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NMR AND SOLVATION OF IONS IN NON-AQUEOUS SOLVENTS
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versitdt Karlsruhe, Kaiserstr. 12, 75 Karlsruhe, West-Germany

Abstract - Solvation of ions as a microscopic property is un-
derstood to be given by certain time independent and time de-
pendent probability functions which describe the structure
and internal dynamics around the ions in a heap of mass points
representing ions and solvent species in the liguid state. It
is shown in an abbreviated and simple form in which way the
three macroscopic observables w , Tq, T, characterizinag one
of the nuclear magnetizations of the so%ution give a partial
and truncated picture of the microscopic object of interest
here. Interpretation of chemical shift data very often is
rendered more difficult by the fact that the local microsco-
pic magnetic field is determined by the electron density, for
the nuclear magnetic relaxation data this is the case to a
much lesser degree. Literature references referring to non-
aqueous solutions are given as examples for the basic rela-
tions outlined where for reasons of room detailed discussion
is not possible.

Figure 1 shows the object of our interest in the simplest form, we have a
binary mixture of a salt with a non-aqueous solvent, here methanol. In fact,
the solute should have cations and anions, for simplicity we have only shown
the cationic species Me'*, = 1,2,3.0bviously, the solvent splits into bulk
and "solvation liquid". The solvation liquid surrounds the solute species,
and, as may be seen from Fig. 1 all Me'” - O distances are equal and all
nearest neighbour O - O distances are also equal. Thus here the solvation may
be described with a "chemical language" as Me(H,0)”" where, for instance,

n = 6 if the picture is completed to a three dimensional one.

In Fig. 2 we have again a binary mixture electrolyte - methanol. Now the
splitting of the solvent in bulk and solvation liquid becomes more ambiguous.
Still, in some way one can say that the solvation liquid surrounds the
cations, however the two distances mentioned above are distributed over fairly
wide ranges. In Fig. 2 we have shown cationic species with diffuse solvation
spheres, for the anions we have to imagine such type of solvation in almost
all cases. Now the chemical, stoichiometric language to characterize sol-
vation becomes meaningless and we have to take recourse to a configurational
description. Our object in the microscopic sense is a heap of mass points,
the atoms, or atomic nuclei, each mass point represents a certain element.
And now we wish to describe the system in terms of geometrical properties of
this heap of mass points. The tool to do this is a suitable set of pair
distribution functions. Fig. 3 shows a schematic representation; the pair
distribution function p(r) gives the probability density of finding an atom
at position r relative to the position of another atom or ion. In fact, we
could also have included in Figs. 1 and 2 the electrons as another type of
mass points, the number of electrons around a given solute nucleus would de-
fine the ionic species, however we shall not make explicit structural state-
ments about the electron distribution.

So the primary aim of our investigation of the solvation of ions should be

the presentation of a set of cation - atom and anion - atom distribution
functions. Of course, the different atoms in a binary mixture are members of
the same solvent molecule. The solvent molecule connects a certain set of

ion - atom distribution functions to give an ion - molecule distribution
function, however this combination of atomic pair distribution functions
sometimes is not an easy task because the solvent molecules are flexible, i.e.
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Fig. 1 Fig. 1. Mg2*X, dissolved in methanol, repres-

ented as a heap of mass points. Numbers give

p. (r) p, (n p., [2 i
Mg0 MgC MgH location of atoms in periodic table.
Fig. 2. Na'X dissolved in methanol as a system
with weak solvation, again represented as a
heap of mass points.
Fig. 3. Three atomic pair distribution func-
r r r - . o X :
MgO MgQ "Mgo tions describing the heap of mass points Fig.l.

they do not represent a rigid bodv. As will be shown below, NMR methods can
supply structural information in the strict sense only in a partial or trun-
cated form. Full pair distribution functions cannot be obtained.

Usually, when one speaks of ionic solvation, the desire is to have other in-
formations apart from a set of simple time-independent ion - atom or ion -
molecule pair distribution functions,We list the various topics to describe
ionic solvation in a wider sense which can be investigated by NMR methods in
the following way: (1) absolute translational motion as studied by self-
diffusion coefficients of solute and solvent particles, (2) relative trans-
lational motion of solvent molecules with respect to the ions. These are the
solvent exchange processes, (3) absolute rotational motion of particles,
mostly solvent molecules, but in principle also molecular ions, (4) relative
rotational motion of solvent molecules or parts of these molecules relative
to axes given by the solvation complex.

All these informations have to be derived from the behaviour of the one or
more (partial) nuclear magnetizations of the solution system which are
arising in the presence of a static magnetic field Hy. Under suitable per-
turbations the magnetization considered performs a prece551onal motion around
the direction of the static magnetic field with the Larmor frequency v = @/2m
where O = g‘H , after the times T, and Ty the deviations from the equilibrium
values of t transverse and longitudinal components, respectively, essen-
tially have disappeared. ¥~ is the gyromagnetic ratio. The number of nuclei
with vanishing magnetic moment which cannot be replaced by suitable magnetic
isotopes is comparatively small, so the amount of structural and dynamic
information which can be obtained from the study of the respective nuclear
magnetization with its three parameters ¢o , Ty and T, is enormously great.

In the following it will be attempted to give a brief outline of the inter-
connection between the three observables « , T¢y, T, and the pertinent
geometric and dynamic features of the heap of mass-points which represents

an electrolyte solution. The example quoted as literature references will
refer to non-agueous systems (sometimes with admixture of water).

SOLVATION STRUCTURE AND EXCHANGE RATES FROM CHEMICAL SHIFT MEASUREMENTS

Let us begin with the evaluation of the chemical shift, i.e. the resonance
frequency <y of the solution relative to that in a certain standard environ-
ment. Here the situation is of particular interest in which for a given
solvent nucleus two resonance frequencies occur. One partial magnetization
being defined by the resonance frequency A corresponds to the solvation
sphere of the cations, the other partial maqnetlzatlon V), has to be
assigned to the "bulk", i.e. to all the remaining solvent nuclei including
the solvation spheres of the anions. Let the total intensity of the signal
stemming from the former magnetization and that of the bulk solvent molecules
be J, and 7, , respectlvely. Then the first coordination number n, of the
cation in questlon is qlven by the relation

J  _ _ncf (1
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where c: and c,¥ are the solute and solvent concentrations in the molality
scale. The :l (1 = s,b) are the integrals over the spectral intensity gﬁg
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with (\Q 3(Mﬁ)— 0. It may be seen that ng, can only be obtained without
arbltrarlness if there is a ¥ * for which (v{)— 0 with V, < V%<V,

Let us set (V) = Gg(V) in the frequency Yange Vo €V < v¥and q¢y) = c‘b v)
in the rema¥ning rahge. Qs(v) 1is connected with the ion-solvent at®tm palé
distribution function »(r), the quantity which is the aim of our structural
investigation:

{K
%w) :ffs(v,r)[)(r)c{? (4)

where the limit of integration r = r* is the location of the first relative
minimum of p(r ) which defines the first coordination sphere

0
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The local signal function S(\{v’) is determined bv the electronic and

nuclear distribution around the solvent nucleus in cuestion. The electronic
distribution determines the position of the maximum of £ (v, v), the nuclear
distribution and dynamics may alone determine the shape (width) ofjg(\{\ﬂ) .
Likewise for the bulk we have

géﬁd =\/};(yﬁr)ﬁ(%)ch? (6)

where f, (v ) (=f(v.,v) for ¥ > r") does not depend on r and p(r) = const.

= ¢' = N/V. N is the number of particles and V is the volume of the system.
Usuallyv the behav1oun;of p(r) and (V) are correlated: If p(r) is
very sharp, i.e. practically a ¢ *function, then the maxima of the functions

ﬁ v, r)and (\/\ﬁ) with respect to ~ are widely separated. Then there
is a v¥va Ge such that p(r*) = O and n. appears to be well-defined. This
condition is often fulfilled for polyvalent cations like Al13+,6 Ga3+,6 BeZ2+,
Mg2+, co2* , Ni2+, however, for univalent cations and anions 1t is never ful—
fllled So there are many examples in the literature where n_ has been de-
termined by analysis of the solvent spectra with separated solvation and
bulk signals. In most cases the first coordination number was found to be
six (Ref. 1 - 13).

Let us now consider the cases where p(r) is not practically a 6~—function.
This means that even at the minimum position r* of p(r) we have p(r) =

p(r*) # O. From the static description we transcribe this statement to a
dynamic one. We say: the fact that p(r¥) # O must also mean that TD(ro,r* t)
# 0, where ry is the position of the maximum of p(r). T>(ro,r ,t) is the
propagator describing the solvent motion relative to the ionic species con-
sidered, it gives the probability density of finding the solvent atom at

r at time t if we know that it was at r = ry at t = 0. Of course, the to-
tal function T>(ro,r ,t) would be difficult to obtain, however, we may form
a suitable space integral of ﬁb(ro,r ,t) in order to get partial information.
Thus we write

tr 22
J- e -_-//o(a,r,é)c/? 7

which defines the residence time 7T of the solvent molecule (or atom) in
the first coordination sphere in terms of the propagator for the relative
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translational motion. In this situation one obtains an additional broadening
of the two lines forming the spectral intensity g(v ), thus we have now
g(v,7). The latter quantity is given by the solution of a set of coupled
Bloch-equations, these are differential equations for the partial magnetiza-
tions" which involve the relaxation and exchange process (Ref. 14). It is hoped
that the relaxation and exchange process contribute independently to gV, 7-)
which essentially means that the distance r ** occurring in eq.(7) is the

same as the distance r ¥ where p(r) has its minimum. First solvation sphere
exchange rates for a number of divalent and trivalent cations dissolved in
various solvents have been determined in this wav (Ref. 3,12,13,15 - 28).

Of course, this method can only work if the life time broadening of the spec-
tral line is of the order of the frequency separation AY between the sol-
vation and bulk line, i.e. we must require 1/7~ < av . If /7 > Ay , then
g(v ) again becomes independent from 7  and the spectrum only consists of one
line representinag the mean value of the chemical shift in the solvation
sphere ( AV ™) and the bulk ( th,). Let the maximum of g(vy ) occur at y'.
Then, if , is any reference frequency, we have for AV'= V'-\,' (see

eq.(5)). » .

-
AV = %/Av{r)p(r)a/r"’-fﬁ -7 [Pele ) AV, (8)
o

0]
¥ *

M,
- 4éooﬁ0(r)dr AT+ (] - moo

ng and nq are the numbers of moles of the solute and solvent, respectively,c

is the solute concentration in the molality scale. In eg.(8) the chemlcal
shift AVY(r) is a function of the electron dlstrlbutlonn? ()5 AV = AY (tfe(r)))
and the electron distribution in turn is determined by t relative configu-~
rations of the nuclei. g(+Vv) can be described by only one width parameter T,
mostly Tp = Tq. Now qualitative structural information is obtainable when

the chemical shift AY7* in the solvation sphere can be interpreted, e. g.

in terms of rupture of hydrogen bonds of the solvent, polarization of the sol-
vent molecule etc.(Ref. 29- 31).The extension of eq.(8) to incorporate also

an anionic solvation contribution is straightforward.

(9)

If the solvent is itself a mixture of two non-electrolytes, components 1 and
2, say, then in egs. (2) and (3) or (8) and (9) g(+vy) or the chemical shift
ATV} ;1 = 1,2 can be measured for both components. Now, considering the
fast exchange case, we introduce the respective ion-solvent atom pair corre-
lation function @; (r) by the relation

p(r) = ¢ g.(c) =1, 2

where ci is the numbei density of component i. Then eq. (9) reads

.&v‘. (‘/\//é () dv. AV + (7 Csl\/fgL(\r)f(F’\Ayb (10)

where N is Avoqadro s number.

For the two pure solvents we have the first coordination number of the ion

r)(
© e el ¥ : 2
M. = ‘o 9;(Y" Y i=1, 2
Usually one assumes that Tﬂl) = quf , then eq. (10) can be used to study
preferential solvation: If for x; < 1 (x; = mole fraction of solvent i)
"
‘ . e
c0
fg;(ﬂcﬁ >
0 <l.0
then the cation is preferentially solvated by comnonent i, if
v ()
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(¢' = number density in pure solvent i) over the entire composition range,
io y P

preferential solvation is absent. Since in eq. (10)

,Yl(("‘[on) — CS /Vo/\gl(‘(‘) p[\(:)
o

is the first coordination number of the solvent molecule i with respect to
the ion in questlon we can also say: If preferential solvation is absent,
then 7/ /°” is only dependent on cg, but it is independent on the solvent
composition. Furthermore, in eq.(10) the first term on the right-hand side
may be written (e.g. for component 1)

( X
Vs A, ‘*f94 () o
(4) (2)"

(11)

Y;
2)

. (3 ¢ (2) I 2) :
_(‘/\/{ d(\’;,\/;,....rf. )AV,(YZV?,(,...Y}(Z))O’/F/’T({—Y?-O)}
j=°o

where p(j)(r r( ) (2)) is the occurrence probability of a solvation
complex with 11ﬂ;- ' moiecules 1 and j molecules 2 with positions

(2) . ( ). In eq.(11) the orientational dearee of freedom of the mole-
cules shoula be included, however is neqlected For the linear expression
(10) to be valid it must be required that AV, (v, v“ ‘“)does not depend
on the number and position of the j molecules 2.

r e e

The situation is different when the chemlcgg ?hift AV of the ionic

nucleus is studied. Then of course AV «) My 2 (2)
LG T A A R ARy

must depend on the relative number of 1- and 2-molecules in the first sol-
vation sphere. The chemical shift is given as

(1)“‘ (2)"

ARYA ‘Z [f’w(r A--\f‘”; GG D TTAE el @ a2
k€

k+[—n
1) 2)
where F%[(Y;Z,,_ Y, ) is the occurrence probability for the set of coordinates
1) IZ2) rz) 2)
Y;,;.«(;,\q,.;,(\r

For the practical application it is assumed that 4&\L3r§1)....) depends
linearly on the relative amount of 1 and 2 molecules in the solvation
sphere. If this requirement if fulfilled, then eq.(12) can be used to study
preferential solvation. In the absence of preferential solvation 4V, is a
linear function of xq, non-linearity is taken as an indication for selective
solvation. The nucleus whose resonance is studied, passes through all the en-
vironments y~”,, p fy;{ﬁ,“p;)appearing as arguments in eq. (12). If the re-

sidence time in the various distinct environments is long compared with the
inverse difference of the chemical shifts AAVM(Y;”,LN‘) assigned to these en-
vironments, then the spectrum is again split to give a set of separate re-
sonance lines. We quote a number of literature references, where this method
has been applied (Ref. 12, 32 - 45) in some cases the second solvent com-
ponent is water.

In all the expressions of this section the concept of the first coordination
number n, occurs as an integral over the atomic or molecular distribution
function. ng can also be defined by suitable sets of "thermodynamic" or
"chemical" stability constants (Ref. 46, 47). By these stability constants
the distances r ¥ occurring as the upper limits of these integrals is im-
plicitly defined. This is the problem of correspondence between the chemical
and the configurational language.
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NUCLEAR MAGNETIC RELAXATION TIMES

In diamagnetic solutions the relaxation times Tq and T, are equal in most
cases (Ref. 48) and even if Tq # T very few experimental data pertinent to
our subject are available, so in tge following the transverse relaxation time
T, does not require a separate discussion.

The longitudinal relaxation time Tq is the macroscopic kinetic parameter
which describes the approach of the z-component (z-direction of the static
magnetic field) of the nuclear magnetization #7z towards equilibrium (TKQ)
if by suitable experimental techniques this equilibrium magnetization has
been disturbed. We have

o Wy
2

The bridge between the macroscopic relaxation rate 1/Tq and the microscopic
structure and dynamics of the electrolvte solution is given by the basic

relation
A

‘ 1

‘'where the factor of proportionality /K contains nuclear quantities like the
spins I or S and gyromagnetic ratios Yz , Y (Ref. 48). f(cv) is the spec-
tral density of the interaction of the nuclear magnets with their surroun-
dings which causes the spin system to exchange eneray with the remainder of
the system, the so-called lattice. For our purpose two kinds of interaction
are of importance. (1) The magnetic dipole-dipole interaction, it involves
only the magnetic moments of the nuclei in the system and (2) the electric
guadrupole interaction. Here the interaction of the nuclear electric quadru-
pole moment with the electric field gradient produced by the nuclei and
electrons are effective. Let us begin with the simpler case of the magnetic
dipole-dipole interaction.

- L3 m,
»7

The spectral density is given by the relation
+ 00 -
- (v
J{cd) = f@/l-).e clt (15)
— 00

i,e. it is the Fourier transform of G(t), the suitably normalized time corre-
lation function of the magnetic dipole-dipole interaction, w, the resonance
frequency, is of the order of 108 s=1, G(t) in most cases decays towards

zero after a time of the order 10-11 s, so in this situation of areatest
practical importance, the Fourier transform degenerates to a time integral
over G(t). We write G(t) in a form which is suitable for our objective (Ref.
49, 50):

¥(m)

(m) .
G(¢) =fp(‘v;) M OY Bp2 207 o7
Y

%%

(16)

The integrand in eq. (16) is built up of the following three parts: p(r,) is
the pair distribution function of the atoms which carry the magnetical?y
interacting nuclei. According to the purpose of the present article, here

eg. (16) is applied to the situation that one of the pair partners is the

ion whose solvation we are studyinq.yimm(t)is the spherical harmonic of
second degree, it is a function of the orientation of the vector connecting
the two magnetic nuclei. The correlation function does not depend on the
order (m) of the spherical harmonic. r, and r are the internuclear separa-
tions at t = O and t = t, respectively, so Y, (t)/r3 essentially represents
the magnetic dipole-dipole interaction. The occurrence of r in this expres-
sion offers the possibility to"measure" the distance in the liquid as will be
seen shortly. The important feature of eq.(16) is that it does not contain
the electron density. 73(¥5, +t) characterizes the relative motion of the
two interacting nuclei (see eq.(7)). The practical physical content of eq.(16)
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is as follows: If we can make any reasonable prediction of the motional part

TD(ro,r,t), then from the experimental knowledge of 1/T1 via egs.(14) - (16)
information about p(r,) can be obtained. Or, alternatively, if p(ry) is suffi-
ciently well known,the motional properties of the solution can be studied. We
shall first turn to the discussion of the former case, In a simplifyinag way
we may consider only the rotational contribution to P(?O{?,t), then eq. (16)
takes the form (Ref. 49):

~ i
G(t) =f-»%—c{r“z N (17)

where T¢* is the effective rotational correlation time of the dipole-dipole
interaction. Appropriate further reduction of this formula and combination
with eqs. (14) and (15) ( ¢ = 0) yields the result (Ref. 49):

1 4 A2..242 . n *

_— = — X" + 1) —== 7 (18)

T 3 5} Js t. S(S ) ¢ f'«éﬁ

where 4ﬂ is the contribution from the region of the solution outside the
first coordination sphere. a is the closest distance of approach between the
two interacting nuclei, that is, in eqg.(12) p(ro) =0 for r, < a. In the
sense of the microdynamic structure T:* is the rotational correlation time
of the vector connecting the two interacting nuclei, which in many cases is
the same as the rotational correlation time of the solvation complex (Ref.51).

Let us now treat two examples. In the first example the relaxing ionic nucleus
was 19F in Fand two solvents have been used to apply this method: methanol
and formamide (Ref. 52). Then the interacting solvent nucleus may be 1H of
HOCD3 or it may be the representative proton spin of CH30D. Measurements of
the 19F relaxation rate in these two isotopically labelled methanols yiel-
ded the two distances of closest approach as given in Fig. 4. In the same
way the 19F relaxation rates caused by HCONDy and by DCONH, have been
measured yielding the first coordination sphere configuration shown in Fig. 5
(Ref. 52)., The number of possible applications of this method is not great
because the relaxing nucleus in the centre of the solvation complex has to
have a spin I = 1/2 and the atom must not have too many electrons because
otherwise other relaxation mechanisms become dominant. 19F is almost the
only favourable case. The other example is given by 7Li which has I = 3/2,
thus it relaxes by quadrupole interaction, however very often the quadrupo-
lar contribution is so small that the magnetic dipole-dipole interaction as
a partial cause of relaxation can be identified by isotopic substitution and
the relaxation rate evaluated in the sense as described above. Fig. 6 gives
an example, namely Lit+ solvated by formic acid (Ref. 53). Here the solvent
molecule is flexible, thus, as was mentioned in the introduction, the
derivation of the solvent molecule orientation from the atomic model pair
distribution functions is not a priori unique. Quantum mechanical calcula-
tions yield the result that the trans-conformation with respect to the pro-
tons is the stable one (Ref. 54) and thus Fig. 6a gives the correct ion
solvent configuration.

As has already been mentioned above, most of the ionic nuclei have an elec-
tric quadrupole moment. Then eqg. (14) appears in a generalized form (Ref.

55,56):
G(t)
[ e (S A2 L)

J) (YEO)‘t \/(1‘1 J

’Dv I o) I i - C N
*f(ﬁ;Gi”‘@,eu-“ﬁﬂ%~“é%@wné>dﬁf~-4éﬁ
(19)

The sources of the electric field gradient are the electric dipole moments

of the solvent molecules surrounding the ion, whose nuclear magnetic relaxa-
tion is studied; the distance dependence of this interaction is ~v r—%,
Apart from a constant factor, the Sternheimer or antishielding factor (Ref.57),
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Fig. 4. Orientation of methanol molecule in
solvation sphere of F~ (Ref. 52).

Fig. 5. Orientation of formamide molecule in
solvation sphere of F~ (Ref. 52).

Fig. 6. a) Solvation structure for Li% in
formic acid. b) rejected possibility due to
unproper conformation of acid molecule
(Ref. 53).

the electron distribution does not enter explicitly in this expression, it
occurs only implicitly through the location of the point dipoles in the mole-
cules. Other approaches which make use of the electron density more explicitly
have also been reported in the literature (Ref. 61 - 63). The structural part
of G(t) is given by the many-body distribution function (v5%... 65 ...) which
incorporates also the orientation &;° of the dipole moments. The inter-
action term contains functions X; of the dipole orientation and of the
orientation ,12[ of the dipole location relative to the centre. Likewise

the propagator 73(cﬁ--6%,¢)determines the motion of the molecules building
up the solvation complex and the reorientational motion of the dipole moments.
The remarkable feature of eq.(19) is given by the fact that symmetric confi-
gurations with certain Gﬁ_gand G, ... values may occur with high probability
(S ... 8...) for which the interaction = X v virtually vanishes.

In this event the quadrupolar contribution to the relaxation rate - egs. (14)
and (15) remain valid - is strongly quenched (F.0.S. model (Ref. 56, 64)).
This situation is found for strongly solvated cations (Ref. 56). In the case
of more weakly solvated ions, the variables v;9... &,%.... may form a wide
range of different configurations for which p(vz9. @ ..) has appreciable and
more or less equal values. This has the consequence that we have also a
marked reduction of the relaxation rate, however now caused by disorder, not
by order. Finally connected with the comparatively great amount of disorder
in the first solvation sphere a rapid approach of the motional propagator to
orientational uniformity takes place, which also causes a reduction of the
quadrupolar relaxation rate (F.R.D. model, (Ref. 56, 64)). The solvation

of Li+, Nat, Rbt, Cst, €17, Br~ and I~ in simple alcohols and amides, in
formic acid, (CH3),CO, CH3CN, and DMSO has been studied along these lines
(Ref. 56). Order and motion in the solvation sphere can be correlated with
the ionic standard entropies.

ABSOLUTE TRANSLATIONAL AND ROTATIONAL MOTION

In those cases where the relaxation time T, ( = T,) is sufficiently long the
self-diffusion coefficients of the ion (D, or D,) and the solvent molecule,
D, can also be measured by the NMR method (Ref. 65, 51). Then the following
relation which is the analog of eq.(9) is of particular interest (Ref. 50,
66 - 68):

¥ Y ; X
_ &M Nt : Cs My 47
D= aaa Dt + (1= @I, 20



NMR and solvation of ions in non-aqueous solvents 2305

D+ and D are local self-diffusion coefficients of the solvent molecule in

the cationic solvation sphere and in the bulk plus anionic surroundings,
respectively. At sufficiently high concentrations c: the second term should
vanish and thus DY can be compared with the cation self-diffusion coefficient
Do . When strong or weak solvation exists, then one should find D = D* or
Do < D*, respectively. For aqueous systems the corresponding measurements
have been performed (Ref. 68 - 71), however not yet for non-aqueous solvents,
although results should be interesting. In eq.(20) the D's can be replaced

by the rotational correlation times (Ref. 66,67 :

&My e e M, . )2
[ :-W(Tz‘.(c +74(.<t)+//—»—/—55—0(nc+71(‘) ¢ (21)
. >
the 7, 's are the time constants determining the local propagator Plrs,. Cﬂ,t)
which occurs in egs.(16) and (19) when these relations are reformulated to
refer to the intramolecular contribution to the relaxation rate only. In
non-aqueous solvents 7" > 779 i.e. rotational motion in the solvation sphere
is slower than in the bulk (Ref. 72, 73). For the anions we have T < T,
only two cases are known where definitely T (or Tt ) < T° , these
solvents are ethylene glycol and glycerol (Ref. 71). In water there are many
ions for which 7_* 77 < 7(° , these are the so-called structure breaking
ions.

RELATIVE TRANSLATIONAL AND ROTATIONAL MOTION

Relative translational motion of the solvent molecule with respect to the ion
has already been discussed in conjunction with eq. (7). Rotational motion in
the solvation sphere relative to axes given by the geometry of the complex
may occur when the orientational forces are comparatively weak. This situa-
tion has been treated for a number of gquadrupolar ionic nuclei in organic
solvents as mentioned in section "Nuclear Magnetic Relaxation Times" (Ref.56).
Another type of relative rotational motion appears and has been studied when
the solvent molecules have methyl or ethyl groups which are able to rotate
more or less freely. The difference of these internal motions in the bulk

and in the solvation sphere have been investigated for Lit+(Ref. 74), ca2+ and
Mg2+ salts in methanol and ethanol (Ref. 75).
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