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Abstract — A brief history of solubility theory is outlined, and the distinguishing
features of modern solubility theory are discussed. It is shown how the perturba—
tion theory—based terms in the expression for the Henrys law constant provide
microscopic information on covitation and solvation. Results are given both for
atomic and molecular systems. In the case of atomic systems, where no adjustable
parameters are used, excellent agreement with experiment is found. In these
systems we also probe in a fundamental way for the role of quantum effects and non—
additive three—body forces on solubility. For molecular systems, in which the
required pair potentials are generally unknown, a somewhat different approach is
perhaps most useful. In particular we show how a molecular liquid state perturba—
tion theory can be used to probe for the role of dipoles and quadrupoles on the
thermodynamics on non—electrolyte solubilities in water. Finally, some of the
difficulties that lie ahead in the field of solubility theory are mentioned.

ATOMIC SYSTEMS

Introduction
The distinguishing feature of modern solubility theory is that it is based on calculations
that explicitly include a function called the radial distribution function. This function,

given the symbol g(r,p,T)(r = interparticle distance, p number density, T = absolute
temperature), is the factor that multiplies the bulk or microscopic density of a liquid p
to give the time—averaged microscopic or local density, pg(r,p,T), around some fixed
molecule. The gross characteristics of this function are more or less obvious; i.e. g(r) +
O as r + 0 since the intermolecular forces through which atoms or molecules interact become
increasingly repulsive as the electron clouds around the species begin to overlap. Also,
since we are not dealing with solids, which are characterized by long—range order, it
should be clear that g(r) + 1 as r + °°. That is, the capacity of a selected molecule to
influence the time—averaged microscopic density diminishes as the distance away from the
selected molecule becomes large. At intermediate distances this function goes through a
number of extrema, the details of which depend on the intermolecular forces in question.
As will be shown later, the reason the radial distribution function is so important is that
it is always intimately involved in any statistical mechanical theory whose purpose is to
calculate the thermodynamic properties of solutions from intermolecular forces.

Almost half a century ago, Sisskind and Kasarnowski (1) published a paper that contained
what turned out to be a very clever and insightful idea. They suggested that the
energetics involved in the transfer of a molecule from the gas phase to a liquid solution
be mathematically decomposed into two terms. One of these terms, they suggested,
originates from the work that has to be done against the intermolecular forces in the
solvent to create a cavity that will accommodate the solute about to be transferred. This
term represents an energy requirement. A second term, representing an energy gain, arises
due to the interaction of the solute molecule in the cavity with the surrounding solvent
molecules. A few years after its publication, Uhlig (2) and Eley (3) pursued this idea in
their work on solubility. Uhlig correlated the surface tensions of a variety of pure
liquids with the solubilities of gases in these liquids. tJhlig used the macroscopic surface
tension of a liquid to calculate the work required to create a cavity. Eleys approach
differed from Uhligs principally in the way in which he calculated the cavity term. Eley
used macroscopic solvent compressibilities for this calculation. For a number of reasons,
neither Uhlig nor Eley could come up with quantitative predictions of solubility. These
include the inappropriateness of macroscopic surface tensions or compressibilities in the
calculation of the work required to make microscopic cavities and the unavailability (at the
time) of accurate pair potentials and radial distribution functions, both of which are
needed to calculate the second of the two terms — the solute—solvent interaction term.

The next major advance was made about 25 years later by Robert Pierotti (4), who took the
same general approach as Sisskind, Kasarnowski, Uhlig, and Eley, but used a newly developed
statistical—mechanical theory called the scaled particle theory (Ref.5) (SPT) to calculate
the cavity term. Pierotti equated the cavity term in a real solution to the reversible work
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required to create a cavity in the dense assembly of hard spheres. The scaled particle

theory provides explicit expressions for the thermodynamic functions that characterize dense
hard—sphere or hard convex—like molecule assemblies. But there still remained two
fundamental problems with PierottiTh approach. First, a real solution is not comprised of
hard spheres, so that Pierottis estimate of the cavity term is only an estimate. Second,
and perhaps more serious, theoretical expressions for the distribution functions were
unavailable when Pierotti did his work. Thus Pierotti was forced to approximate g(r,p,T) by
unity, and therefore he was unable to calculate the contribution made by the solute—solvent
interaction term in a fundamental way. Further on in this article we show how the cavity
and interaction terms can be accounted for in a rigorous way.

By the early 1970s, all the ingredients needed for a truly fundamental solubility theory
(applicable to isotropic systems) had become available. These ingredients included: (1)
accurate intermolecular pair potentials obtained from the gas phase by using molecular
beams, gas viscosities, and virial coefficients and from solid—state studies; (2) detailed
knowledge of the radial distribution function in some prototype of a dense isotropic fluid
(The development of Monte Carlo simulations, molecular dynamics calculations, and the
solution of integral equations such as the Percus—Yevick equation for dense fluids provided
this information. The prototype fluid was the dense hard—sphere fluid and the above
methods provided the needed distribution functions, both for pure hard—sphere assemblies
and for hard—sphere mixtures); (3) a procedure for connecting the properties of a hard—
sphere system to those of the system of interest. This connection was provided in a

rigorous way by a procedure called either thermodynamic perturbation theory or liquid—state
perturbation theory, the salient features of which are outlined below.

Thermodynamic Perturbation Theory
In the late l960s Verlet, using computer simulations of hard—sphere assemblies, showed that
the structure of a hard—sphere fluid was quite similar to that of a real isotropic fluid in
which attractive forces exist (Ref.6). This result and others like it led to the view that
the structure, i.e. g(r,p,t), of dense isotropic liquids is determined primarily by the
repulsive part of the pair potential. Consequently, the influence of the attractive part of
the potential on the thermodynamic properties of a fluid can be obtained by a perturbation
expansion around a hard—sphere reference state. The required formalism had been previously

provided by Zwanzig (7). The first—order result provided by this theory is given by Eq. 1,

A = A + 2iNp f r2u(r)g0(r) dr + ... (1)

where A and A0 are the Helmholtz free energy in the real and reference system respectively,
g0(r) is the radial distribution function in the reference state, and u (r), the perturbing
pair potential, is given by eq 2. In eq 2 u(r) and u0(r) are the actua and reference

u(r) = u(r) — u(r) (2)

state intermolecular pair potentials, respectively.

The infinite series represented by Eq. 1 will converge rapidly (i.e., the first two terms
shown in the series will closely approximate A) if u(r) is small, i.e., if the temperature
is high relative to the perturbing potential. It can also be made to converge rapidly at
low temperatures and high densities if the division of u(r) into u(r) and u0(r) is such

that g0(r) closely approximates g(r). Since, as already mentioned, the structure of a dense
isotropic liquid is determined primarily by the repulsive part of the pair potential, g0(r)
will closely approximate g(r) at high densities if u0(r) is based on the repulsive part of
the pair potential. We will return to this point further on. The higher order terms in the
series are complicated and difficult to evaluate accurately because they involve integrals
over higher order reference—state distribution functions (e.g., triplet,
quadruplet.. .distribution functions) about which little is known. This is one of the
problems encountered in the direct application of Zwanzigs theory to liquids. Another is
the problem of how to separate u(r) into u0(r) and u(r).

For these reasons three different perturbation theories, similar in spirit but different in
details from Zwanzigs, have been developed (Ref s.8—l3). They all provide an objective
basis for the separation discussed above, and also they were formulated to ensure rapid
convergence of the series shown in Eq. 1.

Before describing these theories it is worthwhile to mention one additional problem that
occurs when perturbation theory is applied to mixtures as opposed to pure fluids. If we
consider a binary solution in which the solute has a significantly deeper well depth than
the solvent, then the solute may tend to form clusters or aggregates because of the
attractive part of its pair potential, so that for this situation the first two terms in Eq.
1 will provide an inadequate approximation for A, and higher order terms have to be
included (Ref s.l4,15). Fortunately this problem is not strongly relevant to the present
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application wherein the solute is always at infinite dilution and so cannot form clusters.

The first—order expressions for binary mixtures that obey classical statistics with
pairwise additive intermolecular potentials are given by Eqs. 3—5 for the Leonard—Henderson—

f = fo _ — ô12] + 2p xix f u1(r)g10(r)r2 dr (3)

ij=l

= f° + 2rp x.x. j u1Y(r)g°ij(r)r2 dr (4)

ij=l dij

= f° + 2iTp 7 xx. fuj.P(r)exp[_u?(r)]y.HS(r)r2 dr (5)

ij=l o

Barker (8,9), variational or Mansoori—Canfield (10,11), and Weeks—Chandler—Andersen (12,13)
theories, respectively. In each of these equations the division of u(r) into u (r) and
u0(r) is different (see below), so that the terms f°, u1(r), and g1(r) are al
different. Hereafter we will use the abbreviations LHB, 1IC, and WCA or these theories.
In these equations

A(N1,N2,V,T) — A(N1,N2,v,T)
(Ni + N2)kT

is the reduced Helmholtz free energy per particle relative to this quantity in an ideal gas
mixture at the sane Ni,N2,V, and T as the solution of interest. sf" is this quantity for
the reference state mixture. Also x is mole fraction, p is total number density = (N1 +
N2)/V, the superscripts o, p, and HS mean reference state, perturbation, and hard sphere,
respectely, d. is the hard—sphere reference—state diameter between particles i and j,
and (r) is he hard—sphere radial distribution function, smoothly extrapolated to
r = 0. The term c512 in Eq. 3 is similar in magnitude to di2.

The LHB and MC theories are both based on a hard—sphere reference state, but the way in
which the hard—sphere diameters are calculated differ (Refs.8,ll) The WCA theory is not
based on hard—sphere reference state. Rather it is obtained from the following division of
the potential u(r)

r<rm

=0, r>rm

u(r) = —c, r < rm

= uLJ(r), r > rm

where uLJ(r) is the Lennard—Jones 6—12 pair potential (Ref.l6) and rm the position of
minimum potential. In this particular division u0(r) is based on all the repulsive forces

in the Lennard—Jones system. Consequently g0(r) will very closely resemble g(r) (Ref.l7),
so that the first two terms in eq 1 will provide a particularly good approximation for A.

Thermodynamics
We now connect the measurable quantities that arise in solubility investigations with the
statistical—mechanical quantity f which is calculable from any one of Eqs. 3 to 5.

The most commonly used measure of solubility of a volatile solute is the Henrys law
constant. For a vapor phase over a solution that is reasonably dilute (i.e., P , 10 atm)
the solute in the vapor phase may be considered to behave as an ideal gas. Under these
circumstances the Henrys law constant (K) of the solute is given by Eq. 6, where P2 is the
partial pressure of the solute over the solution and x is the mole fraction of the solute

K = lim (P2/x2) (6)
x20

in the solution. From this definition and the usual thermodynamic relations we obtain
(Ref.l8) Eqs. 7—9. In these equations R is the gas constant, subscripts 2 and 1 mean solute
and solvent, respectively, Yi is the molar volume of the,pure solvent, n denotes number of
moles, and the superscript denotes the limit x2+0; H5 and V2 are respectively the
molar heat of solution and the partial molar volume of the solute at infinite dilution.
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in K = in + (f)• + ni (!\
•

(7)
vi n /

,T,V

LH =

_RT2(-_-_)
(8)

V2 RT(3__ T
(9)

Microscopic Basis of CaviçyTerm and Soiute—Soivent Interaction Term
We have in Eq. 7 a connection between soiubiiity and terms that directiy invoive the
energetics of the soiution process at a microscopic ievei. For exanpie, if Eq. 4 from the
variationai theory is used for f in Eq. 7, we obtain (Ref.i9,20) Eq. iO,

in K = in(' + 32.HS Iii• + 112 (iO)

where

'HS fHS N1 ( ______

\ 2 J
N1,T,V

Iii• = 2pN1
-5-—(

f r2ull(r)g11HS(r) dr)N T,V
2 d11 1

112 4rpi f r2u12(r)gl2HS(r) dr

d12

The in(RT/V1) term arises soieiy because of a different choice for the soiute standard state
in the iiquid and gas phases, sofiat it is not invoived in either the cavity or the
interaction terms. The term I2 , on the other hand, comes from the reversibie work
required to create a cavity of diameter d22 in a hard—sphere system of particies with
diameter d11 at the same density, temperature, and composition (infinite diiution with
respect to the soiute) as the soiution of interest. Cieariy, however, there has to be an
additionai term that corrects the hard—sphere cavity term to a cavity term for the sof t—

sphere system of interest. It was first pointed out by Neff and McQuarrie (2i) that the
term represented by Iji provides this correction to the first order. As may be seen by

examining the expression for Iii , this term arises because of a change in the totai

soivent—soivent interaction potentiai energy beyond that accounted for by hard—sphere
potentiais. This change is brought about by the creation of a cavity in a reai soivent.
The presence of the cavity causes the soivent structure to be aitered from what it is in the
absence of a cavity, and this resuits in a change in the totai soivent—soivent interaction
potentiai energy. Finaiiy, the soiute—soivent interaction energy is accounted for by the
term 112 . The fact that this term has the form of the integrai shown has iong been known.
What is new is our abiiitHo obtain accurate vaiues of 112 because of our newiy acquired
knowiedge of the term g (r) in the integrand of this term.

Resuits
Reiative and Absoiute Accuracy of the Theories
Each of Eq. 3 to 5 is based on a different perturbation theory. Consequentiy, by using each
of these equations in Eq. 7 to 9 and appiying the resuit to a particuiar system, we can
intercompare the three theories with respect to how weii they predict experimntai reuits,
and we can iearn how sensitive a particuiar soiubiiity function (e.g., K, sH5 , or V2 ) is
to the theory being used to obtain it. This was done for a variety of systems, (Ref.22) and
a sampie of the resuits obtained are dispiayed in Tabie i for the system Ne in Ar.
In these caicuiations the same intermoiecuiar pair potentiais, taken from gas—phase viriai
coefficients, were used. We see from Tabie 2 that the LHB and WCA theories provide simiiar
and good predictions for in K, but that the predictions from the MC theory are worse. The
reiativeiy poor performance of the MC theory is beiieved due to the fact that the upper
bound on the free energy that this theory is based on (Ref s.iO,li) is too high a bound to be
usefui for highiy accurate soiubiiity predictions. The cioseness of the predictions of the
other two theories (both to experimentai resuits and to each other) is remarkabie. The WCA
theory is known to be more accurate than first—order LHB theory with respect to the

prediction of totai thermodynamic properties (e.g.,f) (Ref.23). Apparentiy the function

(t3f) + ni (-)'

ni ,T,V
upon which soiubiiity depends (see Eq. 7) entaiis a fair amount of canceiiation among the
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higher order terms left out in the LHB theory.

TABLE 1 Coiparisons of Calculated and Experimental Values of ln K, tH , and
V2 for Ne in Ar

ln (K/atm) LH5,cal/mol V2',cm3/mol

T,K LHB MC WCA exptla LHB MC WCA exptla LHB MC WCA exptib

87.29 6.77 7.40 6.93 6.99 132 288 159 201 23.1 27.2 26.1 25

87.42 6.77 7.40 6.92 6.97 132 289 159 232 23.2 37.3 26.1 —

115.80 6.48 6.88 6.56 6.48 437 627 461 597 40.5 47.3 43.8 45

a These values arebfrom W.B. Streett (Ref.40); the 1H have an estimated uncertainty of 150

cal/mol (Ref.4). These values are from W.B. Streett, (Ref.4l); their uncertainty is
estimated to be 5 cm3/mol.

We see from Table 1 that all three theories predict the functions LH5 and V2 to within
experimental error but there is a sizeable uncertainty in the experimental values of these
functions. The spread in the predicted values of these quantities that results from the use
of the different theories is certainly significant; presumably the WCA predictions are the
most accurate.

The Influence of Quantum Effects (Ref.20)
It is easy to show, on the basis of the much smaller mean free path in liquids than in
gases, that conditions which ensure the validity of classical statistical mechanics are much
more readily found in the gas phase than in solution (Ref.20). This difference in the
degree of validity of classical statistics makes it necessary to correct the theoretical
solubility expressions based on classical statistics for those systems in which the
temperature is low (T < 150 K) or the solute is light (i.e., molecular mass < 20) or both.
For systems in which the quantum deviations are not too large (e.g., excluding solutions
involving H2 or He near absolute zero) the deviations can be treated as a perturbation on
the classical result. The detailed expressions for the first—order quantum correction to
the Helmholtz free energy and the chemical potential have been given elsewhere,(Ref.20) and
here we focus on some of the results that were found.

It is seen from Figs. 1 and 2 and Table 2 that the effect of i2cludin the correction for
quantum deviations is to raise the calculated values of K, iH5 , and V2 relative to what
is obtained on the basis of purely classical statistical mechanics. More specifically, we
see from Fig. 1 that the inclusion of the quantum tern is crucial for quantitative
agreement with experiment when the solute is H2 and the solvent is either liquid N2, Ar, or
CH. We see from Fig. 2 that the quantum correction for Ne in either liquid N2 or Ar is
significant at the lower temperatures shown but that it becomes less important as the

temperature goes up.

Table 2 demonstrates the result that for H2 in benzene at ordinary temperatures the quantum
term contribution to K and to LH5 cannot be neglected since it contributes between 5 and
10% toward the overall value of these functions. The quantum correction to V2 is
relatively small. Table 2 also demonstrates the result that quantum deviations in
solubility calculations can be neglected in ordinary solvents at ordinary or high
temperatures provided the solute has a molecular mass equal to or greater than that of He.
This limit was never before established.

TABLE 2 Deviations between the Classically Calculated Values of K, V2, and LH5 (cal/mol)
and the Corresponding Quantum—Corrected Values for H2, He, and Ne in C6H6

K(quantum)/K(classical)a

V'(quantum)/
V2'(classical)a

H '(quantum) —
H5'(classical)ab

5

t, °C H2 He Ne H2 He Ne H2 He Ne

20 1.066 1.021 1.008 1.022 1.008 1.003 90 29 12
60 1.047 1.015 1.006 1,018 1.007 1.003 77 25 10
100 1.035 1.012 1.004 1.016 1.006 1.002 68 22 8.7
150 1.024 1.008 1.003 1.013 1.005 1.002 62 20 7,9
200 1.017 1.006 1.002 1.011 1.004 1.001 59 19 7.4

a The experimental values of K, V2, and H • for H2 inbC6H6 at 25°C are 3.38 x l0 atm, 35

cm3/mol, and 1520 cal/mol, respectively (Res.42,43). The results for the quantum effect
on H are expressed as a difference rather than a ratio, since H for the H2 in C6H6
system goes through zero in the range 20—200°C.



Fig. 3. Calculated and experimental Henry's
law constants. The solid curves include

the three—body dispersion nonadditive term;
the dashed curves do not. Data sources: Ne
in Ar (Ref.40); He in Ar (Ref.46). () Ne
in Ar; (0) He in Ar.
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The Role of Non—additivity of the Pair Potentials (Ref.24)

A feature shared by all previous generations of solubility theories was the assumption of
perfect additivity of the intermolecular pair potentials. This obviously cannot be
perfectly true because the presence of other particles around an interacting pair will,
because of their interactions with the pair, alter the pair potential from what it would be
in the absence of neighboring particles.

It is generally believed (at least for isotropic particles) that the most important of the
higher—body nonadditive terms is that due to three—body dispersion forces, for which the
potential energy is given by the Axilrod—Teller formula (Ref.25). As with quantum
deviations, three—body nonadditive effects can be formally dealt with by treating them as a
perturbation to the two—body (i.e., pairwise additive) result. The detailed form of the
first—order correction to f due to this effect has been given elsewhere (Refs.24,26), and
here we will concentrate on the results obtained.

7
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Fig. 1. Calculated and experimental Henry's law constants for hydrogen.
The solid and broken curves give the quantum—corrected and classical

results respectively (Ref .44): (.) H2 in CHz; (V) H2 in Ar; () H2 in N2.
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Ar, (Ref.40); Ne in N2, (Ref.45); (o) Ne in Ar; (c) Ne in N2.
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Some of the results of the calculations for ln K are shown in Fig. 3, from which the

following principal features are apparent.
(1) The effect of including the triple—body dispersion term is to raise the calculated
values of K relative to the values obtained for this quantity using only two—body forces.
(2) The relative influence of the three—body term on K increases in the order (He in Ar) <
(Ne in Ar) < (Kr in Ar). The effect is so pronounced in the system Kr in Ar that it is
unlikely that "effective" pair potentials (which are contaminated by nonadditive effects)
could ever properly account for the thermodynamics of this or of any system with a large
solute:solvent size ratio. (3) Inclusion of the three—body nonadditive term results in
excellent agreement with experimental data in those systems for which data are available.
For the system Ne in Ar, where inclusion of this term significantly alters the calculated
values of K, the agreement with experiment is improved relative to what is obtained by
assuming pairwise additivity. Similar conclusions are drawn by examining the effect of
nonadditivity on the functions 1H and V2 (Ref.24).

MOLECULAR SYSTEMS

The Approach
In view of the fact that for practically any molecular system of interest, the full angle—
and distance—dependent pair potentials are unknown, a somewhat different approach with
different goals seems indicated. Thus in the work described below we do not try to numeri—
cally duplicate experimental solubilities. Rather, the approach taken is to selectively
"turn on" specific types of anisotropy in a solvent, with a view to determining how these
anisotropies in a solvent influence solubilities. The kind of question we focus on is: to
what extent can for example, a strongly polar, or a strongly quadrupolar solvent, etc., be
theoretically expected to manifest hydrophobic—like solvent characteristics.

The Model
The solute is a Lennard—Jones sphere and the solvent is a Lennard—Jones sphere plus one of

the following anisotropies: (i) an embedded point dipole (ie a Stockmayer potential,
referred to by the abbreviation L+D below) (ii) an embedded point quadrupole (L+Q below)
(iii) an embedded point dipole and a point quadrupole (L+D+Q). We pick the Lennard—Jones
parameters for the solute and solvent to be the same, so that all non—ideal effects are due
to the electrostatic anisotropy of the solvent—solvent interactions. The size of the
Lennard—Jones parameters and the magnitudes of the dipole and quadrupole moments were taken
from an electropole model for water (Ref.27). A complete description of this work is given
elsewhere (Ref.28).

Molecular Perturbation Theory
The perturbation theory that was used was the Gray—Gubbins—Stell perturbation theory, the
details of which are available in (Ref.29) to (Ref.38).

As with any perturbation theory, the properties of the system of interest are obtained by
expanding around a reference system whose properties are presumed known. The anisotropic
pair potential is written as a sum of an isotropic and an anisotropic term. The isotropic
term, which is the reference state potential, is chosen to be the unweighted angle average
of the total potential over the orientations of both molecules. This choice of a reference
state was first used by Pople in the earliest version of this theory (Ref.29). The Helmholtz
free energy is then expanded in powers of the perturbing potential to give

(11)

where A is the Helmholtz free energy of the system of interest, A0 is the reference state
contribution to A,

A2 = _<U2>0
and

A3 =

Here =l/kT, k is the Boltzmann constant, T the absolute temperature, and Ua is the
anisotropic part of the total configurational energy of the system. In Eq. 11 the first—
order contribution to A vanishes for multipolar anisotropies because of the choice of the
reference state. Working expressions for A2 and A3 are obtained by assuming pairwise
additivity of the intermolecular potential, expanding the anisotropic part of the pair
potential in generalized spherical harmonics, and then using the orthogonality and symmetry
properties of the representation coefficients and the Clebsch—Gordan coefficients, to do

the angle averaging analytically. For the most general anisotropic potential, A2 involves
sums of two— and three—body terms, and A3 sums of two—, three—, and four—body terms.
Carrying Eq. 11 to a higher order would involve even larger many—body terms, for which the
required reference state distributions are unknown.
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Equation 11, truncated at the third order, converges slowly for strong multipoles, and is
unsuitable for the calculations described below. The development that nade this theory
applicable here was the Pad approxinant to this series proposed by Stell et al., (31)
namely,

A=Ao+A2 (12)
1 — A3/A2

This approximant is known to be much more accurate than the third order form of Eq. 11
for strong dipoles, quadrupoles, and mixed dipole—quadrupole interactions. Since A is
explicitly calculable by Eq. 12, so too are all the thermodynamic functions through Eqs. 12
and 7 to 9. Thus our approach here is to monitor the response of the solubility—related
thermodynamic functions to specific electrostatic anisotropies in the solvent.

Results

The results are presented graphically in Figs. 4—7.

It is clear from Fig. 4, that with respect to the Henrys law constant K, at ordinary
temperatures, either a purely Lennard—Jones plus dipole (L+D) or a purely Lennard—Jones
plus quadrupole solvent (L+Q) behaves in a very nonhydrophobic way. For purposes of
comparison, we note that lnK for the rare gas solutes He to Rn in water at 25°C spans the
range 11.9 (He) to 8.7 (Rn) (Ref.39), so that the calculated solubilities for the L+D and
L+Q solvents are much too high. What is noteworthy, however, is that when we turn on the
dipole—dipole, quadrupole—quadrupole, and the two dipole—quadrupole cross terms all
simultaneously (the L+D+Q solvent), we get a huge increase in lnK, especially at ordinary
temperatures. This increase is in the right direction with respect to hydrophobic
solvation, in that it brings our calculated lnK values a lot closer to the range of
experimental values. It is important to remember that these differences among the solvents
in lnK, and in the other thermodynamic functions, are entirely a consequence of differences
in the permanent electrostatic part of the solvent—solvent pair potentials.

The comparisons in Figs. 5 to 7 are in a sense more revealing. The calculated enthalpies
of solution shown in Fig. 5 are, for all three solvents, in the right range for hydrophobic

enthalpies of solution; the experimental LH5 values in kcal/mol for He to Rn in water at
25°C cover the range —O.2(He) to —5.l(Rn) (Ref.39). Note, however, the difference in the
temperature dependence of H5 for the L+D+Q solvent, relative to the ottler two solvents.
This manifests itself in the very different behavior of the function Cp2 for the three
solvents (Fig. 6). Now only the L+D+Q solvent gives a Cp2 value in the range
characteristic of hydrophobic solvation: 25.1 cal/mol K (He) to 69.9 cal/inol K (Rn)
(Ref.39). Thus, the large positive Cp2 , which is characteristic of hydrophobic solvation,
cannot be mimicked by a Lennard—Jones solvent containing a large dipole moment only, or a
large quadrupole moment only. However, when large dipole—dipoleq1adrupole—quadrupole, and
the dipole—quadrupole cross terms all act in concert, we do get Cp s in the range found
experimentally in water.

As is seen from Fig. 7, a rather different picture emerges for the entropy of solution
tS° The experimental values at 25°C for the rare gases in water, in entropy units, cover
the range —24.2 (He) to —34.4 (Rn) (Ref.39). Thus, the L+D+Q solvent and the L+D solvent
behave similarly with respect to 1S', in that they both involve large negative entropies
of solution that are almost, but not quite, in the experimental range for hydrophobic
solutions. The tS5 obtained for the L+Q solvent is much less negative at ordinary

temperatures and tS5' for this solvent rises, rather than falls with temperature, at
ordinary temperatures.

DISCUSSION AND SUMMARY

We have shown how modern liquid state perturbation theory, together with accurately known
interatomic potentials, have made it possible to predict solubilities and related functions
for atomic systems to an accuracy that is within experimental error, without resorting to
any adjustable parameters. Also, by examining the structure of the terms in the
perturbation expansions we gain insight into the atomic basis for the microscopic phenomena
of cavitation and solvation. We can also determine the influence of non—classical
statistical behavior and non—additivity of the pair potentials on solubility. Clearly,
solubility theory for atomic systems has evolved to an accurate and sophisticated level.

Solubility theories for molecular systems are of course more primitive. This is because
full, angle—dependent, intermolecular potentials are not known with any real accuracy for
molecular systems and because molecular perturbation theories (or integral equation—based



Fig. 4. The HenryTh law constant K of a Lennard—Jones solute in the three
hypothetical solvents versus temperature. K is based on pressure units in
atmospheres. The solid, dashed, and alternating dot—dashed curves are for the

fully generalized Stockmayer potential, the Stockmayer potential, and the Lennard—
Jones plus generalized quadrupole potential, respectively. For full details on the
potentials, see Ref. 28. The solvent densities correspond to a total pressure of
1.0 atm.

Fig. 5. The molar heat of solution at infinite dilution versus temperature.
Solute, solvents, pressure, and legend are the same as in the caption to Fig. 4.

Fig. 6. The partial molal constant pressure heat capacity at infinite dilution
versus temperature. Solute, solvents, pressure, and legend are the same as in the

caption to Fig. 4.

Fig. 7. The molar entropy of solution at infinite dilution versus temperature.
Solute, solvents, pressure, and legend are the same as in the caption to Fig. 4.
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theories) cannot yet accurately handle strong anisotropies in the pair potentials. Work on
the latter problem is progressing well in a number of laboratories throughout the world.
However, the extraction of the full angle—dependent pair potentials for the kinds of
complex molecules that interest chemists remains a very difficult and long—term
enterprise. In the meanwhile, much can still be learned in molecular systems by setting
up models with specific anisotropies that can be handled theoretically, to act as probes to
determine the salient molecular factors that influence solubility. An example of how this
can be done was outlined in this article for electrostatic influences on non—electrolyte
solubilities. Obviously, the influence of a variety of other types of anisotropies can be
studied in a similar way.
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