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POLY-VINYLPYRROLIDONE SOLUTIONS

Waither Burchard and Michael Eisele

Institut für makromolekulare Chemie, Universität Freiburg, Stefan—
Maier—Strat3e 31, Federal Republic of Germany

Abstract — After a general introduction to the technique of dyna—
mic light scattering, measurements from aqueous polyvinyl—pyrrol—
idone solutions in a concentration range up to 6 c* are reported,
where c* is the coil overlapping concentration. In dilute solu—
tions only one diffusion process was observed. Above c*, however,
the time correlation function decays in two steps, and the slow
mode gains quickly influence with increasing concentration. The
fast and s2w diffusion coefficients follow power laws of the type
D '. (c/c*) with exponents of 0.60 and —1.50 for the fast and the
slow modes. These exponents are lower in value than 0.75 and —1.75
as was predicted by de Gennes for semidilute solutions on the ba-
sis of scaling concepts. The mean square radius of gyration was
found to increase sharply above c* in contrast to the prediction
for reptating chains, where the radius should slightly decrease.
The experimental findings are interpreted being caused by the mo-
tion of loosely entangled clusters.

INTRODUCTION

This contribution deals with an experimental study of polyvinyl—pyrrolidone
solutions in a concentration range from dilute solutions up to 6 times the
overlapping concentration c*. The homodyne dynamic light scattering tech-
nique has been applied in combination with conventional or static light
scattering, and it is this combination of the two light scattering (LS)
techniques which gives us, as we believe, new insight into the structure of
the semidilute solution.

Since this is the first paper in a series of other contributions on the ap-
plication of dynamic LS it will be useful to give here a short introduction
to this method and to point out some new possibilities of characterizing
polymer systems. In a second part we will review in brief the present under-
standing of a semidilute solution which has largely been formed by a picture
drawn by de Gennes. Finally in the last part we will present our recent re—
suits obtained with polyvinyl—pyrrolidone (PVP), which may lead to some re-
tinement of the de Gennes picture.

LINE WIDTH AND TIME CORRELATION FUNCTION

The basic idea of dynamic light scattering comes from the electromagnetic
theory of moving transmitting sources according to which a shift to higher
or lower frequencies occurs if the source moves towards the detector or in
opposite direction, respectively. The magnitude of this shift depends on the
ratio v/c of the source velocity to the speed of light propagation c . For
randomly ?noving sources these Doppler shifts will result in a line 0width
broadening of the Rayleigh line, and this broadening is proportional to the
translational diffusion coefficient D (Ref. 1). For gases the line width
broadening is remarkable and is easily recorded by common spectroscopy (Ref.
2,3). The velocities of molecules in solution are, however, fairly low and
give rise to an only tiny line width broadening. Still the effect became
detectable by Fabry—Perot spectroscopy of the scattered line when lasers
came up as powerful, highly monochromatic light sources, and first pioneer-
ing dynamic LS measurements were carried out by this technique (Ref. 4,5).
Unfortunately, the translational motion is slowed down appreciably with in-
creasing chain length, and this fact confined direct spectroscopy to the
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range of oligomers.

In the early 1930th Wiener (Ref. 6) and Khintchine (Ref. 7) discovered in-
dependently that there always exists a well behaved function S(t) in the
time domain which is adjoined to the power spectrum S() in the frequency
domain, where S(w) and S(t) are pairs of Fourier transforms, i.e.

S(w) (21t1'JS(t)
dt

S(t) =j'S(W)et)dw

The value of this Wiener—Khintchine theorem becomes evident if a constant
value of t is considered. Now, if is small, and too small as to be de-
tectable by spectroscopy, there exists associated to this line width broad-
ening a large time interval which is often large enough to allow computa-
tions by special fast computers. Figure 1 shows the corresponding regions in
the frequency and the time domains.

Fig. lLine shape of a power spectrum (left) and the corresponding
time correlation function S(t). Corresponding domains are indica-
ted by the same type of lines.

The idea of determing S(t) in the time domain rather than S() in the fre-
quency domain was taken up by the British group around E.R. Pike (Ref. 8)
and eventually resulted in the construction of autocorrelators, by which the
basic framework of modern dynamic LS measurements became completed. Nowadays
we can state that there exists essentially no upper limit in the molecular
weight for the application 7of dynaric LS; but there is still a gap at the
short time end of about 10 to 10 seconds where motions are too fast for
the construction of the autocorrelation function 5(t) but on the other hand
still too slow for a sufficient line width broadening. This region is cha-
racteristic for internal motions in flexible macromolecules.

SCATTERING INTENSITY TIME CORRELATION FUNCTION

In conventional LS a large scattering volume and long time of recording is
chosen. Under such circumstances all fluctuations resulting from the motion
of the molecules are averaged out. Hence only static properties are measu—
req. In dynamic LS the scattering volume made small (typically 0.008
mm ) and the time of recording short ( 10 seconds in order ) and now the
scattering intensity shows strong tiuctuations as shown schematically in
Fig. 2

These fluctuations do not result from a variation of the number of molecules
in the scattering volume but are caused by incidental clustering of mole-
cules, giving rise to a strong scattering intensity, followed by a dissoci-
ation whereupon only little light is scattered.

Thus these fluctuations contain information on the mobility of the macro-
molecules which can be extracted as follows. Let A be the number of photons
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1 st channel: (A0A1> = Z(A Aki)
2 nd channel: <A0A2> = Z (A1 Ak2)

n th channel: <A0A>= Z(A, A1)

N = i05

(i(O)i(t)) = (A0A) 02 (t)

Fig. 2. Intensity fluctuations around the mean. A denotes the
number of photons arriving at the detector in a time interval At.

arriving at the detector in the time interval at. With the help of a fast
computer the number of photons from two successive time intervals are multi-
plied, and the product is stored in a first channel of the correlator. This
procedure is repeated about 100 000 times and stored in channel 1. In chan-
nel 2 the products of photon numbers A. and A.+2 are stored etc., and even-
tually in the last channel n the produèts of A. and A. are collected. The
result of this manipulation is shown in Fig. 3&. The exonentially decaying
function is called the time correlation function (TCF) of the scattering in-
tensity. This name is easily understood if we recall that the time interval
for the recording of photons was chosen very small such that most of the
molecules have not yet collided with others. They thus have a good memory of
the direction and magnitude of their velocities just one time interval be-
fore. However, after a longer delay time the molecules will have suffered
many collisions and will have lost all memory of their initial velocity.
Hence the curve in Fig. 3 describes the decay from a highly correlated to a
fully uncorrelated motion. One notices from Fig. 2 that fluctuations occur
around an average which is the scattering intensity that is recorded in
static LS.

PROPERTIES OF THE TIME CORRELATION FUNCTION

The recorded TCF of the scattered light is in general not simply related to
the motion of the molecules. In most cases, however, the following approxi-
mation holds to a sufficient accuracy (Ref. 9).

<i(0)i(t)> = A + 1g12(t)I = G2(t) (1)

where
<IE*(0)E(t)I> S(t,q)

g1(t) = = (2)
S(q)

with q = (4Th ) sine/2 (3)

g(t) is the normalized TCF of the scattered electric field. The denominator
ifl eq.(2) will be recognized as the static structure factor and S(t,q) is
the dynamic structure factor.

For monodisperse particles small in diameter compared to the wavelength of
the light and also for hard monodisperse spheres of any size g1(t) is easily
calculated and is a single exponential (Ref.9).

g1(t) = exp(—rt) = exp(—Dq2t) (4)

A(t)
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Fig. 3. Scattering intensity TCF (a) and corresponding field TCF
(b) for a PMMA sample of narrow molecular weight distribution.

In most cases, however, the decay of g1(t) is more complex, and the TCF
shows a more slowly decavino tail Such tail can be seen already with the
monodisperse polymethyl—methacrylate sample shown in Fig. 3b. This behavior
may result either from polydispersity or from internal modes of motion. Both
effects may be demonstrated with two highly simplified examples.

POLYDISPERS I TY

Let us assume that our system contains only two species of molecules of
different sizes. Then the TCF consists of two exponentials

2 2
g1(t) = a(q) exp(—D1(q t)) + b(q) exp(—D2(q t)) (5)

where D1 and D are the diffusion coefficients of the two particles. The
coefficients a() and b(q) are the corresponding amplitudes which in general
depend on the scattering angle. They are related to the particle scattering
factors of the two particles. Sometimes. if D, << D2, it is advisible to
plot g1(t) against log t since g,(t) is spread out in such cases oyer se—
veral decades in time. In the preent case it is useful to choose q t as a
variable, because for measurements at differen angles the decay of the two
processes should occur at the same values of q t. The curves will in general
not coincide, since the amplitudes may, as pointed out already, change with
q. An experimental example will be discussed in greater detail later in this
paper.

INTERNAL MODES OF MOTION

A flexible or soft particle will perform a number of internal modes of mo-
tion. These motions result in local segment density fluctuations and give
additional contributions to the TCF with a characteristic time which corres-
ponds to the relaxation time superimposed to the diffusive translational mo-
tion. Again, we may consider here the simplest case where only the longest
internal motion contributes to the TCF with a sufficient amplitude. Then
g1(t) is given by (Ref. 1,10)

g1(t) = a(q) exp(—D(q2t)) + b(q) exp—(D+l/r1q2)(q2t) (6)

where t, is the relaxation time of the internal motion which canot depend
on the cattering angle. Therefore, in a plot of g,(t) against q t only the
slowest and diffusive process will occur at the saihe values of the abscissa
if different angles ar chosen, while the second process will show a shift
to smaller values of q t. An experimental example will be given below.

FIRST CUMULANT

Deviations from a single exponential are frequently observed and are the
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rule rather than an exception. Separation of the TCF into the contributions
from the various relaxation processes is in most cases difficult and some—
times not possible at all. In such cases ,however, the initial part of the
TCF can be analysed. As it was first shown by Koppel (Ref. 11) and Pusey
(Ref. 12) it is always possible to apply a cumulant expansion, i.e.

ln g1(t) = -r1t + (r2/2!)t2 - (r3/3!)t3 +... (7)

where r , r , etc. are the first , second etc. cumulants. The first cumulant
is of pArtiular interest since it can be calculated by equilibrium statis-
tical mechanics (Ref. 13) and can be measured with high accuracy. One result
of these calculatins is the first term in a series expansion of the cumu—
lant in terms of q (Ref. 14)

r = Dq2(l + C<S2>q2 — ...) (8)

where we have dropped the index 1. In this equaion Dc is the translational
diffusion coefficient at a concentration c, <S > the mean square radius of
gyration and C a dimensionless coefficient which is characteristic for the
architecture of the molecules. For instance, hard spheres are characterized
by C = 0; flexible monodisperse linear chains have a value of C = 0.1773
Ref. 14). Branching causes a decrease in C and polydispersity an increase.

Extrapolation of r/q2 = D (q) against q2 = 0 yields the diffusion coeffi-
cient at the finite conce€ation c. Often a linear concentration dependence
is observed

Dc = D(l + kdc) (9)

where D is the z—average zero concentration diffusion coefficient and k
can be ositive or negative depending on the magnitude of A M , where A i
the second virial coefficient and M the weight average mlcular weiht.
Applying the Stokes—Einstein relatioship to D we can define a hydrodyna-
mically effective radius Rh

Dz = (kT/6iq0) <i/Rh> (10)

and furthermore, together with the radius of gyration, a dimensionless para-
meter (Ref. 14)

p = <52>z'2<]'1h>z (11)

Again this dimensionless p—parameter is sensitive to the structure of the
molecules, i.e. branching, ring formation, chain stiffness etc.

COMBINATION WITH STATIC LIGHT SCATTERING

It is instructive to compare eq.(8) and (9) with Debye's relationship for
the static LS from not too large molecules

Kc/R(q) = (1 + l/3<S2>2)/Mpp (12)

with
i/Mapp = (l/Mw)(l + 2A2MWC + ...) (13)

Da (q) and Kc/R(q) show a similar <52>q2 dependence and D and l/M a si—
mir concentration dependence. Static LS measurements2ari commonlvalua—
ted from Zimm plots where Kc/R(q) is plotted against q +kc. A similar dyna-
mic Zimm plot can now be constructed with Dapp (Ref.l5).

Figure 4 shows as an example the static and 1ynamic Zimm plots of LS mea-
surements from a polystyrene sample of 2.8x10 in molecular weight (Ref.15).
Both sets of data were measured in this case simultaneously with the same
instrument. Hence from such combined static and dynamic LS measurements 6
quantities are obtained , which are listed in Table 1.

These quantities can be combined to give the two dimensionless parameters C
and p, as already described, and another coefficient kf0 (Ref. 16—19)

kf0 = kf(Mw/NAVh) (14)



Fig. 4. Dynami and static Zimm slots obtained with a polystyrene
of M = 2.8xlO in toluene at 20 C.

which is a measure for the interpenetration of two coils in a good solvent.
In this equation kç is the coefficient in a linear concentration dependence
of the frictional oefficient

= f(l + kfc + •) (15)

Table 1. List of quantities which can be obtained from
dynamic and static Zimm plots shown in Fig.4

inter— slopes
cept c:O q=O

static LS M <S2> A2

dynamic LS 0 C(S2) kD

and V is the hydrodynamic volume of the molecule which can be calculated
from he hydrodynamic radius defined in eq.(l0). The three coefficients kD,
kf and A2 are related to each other (Ref.l9)

kD + kf = 2A2MW
—

v2 (16)

where v2 is the partial specific volume of the polymer in solution.

In a theta solvent, where the coils can penetrate almost freely, Pyun and
Fixman (Ref. 17) found in an estimation a value of kç0 = 2.23,and in a good
solvent they found = 7.16. These predictions aqee satisfactorily with
experiments from PMMA and PS in good and theta—solvents (Ref. 20,21)..

SEMIDILUTE SOLUTIONS

So far only dilute solutions have been considered where the individual coils
are well separated from each other and where the properties of individual
particles can be studied. At concentration c* a different behavior may be
expected. See Fig. 5.

In the picture of de Gennes (Ref.22) this behavior is governed by the corre-
lation length and the overlapping concentration c* which is used as a sca-
ling parameter for the actual concentration. The correlation length descri—
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Fig. 5. Three typical stages of polymers in solution at
different concentration. (From de Gennes Ref. 22).

.From

De Gennes derived for good solvents on the basis of scaling arguments
(Ref.22)

= a (c/c*)075 (17)

with a a not further defined length. In the dilute regime, i.e. c<c*, one
has

= <R2>1"2 (18)

where <R2> is the mean square end—to—end distance.

Because of the entanglements there is no longer a free motion of the mole-
cules. De Gennes predicts two types of motion, i.e. a cooperative 'diffu-
sion' of segments in the network and a self—diffusion of individual chains
through the network.

The cooperative motion of a network consists actually of a series of normal
modes. In such a weak gel most of these modes are very slow and cannot be
detected by dynamic LS. The only mode which lies in the same time scale as
the translational diffusion coefficients of freely moving individual mole-
cules corresponds to an irregular motion of the center of mass of chains
with a correlation length , and this irregular motion has the appearence of
a diffusion and is thus called a cooperative diffusion. Similar results have
been obtained by Tanaka et al. (Ref. 23) with a theory of a continous elas-
tic body. In the scaling theory by de Gennes the cooperative diffusion coef-
ficient is given by

Dcoop = kT/(6t) (c/c*)0'75 (19)

while in the theory of Tanaka et al. one has

Dcoop = M/pf (20)

with the longitudinal modulus M = K + 4/3k, the friction coefficient f andp
the segment density (number of links per volume). For further details see
Ref. 34.

Concerning the self—diffusion, de Gennes (Ref. 24) was led by the picture
shown in Fig. 7. Apparently a chain surrounded by the obstacles of so many
other chains has scarcely a chance for a motion transversally to its contour

Cooperative Motion and Self—diffusion in Poly—vinylpyrrolidone Solutions 1385

bes the mesh size in a network and may be approximated by the chain length
between points of entanglements. See Fig. 6.

c<c• c.c• c>c•

Ia) (b) (C)
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length but it can move along its own contour length. This motion is slowed
down remarkably with increasing chain length but also with creasing concen-
tration. Again on the basis of scaling arguments de Gennes predicts the fol-
lowing chain length and concentration dependence (Ref.24).

Dself '

Fig. 7. Motions of a chain in an entangled system (Ref.22)

EXPERIMENTAL RESULTS WITH PVP SOLUTIONS

(21)

Fast and slow modes of motion have been recently observed by several authors
in semidilute solutions of various polymers (Ref.25—30). Here we present now
some new data obtained with aqueous and ethanolic solutions of PVP. Both
solvents are thermodynamically good for this polymer. Measurements have been
carried out in the range from 0.lc* to 5.9c*, where c* = l4q] was chosen.
Figure 8 shows the TCF for five selected concentrations. Here g1(t) is plot-
ted against log(t) which became necessary since the TCF extended over up to
five decades in time. A single exponential has in this plot an S—shaped ap—
pearence similar to the curves for the two lowest concentrations in Fig. 8.

Fig. 8. TCF's for a PVP sample at 5 different concentrations

When c is exceeded a second much slower process becomes noticeable. It
gains quickly influence when the concentration is increased. The TCF 2is
strongly angular dependent. However, if g(t) is plotted against log(q t)
the two processes occur at the same values bf the abscissa. Consultations of
eq. (5) makes it clear that both processes are diffusive (see Fig. 9).

Applying the CONTIN program by Provencher (Ref.35) we have been able to ana-
lyse the TCF's with respect to these two main relaxation times and their
corresponding amplitudes. The analysis offers no difficulties when c>c* but
becomes uncertain in the region of c below c* because of the low amplitude
of the slow mode. The results of this analysis is shown in Fig. 10, where

.

I
I

I I

Reptation

f/s
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Fig. 9. TCF's of a PVP at c 3c* and for various scattering
angles, here plotted against tq

both diffusion coefficients Df and D , are plotted as function of c/c*
in a double logarithmic scale.ae expos of the fast and slow modes are
with 0.6 and —1.50 both lower in value than predicted by de Gennes for an
entangled system. Figure 10 contains two further diffusion coefficients
which will be discussed later in this paper.

Fig. 10. Double logarithmic plot of the various diffusion coeffi-
cients, defined in the text, against c/c*. The numbers indicate
the exponents.

At this point we may wonder of what origin the slow mode is. Do we really
observe reptation or is it possibly something else? We could obtain some ad-
ditional information from static LS which was recorded simultaneously with
the dynamic LS data. Assuming validity of Debye's LS equation even for con—
centrations up to 5%

Kc 1 + l/3<S2>q2
+ 2A2c + ... =

= (l/M + 2A2c + .. .)(l + lI3<S2>pp2)
we can define an apparent mean square radius of gyration, which actually is
a sort of correlation length, and which is influenced by thermodynamic in-
teractions among chains. The direct influence of the virial coefficient can
be eliminated since according to eq. (22) one has (Ref.31)

=
<S2>pp( M / Mapp

) (23)

i07 108

tq2/s cm2

id
c / c

R(q) M (22)
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where 2
l/Mapp = i/Mw + 2A2c + 3A3c + ... = Kc/R(q)q_0 (24)

Both and are plotted2 against c/c* in a d2ouble logarithmic
scale in 11. Up to c = c, <s > decreases and <S >c remains essen-
tially constant; beyond c*, however, correlation lengths increase sharp-
ly by a factor 7. Such behavior does not correspond to a reptating indivi-
dual chain which is generally assumed to remain in the randomly coiled form.
The chains are swollen by the strong interaction with the good solvent, but
the extent of swelling is predicted to decrease at higher concentrations due
to shielding effects of the presence of the other chains according to a po-
wer law (Ref.33)

(c/c*Y2 (25)

The contrary is observed.

We thus propose another explanation for the slow mode observed in the limi-
ted range of our measurements. It appears conceivable that transient clus-
ters of loosely entangled chains are formed which can move only under heavy
restrictions. Possibly the clusters do not move in toto, but motion may be
realized by dissociation of individual chains from a cluster by followed

10

E

Fig. 11. Concentration dependence of the mean sqare radiu2s of
gyration (correlation length). For definition of <S > and <S >
see eq. (23).

c app

reptation and reassociation to another cluster. In other words, what is seen
may be the result of a strong interaction of reptating chains with the ma-
trix. This picture of clusters is supported by Fig. 12 where the amplitude
w 1 of the slow mode is plotted against c/c* (w51 has been determined
ft0arious scattering angles and then extrapolated tards q = 0). One no-
tices a strong increase of wslow which follows over a wide concentration
range the power law

(26)

Assuming a validity of this power law over an even wider concentration range
the curve in Fig. 12 may be extrapolated to w 1

w
= 1, which in the present

case is reached at c l0c*. Beyond this conch%ration the system is filled
totally with clusters, i.e. only beyond this concentration a transient net-
work will be found, which is the starting position for de Gennes theory of
semi—dilute solutions. Before this concentration the system is still in a
pre—gel state.

The strong interaction of the slow mode motion with the matrix of surround—
in chains is demonstrated with Fig. 13 D 1 is plotted against—
<S > • In free diffusion one has D 1/<S > ' bê1fY'ior but in the semi—
dilue region we now find (Ref.31)

2 —(0 9+0 1)
Dslow q. <5 > — (27)

1 0_i

c/c *
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i.e. a much sharper reduction of the translational mobility.

icf

C / C

Fig. 12. Amplitudes w510 of the slow mode as function of c/c*

Fig. 13. Double logarithmic plot of Dsiow against <S2>c•

We conclude this contribution with two further remarks concerning the two
other diffusion coefficients plotted in Fig. 10.
(1) The cooperative or mutual diffusio coefficient D is obtained from
the first cumulant of the TCF when rig is extrapolat8 gainst q = 0. The
result is shown in Fig. 10. Clearly Dcoo agrees with Dfast only at low con-
centrations. p
(2) According to irreversible thermodynamics the mutual diffusion coeffi-
cient is determined by a thermodynamic and a hydrodynamic friction contribu-
tion and is given by (Ref.l9,33)

3'
Dcoop

= ( Mw/NAf ) — ( lV2)
ac

(28)

where f is the friction coefficient of the particles at concentration c.
The osmtic compressibility as/ac can be obtained from the simutaneously
recorded static LS which is given by

(Kc/R(q))q0 = (RT) (as/ac) = l/M
app

Hence (Ref.31)

D = (kT/f )(M /M )(l—cv
coop c w app 2

(29)

(30)

The term kT/f D corresponds to a diffusion coefficient, where the suffix
'cm' stands fSr nter of mass. f corresponds to the frictional coefficient
in a pre—gel state which is meas?ired by sedimentation. D contains still
the contributions of the fast and the slow modes and cannot%e considered as
a self diffusion coefficient.

10r
K101 icf lOt

<s2>zc
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