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Abstract - Theoretical approach to the relationships of molecu-
lar mobility manifested in the polarized luminescence involves
several problems. (1) The investigation of the mobility of a
given chain element unperturbed by a marker ("phantom" marker).
(2) The study of heterogeneous dynamic chain models in which
the differences between the statistic and dynamic parameters
of the labeled element and those of a standard chain element
are taken into account. (3) The computer simulation of the ro-
tational mobility of chains containing phantom or real markers.
(4) The introducing of the concept of kinetic segment based on
the specific features of the kinetics of longitudinal relax-
ation processes in polymer chains. The experimentally observed
relationships of polarized luminescence of labeled macromol-
ecules in solutions and those of some other local relaxation
properties are discussed in terms of theoretical treatments
mentioned above.

INTRODUCTION

Theoretical analysis of the relationships of molecular mobility manifested in
the polarized luminescence of labeled macromolecules in solution involves sev-
eral problems some of which will be considered in this lecture. (1) The in-
vestigation of the mobility of a selected chain element unperturbed by a marker
into which a marker is subsequently incorporated. This investigation is car-
ried out with the aid of an analytical theory for viscoelastic dynamic chain
models or models consisting of rigid elements. In a given element the direc-
tion is selected in which the oscillator of the luminescent marker will be sub-
sequently oriented. 1In other words, a chain containing a "phantom" marker is
considered. (2) The use of heterogeneous dynamic viscoelastic or other "solv-
able" chain models in which the difference between the statistic and dynamic
parameters of the "labeled" element and the parameters of a standard chain el-
ement is taken into account. (3) The application of the methods of computer
simulation including the methods of molecular and Brownian dynamics to the es-
tablishment of relationships of the rotational mobility of chains containing
"phantom" and "loading" markers.

SOME PROBLEMS OF THE THEORY OF POLARIZED LUMINESCENCE FOR
DYNAMIC MODELS OF CHAINS CONTAINING "PHANTOM" MARKERS

In the processes of polarized luminescence (PL) the micro-Brownian motion
changes the distribution of emission oscillators with respect to the electric
vector and the direction of incident light of the exciting emission from the
moment of excitation to that of observation (or the emission of the absorbed
quantum). If the selected chain element is a three-dimensional body, its
orientation in space is determined by three independent angular variables (e.g.
three Euler angles). Anisotropic volume element is characterized by the aniso-
tropic tensor of rotational diffusion (with a tri- or biaxial ellipsoid of the
diffusion tensor: with the three or two principal values characterizing the
diffusion around the three main axes). In the most general case, the aniso-
tropic rotational diffusion of a three-dimensional body (including the selec-
ted chain element) is determined by five independent spherical harmonics of
the second order. 1In papers by Dale-Favro, Chuang and Eisenthal, and Woessner
et al. a rigorous mathematical theory of this anisotropic diffusion has been
developed, in particular, for NMR and polarized luminescence. The theory of
rotational diffusion has been developed in connection with the problems of
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polarized luminescence for small molecules (mainly axially or spherically sym-
metrical molecules) in the classical papers by Levshin and Vavilov, Perrin,
Weber, Yablonsky, Memming, etc. Wahl and Gotlib have analyzed in detail the
manifestation of the Brownian motion in the PL of small molecules containing
groups with internal rotation. Subsequently the theory of NMR and polarized
luminescence in polymer chains has been developed by many authors (Ullman,
Khazanovich, Anufrieva, Gotlib, Torchinskii, Dubois-Violette, Monnerie et al.,
Wahl et al. (Refs. 1-6) and the bibliography in these Refs.). In recent
papers by Yamakawa et al. (Ref. 7) a similar theory has been developed for a
polymer chain in which the selected element (subbody) is a three-dimensional
body. However, a correct dynamic description is still rather complex and con-
siderable simplifying assumptions are required. Hence, in the subsequent dis-
cussion of the dynamics of the polymer chain only simpler dynamic models with
an axially symmetrical "linear" chain element (longitudinal or transverse el-
ement) will be considered.

In the case of PL the observed value is the inverse degree of polarization of
luminescence, 1/P. The degree of polarization occurring upon the irradiation
by natural light is determined by the equation

P = (I,-1,)/(1,+I,) (1)

where I is the component of intensity of luminescent light observed along the
y axis hormally to the direction of incident light (axis x) polarized along
this direction and I, is the intensity of luminescent light polarized in the
plane normal to the direction of the exciting beam and normally to the direc-
tion of observation of luminescence. Sometimes the degree of polarization is
introduced according to Tao. For the natural light this degree of polarization
is given by

! (2)

r o= (I,-1.)/(21,+1,) = (2/3)[(1/P) + (1/3)]
where ZIZ+I is proportional to the total intensity of luminescent light and
also to tha% of incident light. For irradiation by the light polarized along
the z axis the values of Pp and rp are introduced and it is found that

P = Pp/(2-Pp) and rp = (IZ-IX)/(IZ+2IX) (3)

Then -1
r, (or r) = (2/3)[(1/P) 2 (1/3)]
The choice of the values of r and Ip (and not of P and P,) depends on physical
rather than formal considerations since these values are additive if several
types of luminescent markers are present or if the markers luminescent in the
same spectral region exhibit different value of luminescence parameters (dif-
ferent lifetimes of excitation of the marker and different times of rotational
diffusion if the markers are in different dynamic environments). When PL is
observed in the simplest case of axially symmetrical (with respect to the in-
itial state) rotational Brownian motion of the emitting oscillator and under
steady-state radiation the following simple relationship exists between the PL
parameters and the parameters of rotational Brownian motion:

(4)

Y = (1/P+1/3)/(1/Py+1/3) = (r,/x) (5)

where the signs ¥ correspond to P or Pp, respectively, and

(r/xy) = (3/2t) [ [<cos?0> - (1/3)]exp(~t/g)at (6)

where 7. is the lifetime of the luminescent marker in the excited state for
the exponential law of emission, <cos?6> is the mean square cosine of the
angle of rotation of the emitting oscillator during the time t from the moment
of excitation.

The values of r, or P, characterize the so-called limiting depolarization of
luminescence due to "instantaneous" intramolecular transfer of excitation from
absorbing oscillators to emitting oscillators, the value of P, appearing for
the frozen Brownian motion in glassy state or at a high solvent viscosity.

The value of P, is determined by the chemical structure of the luminescent
group, by its environment and the mutual arrangement of absorbing and emitting
oscillators. For the pulsed excitation of luminescence it is possible to ob-
serve the evolution with time of individual components of luminescent light
I,(t) (or I(t)) where t is counted from the moment of switching off of the
pulse. In this case the time dependences of decay in the components Ix'z(t)
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are determined by the time dependences of various spherical harmonics of the
second order and not only by P2(cos 0).

For relatively simple dynamic models of small molecules (dumbbell, spherical,
ellipsoidal or rodlike models for continuous rotational diffusion, hopping-
type diffusion and discrete lattice models), the correlation functions for the
second harmonics including the simplest harmonic (2/3) [<cos?8>- (1/3)] for par
ticles with an axial symmetry are directly obtained from the diffusion or kin-
etic equations. Unfortunately, for most relatively simply solved and analyzed
models of a polymer chain, linearized equations only for the average projec-
tions of chain units and the corresponding correlators related to P4 = <cos 6>
have been obtained (Refs. 3,9). The correlation functions of the second order
Py have been directly determined for chains only in a discrete tetrahedral
lattice model by Monnerie et al. (Ref. 10), in which they were found to co-
incide with P4 and for Yamakawa's model (Ref. 7), i.e., for a model chain
without internal viscosity but exhibiting flexural and torsional rigidity.

For this dynamic model (Ref. 7) the solution is possible at certain simpli-
fying assumptions and the qualitative analysis based on this model is difficult.

Hence, as yet we will deal only with an analysis of the relationship between
<P1> and <Py> and the comparison of results for simpler models and the dis-

cussion of simple limiting cases for long and short times. Thus, for a dis-
crete tetrahedral lattice (Monnerie's) chain model the simplest equation is

obeyed

<P1(cos 0)> = <P2(cos 0)> (7)

For any chain model with a continuous mechanism of motion at small variations
of 6<P1> and 6<P2> for any rigid chain element we have

6<P,> = 1/3 8<P,> (78)
Eq. (7A) is obtained by using the expansion

<p,> = 1-<6025/2 + 0(80%)

1

<P2>
at such small §t values for which 0(694)« <662>. For diffusion-type motions
(when 662 ~ t), in contrast to inertial motions for which 662 - t , it is poss-
ible to consider the relationship of initial slopes

(8)

1-(3/2)<60%> + 0(80%)

(d<P,>/dt) = (1/3) (d<P,>/dt) (9)

For a spherically symmetrical particle or a rigid dumbbell isotropic diffusion
egs. (72A) and (9) are obeyed at all t: <Py> = exp[-(t/1)], <Py>=exp[-(3t/T1)]
and

<, (t)> = <P, (t)>> (10)

According to Wahl and Ullman (Ref. 11), the correlator
[<(b:(0) .8, (£))>2/b%1 = <[u, (0)u. () + v, (0)v, (t) +w, (0)w. (t)]>2/b
J J J J J J J J

(where uj, wj, vy are the projections of unit vector E. on the Cartesian
coordinate axis)  1is taken as the measure of the value “<cos 6>. Then, owing
to the specific properties of the chain model consisting of quasi-elastic el-
ements we have <P2> ~ <uj(0)uj(t)>2/b4 or

<P2(cos 8)> = <P1(cos 9)>2 (11)

This result remains valid under the condition <cos? 6>~<uj(0)u-/t)>2 for any
models in which the viscoelastic approximation is introduced for the dissipat-
ive function and the potential Vggg, and may be obtained by a transition to
normal coordinates. This result is also valid for dynamic models with internal
viscosity and thermodynamic rigidity. Khazanovich (Ref. 12) also considers
the model for quasi-elastic subchain but, in contrast to Ref. 11, the value
of cos 0 for a deformed subchain element is rigorously defined as

2 = z hd 2,2 2
cos ej <(bj(0), bj(t)) /bj(O)bj(t)> (12)

For this definition of cos 6 the values of <P,> and <P,> are very complex
functions of <uj(0)uj(t)>. However, in this case, evefi at t»0, we have
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(d<P1>/dt) = (1/3) (d<P2>/dt) (13)

and only at high t

2
<P,> ~ C<P,> (13a)

(where C~0.6),i.e., the result is again close to that of Wahl-Ullman. Here
C<1, which is due to a steeper initial increase in <P2(t)>.

Recently Balabaev, Darinskii, Neelov and the present author (Refs. 16,17) have
carried out computer simulations of molecular motion by the method of molecular
dynamics for the model of a polymer chain consisting of particles bonded by
rigid links. The interaction between these particles is described by the
Lennard-Jones potential. It was found that in this case also we have Py~ Pj
up to a decrease in Py by a factor of e. Hence, for dynamic models of a chain
with a continuous mechanism of motion for short times (t<t*) the relationship
between <Pq(t)> and <Py (t)> is_similar to that for small rigid axially sym-—
metrical particles <P >-<P1>3. For long times, t >t*, when the rigid el-
ement is dragged as a result of motions of large chain parts to which the
quasi-elastic approximation is adequately applicable, it may be expected that
the relationship P2~P.I is obeyed. The time t* is of the order of relaxation
time for the equilibration between the rigid element and a quasi-elastic chain
segment (Gaussian subchain). The dependence <P,(t)> may conveniently be re-
presented over the extire range of t in the form of the empirical equation

<P,> = [A+—Bexp(—t/T*)]<P1>2 (14)

where the values of A, B and t are chosen in such a manner as to satisfy egs.
(10,11,13) taking into account that for long times eq. (13A) should also be
obeyed for chains with short-range interaction. Then, we have A+B = 1,
A~0.6 (in a more precise theory may be regarded as a parameter) and

-1 a<Py>

T ee— * =
init P15 Tl L =0.474

T init

(<P;>)

In discussing the relationship between <P,> and <P,> it should be borne in
mind that for a hopping type diffusion (for the times t~10-8- 1079 s in which
we are interested) the relationship between <Pq> and <P,> (Tinit(P1) and

Tinit (P2)) is slightly different compared with eq. (13). Weber (Ref. 18) has
considered a cubic discrete model in which a particle has six orientational
states along three mutually perpendicular directions. He has used these re-
sults for an approximate qualitative modelling and for the description of the
diffusion for a particle: a three-axial ellipsoid. Then for a discrete cubic
model for isotropic rotational diffusion with a jump by 90° a simple exponen-
tial law is wvalid

<P2> = exp(-6Wt) =exp(—t/T2) (13)

where 1, = (1/W) is the average time for the expectation of a jump from a in-
itial state into the neighbouring state. It is of interest that for the same
model

<Py> = exp (-4Wt) =exp(—t/T1) (16)
4

For a discrete hopping-type diffusion cubic model the relative difference be-
tween T3 and T4, (ta/Tt9) = (2/3), is less than for continuous rotational dif-
fusion. It is noteworthy that for particles located in a cubic lattice (the
case considered above) jumps of 66 = 6(t) - 6(0) by angles 7/2 and m are poss-
ible. In this case the time evolution of the initial state occurs as a result
of changes in two independent functions of time with different relaxation
times, one of which determines the time changes in P71 and the other controls
the time dependence of Py.

In the statistical physics and in the kinetics of macromolecules the most re-
alistic of possible discrete lattice models is the tetrahedral lattice chain
model. A specific feature of the tetrahedral model with one value of rotation
angle for each hop is the coincidence of time dependences <Pq(cos 6)> and

<P, ( cos 6) > for both an individual particle and a chain unit. For discrete
rotational diffusion of a single element in four "tetrahedral" orientations
(e.g., along the directions of four diagonals in a cube) we have

<cos 6> = (3/2)[<cos? 8>=-1/3] = exp(-4Wt) (17)
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where W is the average hopping frequency of a particle by a tetrahedral angle.
In the general case it may be said that the larger the number of various orien-
tations and the set of hopping angles 66 = 6(t) - 6(0) in the system, the
greater the difference between the time behaviour of Py and P;. For continu-
ous diffusion this is the greatest difference as compared to discrete dif-
fusion models for the same spatial dimensionality (planar or three-dimensional
models). The dynamics of real chains in solution is characterized by the
quasi-continuous mechanism of mobility rather than by a discrete mechanism
with multibarrier jumps. Hence, egs.(10,11) will be mainly used. It is poss-
ible that in some cases (or in concentrated systems) discrete jumps can also
occur.

The relaxation spectra for <P >~<P1>2 (and, even to a greater extent, for
<P2>~<P1>3) are more narrow tﬁan for <Pq> and_their asymptotic behaviour at
t+» for draining chains is given by <P1>2 ~t~' and <P1>3~t'3/2, respectively.
It should be noted that the corresponding distribution densities L(tT) of relax-
ation times (on the ln T scale) behave at t+® as 1-1 and 1~3/2 (Refs. 8,28-30).
For non-draining polymer chains or chains with volume effects a slightly dif-
ferent behaviour of Pq (and Py) at long times is also observed as a result of
another dependence T(k) at k+0 (where k is a wave number of the normal mode).
In order to evaluate P4 and P, at high t the relationships P1~[6r2/L2(6r)] and
Py ~P% are used. Here 8r2 is the mean square displacement of a chain element
during the time t and L(6r) is the mean contour length of a chain part be car-
ried away during this time so that Grz*'L(Gr)Qsegment. In the general case of
partially or completely non-draining chains with volume effects we have (at
t+oo)

<Py (t)>~t7Y and <1>2>~t'2Y
where vy = (2/3) for ideal non-draining chains and y = (4/9) for non-draining
chains with volume effects. However, in PL (at t¢ ~107 -10-9 s) the main

effects are determined by the behaviour of <P,> at small t.

The behaviour of <Pq(t)> and of polarization of luminescence has been analyzed
for chains with different stiffness and internal viscosities (Refs. 13-15) and
for dynamic lattice models (Refs. 20,14) by computer simulation including the
methods of molecular (Ref. 16,17) and Brownian dynamics (Ref. 19) and by the
Monte-Carlo method (Ref. 20). 1In particular, the results (Refs. 16,17,19)
confirm the validity of the expressions <Pp>~<P1>~ and Tpp, ~1/3 Tdgiel.relax.
and the existence of a narrow relaxation spectrum in PL.

The fact following from the theory for the case of high friction and experi-
mentally confirmed is generally applied to the analysis of PL data for the
steady-state radiation: all relaxation times T in the relaxation spectrum for
P, (t) are proportional to solvent viscosity n (at each temperature). For
usual experiments, mixed solvents with different n but the same thermodynamic
strength are used and the dependence Y(T/n) is studied. 1In some cases, how-
ever, quenchers (or polymers with different markers) are used and Y(tT¢) is
studied. The following equation resulting from egs. (5) and (6) is used:

(1/P)*(1/3)
(1/P,)£(1/3)

Y = = Y (1¢T/) (18)

The initial slope Y as a function of T/n can be related to the initial relax-
ation time Tihit = <1/1>=1, and the asymptotical slope (at T§T/n+«) can be
related to the weight-average relaxation time
2

Tw = <T>/<1>
Analysis of experimental data (see, e.g., Refs. 1,2,4,21,22) shows that good
agreement between the values of the times of labeled polymers determined by
PL and dielectric relaxation times for the same (or similar: poly(styrene)
(PS)-poly (p-chloro styrene) (PPChS)) systems reduced to the same solvent vis-
cosity is not always observed. A certain discrepancy between the results and
interpretations of various authors is also observed (Refs. 1,2,4). However,
for all types of local relaxation times (dielectric, luminescent, NMR and EPR
relaxation times) a distinct dependence of relaxation times on solvent strength
was observed. When the solvent strength decreases, relaxation times increase
(t~[n)l-1), which is due to an increase in local concentration and the kinetic
effect of intermolecular contacts (see Refs. 20,23). The theoretical calcu-
lations carried out in Ref. 20 for the lattice chain model by the Monte-Carlo
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method have also led to an increase in T(P1) and T(Pz) when the solvent
strength decreases.

In recent years,in connection with the study of DNA and other relatively stiff
biopolymers with the torsional-vibrational flexibility mechanism, several
theoretical dynamics in the polarized luminescence of a dye bonded to DNA have
been published (Refs. 24,25). The theory for purely transverse torsional vi-
brations has been developed (Refs. 26,27). 1In this case, if the accumulation
of transverse torsional vibration is taken into account, relatively narrow
relaxation spectra rapidly decreasing at t+w(P2~exp[-/t/T]) are obtained.

The evaluation of longitudinal flexural rigidity at relatively small times
(but exceeding the range of initial slope) leads to the dependence <Pj(t)> ~
~expl- (t/1)1/4] (compare Refs. 24,8). However, for long times and for long
chains the usual power dependence for Pj ~¢=1/2 appears again. For Py (t)
this dependence gives Pz(t)~(1/t) for long times.

LOCAL RELAXATION PROPERTIES OF POLYMER CHAINS CONTAINING
MARKERS DIFFERING FROM STANDARD SEGMENT

In the study of dynamic properties of the chain by methods using markers
(polarized luminescence and EPR) it is necessary to take into account the
specific features of dynamic behaviour of the selected chain segment contain-
ing a marker and differing from other, i.e., standard segments. For cross-
linked or branched polymer systems it is necessary to analyze the motion of

a "crosslink” bonding neighbouring chains and adjoining chain units of the
same chain. As has been shown (Refs. 29,30), the dynamic problems for simple
models of two physically different systems (a "labeled" segment in a homo-
geneous chain (chain with an "inclusion") and a bridge bonding two long homo-
geneous chains) are identical and can be considered together. The method of
finding the Fourier-transform of P(t) and the Laplace transformation for P(t)
for the given element has been considered and the effect of the inclusion par-
ameters on the dynamic properties manifesting in polarized luminescence the
simplest case, P =Pq, was considered in details. This relationship was used
for the qualitative evaluation of the effect of changes in inclusion parameters..
A direct calculation of Py and P, for finite chains containing an inclusion
showed that the relative effect of changes in the inclusion parameters on the
time behaviour of the values of P4 (t) and P,(t) is similar. In accordance
with the theory developed by the authors of Ref. 30, the inverse polarization
of luminescence for a system characterized by the relaxation spectrum as a
function of Tg, the lifetime of an emitting oscillator of the luminescent
marker in the excited state, can be obtained if the reduced complex compliance
¥ (iw) of a system with the same relaxation spectrum is known. On the other
hand, x(iw) is calculated directly from the reaction of the system to a period-
ical external field F exp(iwt) for which uj =u is the conjugated coordinate.
Then we have

[x(iw)/x(0)] = [u(iw)/F]/[u(0)/F] (19)

Hence, the problem is to find the frequency dependence u(iw) where u(iw) is
the proijection of the inclusion segment.

The relationship between ¥ (iw) and the reduced inverse polarization of lumi-
nescence Y characterized by the same spectrum of relaxation times is estab-
lished in Refs. 29,30

-1

Y= ——-= (20)

(1/P)+(1/3) ] x(iw=1/rf)]
(1/P,) +(1/3) x (0)

where P is the polarization of luminescence, P  is the limiting polarization
and 1¢ is the lifetime of a luminescent marker in the excited state. Substi-
tution of the solution for x(iw) obtained for the corresponding dynamic prob-
lem (Ref. 29) into eq. (20) gives

(2K, /Ty Te
Y =1 + (21)
1+(z/2z,) [/1+ (4KT¢/T) =]

where Ka = (3kT/£§), £ is the length of a chain element or a marker and Ca is

Q
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the friction coefficient (K, ¢ for a chain element and Kq, C1 for the marker).

In experiments the dependence of Y on the T/n ratio (where T is the tempera-
ture and n is the solvent viscosity) is usually studied. Theoretically the
shape of the dependence of Y on T/n is determined by the shape and width of

the entire relaxation spectrum assuming that T~(n/T). Figure 1 shows the de-
pendences Y(x) for an infinite chain with an inclusion at various values of
the ;1/; and K1/K ratios. Here x = (2K1/;1)Tf. In the framework of the sub-
1
°r 2
Y
Sr 3
Ll 4
5
3F 6
2k
1 1 1 1
2 IA 6
X

Fig.1. Relative inverse polarization of luminescence Y vs x =
= (2Kq/tq)1¢ for chains containing an inclusion: (1) Kq/K=10,
£1/2=10; (3) Ky/K=10, £1/C=1; (3) K;/K=1, t1/C=10;

(4) K1/K=1I C1/C=37 (5) K1/K=1I C‘]/C=17 (6) K1/K=1I
tq1/t=1/3.

chain model considered here it is assumed that ¢ and Z.,~n/T and hence x ~ T/n.
It follows from the theory that the initial slope of Y (x) is determined only
by the value of K /C1 and therefore for this choice of the Y(x) coordinates
all dependences le) reduce to the same initial slope. This reduction makes
it possible to compare easily the shape of dependences Y(x) at various ¢/t
and Kq/K ratios.

When the hydrodynamic thicknesses of a standard chain element and an inclusion
are equal, the only parameter of the problem remains - the £4/% ratio. 1In
this case the initial slope Y(T1¢) (or the initial relaxation time) varies
monotonically with increasing Qfat %21 = const) as a result of additional loading
of the marker by the nearest chain units. However, at the fixed finite values
of the parameter T¢/Ty (where Ty is the characteristic time of inclusion:
TM:=6kT/C1Q%) a dependence of Y on 4/%7 having a maximum exists. The highest
value of Y at a given value of (t¢/Ty) is observed at (&/%1)*= (Tf/TM)1/3.
This effect reveals for draining chains and is due to the retardation of dif-
fusion of a chain element at a given 6r value with decreasing £ (at high t)

in accordance with the de Gennes equation

sr2(t) ~ /2t
At high t the following asymptotic relationship is obeyed for the marker
Py~ (1,722 16x%(v) /L% (6r)] ~ (227617

Eq. (21) may be generalized for the case of dynamic models of chains with in-
ternal friction. It is relatively easy to obtain the result for a model with
short-range internal friction. In this case we have

(2K,/z.)T
Y =1+ LA et — (22)

142078 /0 ) + (2 /20) /14 (4Re/T) - 1]
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where ¢int is the internal friction coefficient in a standard chain element
zjnt is this coefficient in an element containing a marker and K=K+[c1nt/rf .
The existence of internal friction greatly increases the degree of involvement
of the marker 'in the chain motion.

INVESTIGATION OF MOBILITY OF A CHAIN CONTAINING A MARKER BY
THE BROWNIAN DYNAMICS STUDY

Balabaev, Darinskii, Neelov and the author (Ref. 17) - hage established by
the method of molecular dynamics that the relationship P,=P7 is adequate for
the units of a chain consisting of particles attached to each other by rigid
bonds and interacting with each other according to the Lennard-Jones poten-
tial. Recently Darinskii, Klushin, Neelov and the author (Ref. 31) have con-
sidered the orientational mobility of a chain with hindered internal rotation
by the method of Brownian dynamics. Numerical experiments were carried out
for a chain consisting of 16 units at fixed valence angles and bonds, and at
the symmetrical potential of hindered internal rotation with the barriers
U/kT~0-6. It_was established that even at hindered internal rotation the ex-
pression P=P37 is still obeyed for both longitudinal and transverse emitting
oscillators with relaxation times T, and T,, respectively (for the time during
which P, decreases by a factor of e). The effective activation energy for
relaxation times for Pq1 and P, corresponded to single-barrier transitions and
was close to the values obtained directly for the frequencies of corresponding
conformational rearrangements (transitions over the single barrier). The in-
crease in the barrier to internal rotation led to a decrease in the anisotropy
of relaxation times of local motions, i.e., to a decrease in the T,/T, ratios
to the values of ~1.3-1.5. Previously this effect of internal viscosity has
been supposed on the basis of analysis of the properties of viscoelastic
models. For chains with hindered internal rotation a marked difference in
the mobility of the terminal and inner units (by a factor of ~4) was also
found, which is in good agreement with the experimental data for polystyrene
(Ref. 32) obtained by the methods of polarized luminescence.

KINETIC SEGMENT OF A POLYMER CHAIN IN SOLUTION

The above dynamic models for a polymer chain, the results of computer simu-
lation by the method of Brownian dynamics and the conclusions of the experi-
mental investigations may serve as a basis for introducing the concept of a
"kinetic segment" (KS) of a chain in solution. 1In the statistical physics of
macromolecules a "statistical Kuhn's segment" implies a chain segment that
may be oriented independently of the orientation of the preceding chain seg-
ment. Along the length of the statistical segment the orientational "memory"
of the preceding segment is lost. Then it would be natural to define the kin-
etic segment as a minimum chain fragment which can change its spatial orien-
tation with time and make jumps or local bending independently of the neigh-
bouring fragments. This kind of definition of a kinetic segment would be a
natural sequence (or condition) of using the lattice rotational-isomeric dy-
namic chain models. Kinetic segments (or, more precisely, minimum mobile seg-
ments) were assumed to be such minimum conformers in which discrete jumps (or
hopping rearrangements) were possible from the initial into the final confor-
mation of a chain part. These jumps are compatible with the geometry of the
lattice, do not require great stresses of valence angles in KS and are com-
patible with the fixing of the adjoining chain "tails". In the simplest KS
the end bonds were assumed to be coaxial and the jump reduced to the rotation
of a kinetic unit as a whole about these bonds. For more complex KS it was
assumed that rotations are possible when terminal bond are not necessarily
coaxial and these rotations are accompanied by deformation of valence bonds
and angles inside the units. 1In this case only the final and the initial
states should be compatible with the lattice (Ref. 33).

Similar definitions have also been introduced for non-discrete or non-lattice
dynamic chain models. In Ref. 34 a concept has been introduced of a kinetic
segment as a minimum chain fragment for which internal rearrangement of con-
formation was assumed to be possible as a result of the accumulation of tor-
sional-vibrational displacements with superposed constraints. These con-
straints included the fixation of the positions and orientations of terminal
bonds and the fixation of valence angles and bonds. These conditions directly
led to the minimum mobile unit containing five bonds (on the background of an
arbitrary chain conformation). The development of the concept of single-bar-
rier transitions (Refs. 35-37) has changed somewhat the approach to the defi-
nition of the kinetic segment. For the single-barrier transition the value
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of KS may be defined as the minimum length of a chain fragment in which, at
the transition of the first unit over the potential barriers, the displace-
ment of the unit in space at the end of the fragment should be less than a
definite value (~1/10 of the unit size). If this definition is used, a direct
experimental detection of KS is difficult but possible, e.g., by studying
changes in the mobility of a flexible fragment of a non-homogeneous chain
"squeezed" between bulky groups which are not very mobile in a given time in-
terval (see Ref. 38). These above mentioned definitions of KS are kinematic
rather than dynamic and do not take into account (with the exception of the
last definition) the real dynamic interactions between the neighbouring KS at
any types of motion. The apriori possibility of independent rearrangement of
neighbouring KS does not imply their dynamic independence. In the real chain
kinetics in each normal mode a cooperative motion of a large number of units
(and hence of KS) always occurs within the scale fixed by the spatial period-
icity exp(ijk) of a given normal mode A~ (&m/k) units. Alternatively, in each
normal mode the "kinetic memory" extends at a distance of the order of magni-
tude of the wavelength A of this mode (A~ (2m/k)). Here % is the length of
the chain unit.

However, for a dynamically cooperative polymer chain the introduction of the
KS concept is possible and useful. This concept may be based on the experi-
mentally observed or theoretically predicted different dependences of relax-
ation times T (k) on external friction (solvent viscosity) and barriers to in-
ternal rotation for different normal modes on passing from short modes to
longer modes. This definition may be related to other characteristic stat-
istical and kinetic chain scales. As has been shown in Refs. 28,39 the times
of cooperative single-barrier transitions are presented to a good approxi-
mation for every normal mode with a wave number k in the form corresponding
to successive transition over the potential barrier at a local hopping-type
motion with the time Tloc and to the overcoming of the external viscous fric-
tion drag with the time Tyjgc (k)

T (k) (k) (24)

Tioc * Tvisc
To a first approximation the value of T1oc is independent of k.

Two ranges of the dependence of t(k) follow from Eq. (24). (1) The range of

large-scale motions (low k) when T & T, (k). In this range we have
k « 1 and loc visc
Toisc ~[21min/(1—cos k)1 (a/) (25)

where A is the length of the statistical segment and % is the length of a
rigid element in a given dynamic model (e.g., a monomer unit). This range may
be called the range of segmental motion controlled by the viscosity of the ex-
ternal medium (solvent). The thermodynamic stiffness of the chain is con-
tained in Tyjgc in the form of the factor (A/%). (2) The range of local mo-
tions in which Tjoc>Tyjge- Relaxation times in this range are controlled by
the height of barriers to internal rotation and by external viscosity in the
form of the pre-exponential factor in Tj,c (in the case of high external fric-
tion). The values of Tpjp calculated per a monomer unit for common carbon
chain polymers poly(methyl methacrylate) (PMMA), poly(styrene) (PS), poly(p-
-chloro styrene) (PPChS) may be estimated either from the effective size of
the unit and the local viscosity of solution (tpjn~3nVynit/kT) where Vypjit is
the hydrodynamic volume of the unit, or from the data on dielectric relaxation
of hydrogenated monomers. The values of A/{ are estimated from the data on
conformational statistics (from dimensions, optical anisotropy and dipole mo-
ments). Finally, the values of Tj,. are manifested in dielectric relaxation,
polarized luminescence, EPR (with the correction for the effect of the marker)
and in NMR. The typical values, for example for PS (or its dielectrically
active analogue, PPChS) at n=0.6 cp, are given by

-11 9

-10 -9._.
Tmin ~ 10 to 10 Si T1oc ~ 4x10 “s; (A/%) ~ 8 to 10 (26)
It follows from Eq. (26) that, when k changes, T_. is varied from the values
of 1. <« 1 to visc
min loc
T (2)~ T 2% > 1
max min loc

Here Z is the degree of polymerization. 1In the first range, the times Tt (k)-~
~T1oc and weakly depend on k and, in the second range, they strongly depend
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on k(~k ¢ for draining chains or k_a in other cases (1.5<a<2.2)). The con-
dition of transition from the first to the second range may be written as
)
Tvisc(k )~Tloc (27)

when the evaluations in Eq. (26) are valid; k* « £ and at k<k*< %, we have
o 2
T (4Tmin/k ) (A/ %) (28)

For chains with non-screened hydrodynamic and volume interactions at low k we
have 1~k™® and all subsequent considerations may also be extended to this case
in which the numerical evaluations will change slightly. Now it is convenient
to introduce the concept of KS assuming KS to be a minimum chain segment of
such length A* or with such number of units s* that for normal modes with the
s*~(m1/k*) relaxation times are described by the same dependence on k as for

a chain consisting of freely-jointed elements (or Gaussian subchains) and are
controlled only by the external viscosity of the medium. If the phase shift
Y=s*k between neighbouring KS is introduced, then eq. (28) is given by

T o= (4Tmin/‘l’2)s*2(A/JL)=[4‘r(s*)/‘l’zl (A/2) (29)

In Ref. 31 a definition of KS similar in the physical meaning has been intro-
duced: a real chain was represented from the very beginning by a sequence of
freely-jointed rigid three-dimensional ellipsoids or rods. This definition
made it possible to take into account local hydrodynamic effects. Then the
lengths of chain portions corresponding to the length of KS were evaluated
from the comparison of calculated and experimental local relaxation times.
The principles and results of this method are close to those of the foregoing
method. Similar reasoning was also used in some experimental papers. The
evaluations made by Klushin and the author give for carbon chain polymers
the values of A* = 10-15 monomer units. This is the order of magnitude of the
length of a statistical segment for these polymers. Only in such a kineti-
cally and statistically flexible polymer as polyoxyethylene, KS is shorter
than the statistical segment. Alternatively, common carbon chain polymers in
solution should be regarded as polymers with considerable local internal vis-
cosity and characteristic length of KS of the order of magnitude of the length
of the statistical segment.

The above definition of a kinetic segment is based on the specific features
of the kinetics of longitudinal relaxational processes manifested in the fac-
tor 2(1-cos k) (eq.(25)). In contrast, for transverse relaxation processes,
if internal viscosity (high barriers to internal rotation) and thermodynamic
rigidity exist and if the accumulation of rotational or vibrational displace-
ments are taken into accounts a relatively narrow relaxation spectrum is ex-
hibited for long chains. If the barriers to internal rotation are high, then
for transverse processes even for the longest modes (k+0) relaxation times are
also controlled mainly by internal friction (jumps over the barriers) and are
controlled by the external friction only in the form of the pre-exponential
factor. This difference between transverse and longitudinal relaxation pro-
cesses may be responsible for certain experimental facts which have not yet
been adequately explained. The processes of dielectric relaxation observed in
carbon chain polymers (e.g., in PPChS) in solution should be treated as trans-
verse relaxation processes. These dielectric relaxation processes are charac-
terized by the values of activation energy (21-29 kJ/mol) exceeding those for
viscous flow. However, for the processes occurring in the same time interval
(10-8 to 10‘9s) observed by polarized luminescence in the same (or similar)
polymers with luminescent markers, relaxation times are characterized by the
activation energy close to that for viscous flow. This effect has been stud-
ied in detail for PMMA (Refs. 1,2). A possible simple explanation for this
effect is that the presence of the marker prevents rotational isomerization
in the adjoining chain part, and in the experimental range of values of in-
verse polarization, only torsional-vibrational relaxation is observed.
Another most probable reason may lie in the fact that if a bulky marker is
incorporated in the chain the longitudinal relaxation spectrum of the adjoin-
ing chain parts is exited. The larger-scale motions arise comparable in the
length to the kinetic and statistical segments. In this case the relaxation
times are to a greater extent controlled by solvent viscosity and are less
sensitive to small-scale hoppings. Additional loading and increasing rigid-
ity of a chain segment by a marker may lead to an increase in the contribution
of larger-scale modes and to a lower value of the effective activation energy
of the local process.
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