is defined as 100 times the resonance energy,
divided by the energy of the reference structure. As shown in TABLE 1, the
%$RE value is quite consistent with experimental stability for a variety of
compounds. Compounds with %RE)0.50 are generally stable, and most compounds
with %$RE(-0.50 are extremely unstable (41). Resonance energy per m bond also
serves as a practical measure of stability (42). As for annulenes, those
with (4n+2) 7 electrons are predicted to be aromatic, and those with 4n =
electrons to be antiaromatic. These predictions are in complete agreement
with HUckel's (4n+2) rule (43-45). When n is large enough, the two series of
annulenes are essentially nonaromatic, having negligible %RE's. Radialenes
are all predicted to be nonaromatic. These compounds have been regarded as
representative cyclic polyenes (8,44,45).

So far, the theory has been described in terms of the simple HMO model. This
model is best applicable to alternant hydrocarbons, but is less applicable to
nonalternant ones with uneven charge distributions (46,47). For example,
calicene and sesquifulvalene have been predicted to have very large resonance
energies (11,16,30), although chemically they behave like polyenes (48). The
w-technique calculations (46,47) greatly ameliorate this situation (41). As
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TABLE 1. Resonance energies of 40 cyclic conjugated hydrocarbons.

Resonance energy (B)

Species a Present theory %REb
Hess-Schaad
Simple HMO w-Technique
Cyclobutadiene -1.072 -1.226 -1.226 -23.46
Benzene 0.392 0.273 0.273 3.53
Cyclooctatetraene -0.487 -0.595 -0.595 -5.80
[10]Annulene 0.265 0.159 0.159 1.25
[12]Annulene -0.287 -0.394 -0.394 -2.57
[14]Annulene 0.225 0.113 0.113 0.63
[3]Radialene -0.007 0.009 -0.005 -0.06
[4]Radialene -0.086 -0.072 -0.072 -0.73
[5]Radialene -0.019 0.000 0.000 0.00
[6]Radialene -0.014 0.009 0.009 0.06
Triafulvene 0.020 0.063 -0.145 -2.96
Fulvene -0.012 0.020 -0.082 -1.10
Heptafulvene -0.020 0.009 -0.052 -0.52
Dimethylenecyclobutene -0.170 -0.163 -0.163 -2.21
o-Xylylene 0.040 0.059 0.059 0.60
p-Xylylene 0.044 0.061 0.061 0.62
Triafulvalene -0.592 -0.461 -0.607 -7.66
Calicene 0.347 0.433 0.038 0.36
Triaheptafulvalene -0.215 -0.210 -0.370 -2.83
Fulvalene -0.329 -0.299 -0.367 -2.81
Sesquifulvalene 0.267 0.272 0.023 0.15
Heptafulvalene -0.195 -0.218 -0.261 -1.43
Butalene -0.402 -0.604 -0.604 -7.31
Pentalene -0.141 -0.215 -0.411 -3.85
Naphthalene 0.552 0.389 0.389 2.92
Heptalene -0.050 -0.141 -0.252 -1.60
Octalene -0.100 -0.259 -0.259 -1.41
Benzocyclobutadiene -0.214 -0.393 -0.393 -3.65
Bicyclo[6.2.0]decapentaene
-0.289 -0.461 -0.461 -3.46
Benzocyclooctatetraene 0.054 -0.106 -0.106 -0.67
Azulene 0.231 0.151 0.055 0.42
Cyclopent[cd]azulene 0.220 0.101 -0.030 -0.18
Acenaphthylene 0.473 0.354 0.319 1.96
Aceheptylene 0.229 0.106 0.014 0.07
Pleiadiene 0.463 0.339 0.317 1.69
s-Indacene 0.110 0.055 -0.056 -0.35
as-Indacene -0.249 -0.306 - <-1.92
Biphenylene 0.331 0.123 0.123 0.75
Anthracene 0.659 0.475 0.475 2.52
Phenanthrene 0.766 0.546 0.546 2.89

dpeference 11. bDerived from w-technique resonance energy.

we have seen, the reference structure of any conjugated hydrocarbon is
mathematically identical with an alternant hydrocarbon (16), for which charge
density is unity on each carbon atom (49). Therefore, even if the
w-technique is employed, the energy of the reference structure remains
unchanged. Then, the resonance energies of nonalternant hydrocarbons can be
refined simply by applying the w-technique to the real system alone.
Resonance energies of alternant hydrocarbons are not modified by this
technique. A comparison of the resonance energies derived from the simple
HMO and w-technique calculations is made in TABLE 1; a standard value of
w=1.4 was used for the latter calculations (41,50). In the case of ionic
conjugated systems, the '"localized" reference structure is also reorganized
by application of the w-technique.

We have not referred to radicals containing unpaired m electrons.

Chemically, they show no aromatic behavior, being very reactive and
polymerizing easily (51). For these systems, the reference structure must be
very unstable, since it must still retain radical character. The resonance
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energy is calculated relative to the energy of such an unstable reference
structure, so it can hardly be related to the apparent instability (34). It
is obvious that this kind of instability has a different origin from
antiaromaticity.

RING CURRENTS AND AROMATICITY

In general, diamagnetic susceptibility of an organic molecule is an additive
function of its constituents (52). However, benzene and other cyclic
conjugated systems possess rather larger susceptibilities than expected from
a comparison with the values of alkenes (53). It has been accepted that the
exaltation of diamagnetic susceptibility is not only a manifestation of the
existence of fully delocalized m electrons but also an excellent criterion
of aromaticity (54). It is now known that the induced ring currents are
responsible for this magnetic exaltation (18,19). The present theory is
useful for clarifying the physical ground for the relationship between
resonance energy due to aromaticity and susceptibility due to ring currents
(20,21,26,45).

Suppose an external magnetic field of strength H is applied perpendicularly
to the planar conjugated system G, and the field-dependent characteristic
polynomial is given formally by replacing every ring interaction Ci in the

coefficients of PG(X) for the field-free system by (20,21,26):
C; (H)=C, (0)cos (6,H)

1. 2.2
=C, (0) (1- -0, “H+...). (18)

Here, Ci(O) represents Ci in eq. (9), being equal to the value for the field-

free system; ®i=esi/cﬁ, in which Si is the area of the ith m-electron ring,

and e, ¢, and h are the constants with these symbols. Bond interactions are
not influenced by the field. Therefore, by substitution eq. (18) in eq. (9),
the field-dependent m-electron MO energies are written as:

£ ; () =a*X; [C) (), C, (H) ... ,C ) (),C (D)]6. (19)

The field-dependent total m-electron energy Eﬂ(H) is then given by summing
ej(H) over all the m electrons. Coefficients of the reference polynomial do

not contain ring interactions, so the '"localized" reference structure is
independent of the external magnetic field (26,45). Thus, the '"localized"
reference structure again resembles an acyclic polyene, this time in that
the field has no effect.

Diamagnetic susceptibility due to ring currents, X2 is defined as the
second derivative of E“(H) with respect to H (19,20,26). Hence, E“(H) can be
expanded in powers of H:

E_(H)=E_(0)+—3-X H2+. .., (20)

where Eﬁ(O) is identical with E_ in eq. (11). Since an aromatic system does
not have a permanent magnetic moment, the term proportional to H vanishes,

We can now prove that the diamagnetic susceptibility due to ring currents
really reflects aromaticity. As shown in eq. (18), the magnetic field H
affects exclusively the ring interactions. Since H can be treated as a small
perturbation, every ring interaction Ci(H) is a monotonically decreasing

function of H. Therefore, the role of the field is to diminish the
conrtibution of all ring interactions to the coefficients of the
characteristic polynomial, i.e., to change the field-free conjugated system
into a variant with smaller ring interactions (26). In this way, the applied
field commonly destabilizes an aromatic system, and stabilizes an
antiaromatic system. The absolute value of the resonance energy
correspondingly decreases in the field, since the energy of the reference
structure remains unchanged. According to eq. (2C0), the decrement of
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resonance energy due to the field is proportional to the susceptibility due
to ring currents, X .. Therefore, the sign of resonance energy commonly

disagrees with that of X e This is the primary reason why the exaltation of

diamagnetic susceptibility is a valid criterion for the determination of
aromaticity (54). As we will see, however, this criterion is not an exact
one (20).

The above magnetic behavior of aromatic compounds can be visualized
explicitly in the case of comparatively simple conjugated hydrocarbons. For
monocyclic and bicyclic hydrocarbons, the reference polynomial is given as
(14,15):

v
RG(X)=PG(X)+2 Zi:PG-r.(X)’ (21
i=1 1
where G-ri is a subsystem of a conjugated system G, obtained by deleting from
G the ith m-electron ring (ri) and all w bonds adjacent to it; PG_r (X) can
i

be obtained by means of eq. (16). If G-ri=0, PG-r.(X)=1 by definition. As
i

for subsystems of the butalene conjugated system, see Fig. 5, where G=K. The

1 4 5
6
rl K-rl
4 5 1

Fig. 5. Subsystems of the butalene conjugated system K.

jth largest root of the equation PG(X)=0 is hereafter denoted by Xj’ and the
corresponding root of the equation RG(X)=0 abbreviated to X.°. By
application of Newton's method to the equation RG(X)=0, where RG(X) is given
in the form of eq. (21), we obtain the roots in the form (22):

. v PG—ri(xj)

X;%2X;72 )
1

-1 Po' (Xy)

(22)

where PG'(X) is the first derivative of PG(X) with respect to X. Then, the
resonance energy is expressed approximately as:

g.P (X.)

N N v .
j G-r, ]
RE= (X, -X.%= - % -
8 2503028 20 0 (23)
j=1 j=1 i=1 G ‘%
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This approximate resonance energy is an additive function of the constituent
m-electron rings, so it can be divided among the rings, namely:

ngG_ri(Xj)
—_— (24)
Pg' (X))

R (=25 5~

N
j=1

Ring resonance energies thus calculated for butalene are listed in TABLE 2.

TABLE 2. Ring resonance energies and ring susceptibilities of butalene

T, RE(l) (8) X(i) (_B_)a

2

r, 0.707 0.7070,

2

r, 0.707 0.7076,

2

Ty 0.561 -0.5616,
Total -0.853 -0.8300,°

a = =
9,=0,70,/2.

These expressions can also be applied to pericondensed tricyclic
hydrocarbons, such as acenaphthylene, aceheptylene, pleiadiene, and
cyclopent[cd]azulene (22,55).

For any conjugated hydrocarbon, diamagnetic susceptibility due to ring
currents can be expressed in the analytical form (20):

N v g.P (X.)

_ s MM
X =28 10" (25)
5=1 1.1 Pg' (Xy)

This is a graph-theoretical version of the London theory of diamagnetism
(19). The susceptibility is now an additive function of the m-electron
rings, so it can be divided among the rings:

) g.PG_ .(X.)
X(1)=_Zeiz§ SRR P (26)

1
=1 Pg' (%)
This quantity is called the ring susceptibility. Comparing eqs. (24) and
(26), we see that the ith ring resonance energy is evidently related to the

ith ring susceptibility; the two expressions differ only by the factor —Oiz

This relationship shows that the sign of the ring susceptibility is opposite
to that of the ring resonance energy (22). Since (4n+2)-membered rings
commonly have positive resonance energies (20,35), they must have negative
ring susceptibilities. Conversely, 4n-membered rings commonly have negative
ring resonance energies (20,35), so they must have positive ring
susceptibilities. For ring susceptibilities of butalene, see again TABLE 2.

However, the sign of the overall resonance energy does not always differ from
that of the overall susceptibility (22). This can be seen by substituting
eq. (24) in eq. (25):

\
Xp=" ZE:RE(I)OiZ. 27
i=1

Each of the weighting factors -Oiz is proportional to the corresponding ring

area squared. Therefore, larger rings contribute much more to the
susceptibility than to the resonance energy. As a result, the sign of the
overall susceptibility is sometimes determined by one or some large rings
with small ring resonance energies. If these ring resonance energies are
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different in sign from the overall resonance energy, the sign of the overall
susceptibility will be the same as that of the overall resonance energy.
Thus, it is sometimes dangerous to regard the diamagnetic exaltation as an
indication of aromaticity. Butalene is one of such exceptions. When there
are degenerate orbitals in G, eqs. (22)-(26) need some modification, but

eq. (27) still holds (20,22).

An NMR criterion of aromaticity has been used widely, according to which
diamagnetic ring currents indicate aromaticity while paramagnetic ring
currents indicate antiaromaticity (56). We can show why compounds with
diamagnetic ring currents also have strong conjugative stabilization. The
current induced in the ith w-electron ring is given as the first derivative
of the ith ring susceptibility with respect to the ring area (57). Therefore,
the sign of the ring current, i.e., the direction of the current, is opposite
to the sign of the ring resonance energy. In brief, diatropicity indicates
aromaticity of the ring concerned. This provides a theoretical justification
for the utility of proton chemical shifts as a conventional measure of
aromaticity (56).

CONCLUDING REMARKS

It was in 1965 that Dewar et al. first published the idea of a 'localized"
reference structure for conjugated hydrocarbons (8). Their reference
structure was a patchwork of empirically chosen "polyene'" bonds. Our theory,
for the first time, was able to define the "localized" reference structure of
exactly the same geometry as a real conjugated system. Its mathematical
framework is very similar in many respects to that of an acyclic polyene.
Three advantages of the theory are that the resonance energy defined in it
can be linked to the diamagnetic susceptibility exaltation (i.e., x_), that
no fitting of parameters is needed in applications to hydrocarbons,ﬂand that
molecular ions can be examined in addition to neutral species (58).

In this paper, conjugated hydrocarbons alone were used to illustrate the
theory. The theory is of course applicable to all kinds of compounds,
including heterocycles (16,30,59) and three-dimensional conjugated systems
(40,60), although some knowledge of simple graph theory (25,61) is needed to
obtain the reference polynomials. Even if so, the physical meaning of the
resonance energy remains the same. Aromatic transition states in the
pericyclic reactions can also be characterized in terms of the present theory
(62). 1In conclusion, aromaticity is best described as being due to
delocalization of bonding w electrons, brought about by ring interactions;
the ring interactions are always the only source of aromatic stabilization
and diamagnetic exaltation.
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