
Pure & App!. Chem., Vol. 57, No. 8, pp. 1091—1 102, 1985.
Printed in Great Britain.
© 1985 IUPAC

Theories of transport properties using the Onsager treatment

Jean-Claude Justice

Laboratoire d'Electrochimie, Université Pierre et Marie Curie, 4 Place Jussieu, 75230 Paris Cedex 05, France.

Abstract— The fundamental equations of the Onsager approach of transport properties in linear response are

summarized. From a reformulation of the part of the ion pair distribution function which is perturbed by the ionic

velocities, an echo formulation for tracer diffusion is derived which can be compared with former similar results

obtained for conductance. It clearly appears that these two different transport processes are in agreement with the

original Bjerrum formulation of ionic association for excess thermodynamic properties at equilibrium which can be

derived from the Mayer activity expansion.

It is finally shown how the Pikal equation for chemical diffusion can be reformulated to reach a final expression

also in complete agreement with a Bjerrum formulation. The improvement in overall efficiency of these echo

formulations for ions of higher charges and for solvents of lower dielectric constants is emphasized as well as their

evident ability to be easily extended to more realistic models for ionic interactions than the restricted primitive

model.

1. INTRODUCTION

The literature abounds in contributions to the study of the properties of electrolyte solutions which make use of the approach

originated by Debye (ref. 1), and Falkenhagen (ref. 2,3), and formally developed by Onsager and Fuoss (ref. 4). These

contributions deal with the theories of activity coefficients and transport properties. They constitute a number of attempts

to extend the initial results to a wider range of uses: from symmetrical electrolytes to those of any types, from solutions of a

single electrolyte to mixtures, from very low to moderate concentrations, from solvents with a high dielectric constant to lower

ones and possibly to combinations of these less and less restrictive conditions of application. One of these attempts, however,

cannot immediately be connected, at least at first sight, with the Onsager approach. Rather, it seems merely to constitute an

empirical attempt to graft a chemical insight onto a physical treatment. Such is the case of the well-known Bjerrum extension

(ref. 5), which makes use of the chemical concept of association, quantitatively treated by a mass-action law formulation, the

equilibrium constant of which being the only point through which the linkage with the Debye treatment occurs. This chemical

extension waS also the object of suggestions for amendments, most of which have probably brought more confusion, rather than

clearer insight, into the understanding of the processes involved at the molecular level.

Thus it seems not unimportant that experimenters, who are those most directly interested in making good use of a theoretical

equation, should be offered some sort of a general and hopefully simple survey so that they can more easily make their own

judgement on several fundamental points such as:

A- How deeply is the Onsager approach embedded in the rigorous treatment of statistical mechanics?

B- Where exactly do the various approximations used at different steps of the mathematical development lie and what
are their physical meanings?

C- Is there one way of comparing the various theoretical equations available and deciding eventually if one of them
mightexhibit a significant advantage over the others?

D- Since the association models have proved so efficient, whatever kinds of theoretical criticism may have been levelled
at this concept, is there one better than the others and how can it be related firmly to the fundamental bases of
statistical mechanics?
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Positive answers to these questions are now at hand. Some can already be found in the literature. Unfortunately, they are often

formulated in the precise but obscure jargon of specialists and embedded in an intricate mathematical formalism which is not

obviously clear to the not necessarily well-armed though curious experimenter in the field. The intention of this paper is to

provide some help in circumventing this difficulty. It has been carried out in the hope of being useful to those experimenters

dealing with electrolyte solutions, who probably often felt discouraged, as the author also often did, by the apparent complexity

and seeming contradictions found on reading the literature.

We shall make use of a symbolism which is a generalisation of that originally introduced by Falkenhagen and which greatly

facilitates the direct analysis and understanding of the exact physical content of the different relations using various time-

averaged quantities. In superscript is found the information concerning the species and the location to which the quantity

belongs. In subscript is found the information concerning the restricting conditions to be fulfilled during the averaging time

regarding the same quantity. For instance, gQ is the probability density for finding an ion of type I at S while two ions of

type i and j are present at P and Q respectively. The extension of this formalism to any other mean quantity such as mean

velocity vectors, mean interaction forces ... etc, is straightforward.

It is then possible to summarize the Onsager approach for the treatment of the physico-chemical properties of the electrolyte

solutions in a general set of equations (cf. table 1) which can be later specialized to the particular conditions defining the macro-

scopic properties to be studied ( equilibrium excess thermodynamic properties, static and frequency-dependent conductance,

self- or tracer-diffusion, mutual or chemical diffusion ... etc).

TABLE 1

Summary of the Four Basic Sets of Hierarchy Equations in the Onsager
Treatment of the Physico-Chemical Properties of Electrolyte Solutions

1. Total Velocities
=ve' + w2(K + F"') (1)

= ve + w1(K + F) (2)

etc

2. Internal Forces
piP = —kBTVP gIP — n1 f VpU(iP, lS)gdVp (3)

FQ = —kBTVP lng — VpU(iP,2Q) —

nzfVU(iPlS)gaqdVs (4)

1'Q,kR = —kBTVP ln g,Q.kn —VpU(iP,jQ) — VpU(iP,kR) — nf VpU(iP,lS)g1QdVs (5)

etc

3. Electrophoretic Velocities

= n1 f (P, S;w, wj)(K, + FflgdVp (6)

ve =>n'f (P,S;w1,w,)(K: +F,Q)g,QdVp+ (P,S,w,w)(K+F) (7)

etc

4. Mass Conservation

__gtP Vpg"v1' (8)

—gQ = Vpgv + = — (9)

etc
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First, it must be specified that in the Onsager treatment, the solvent is considered as a dielectric and hydrodynamic continuum

characterized by a dielectric constant and a viscosity t. This has been proved by McMillan and Mayer to be a sound basis for

the theoretical treatment of equilibrium excess properties (that is, excluding transfer or direct ion-solvent properties) provided

that a realistic enough solute-solute interaction model is used to supplement the consequences of the ignorance of the molecular

nature of the solvent.

The most commonly used interaction model is also the most simple to handle in the mathematical derivations. It is called the

restricted primitive model (RPM). It makes use of the following potential energy of interaction U13(r) between two ions of type

i and j
bc, ifr<a;U1(r)=<2 ee1/er, otherwise.

When displayed in the formal presentation of the fundamental equations, the notation of the function (113(r) will be replaced

by U(iP, jQ) in order to be consistent with the symbolism used for the mean quantities mentioned in the same equation, which

explicitly refer to the locations P and Q for instance.

More realistic models can be used which will be described later, the Onsager treatment being not strictly bound to the RPM.

However this model, because of the relative simplicity it allows in the mathematical derivations, is quite useful in reaching many

interesting and general conclusions.

2. THE BASIC EQUATIONS

2-1. The mean one-particle velocity vector v1'

This quantity is defined by eq.(1) in table 1. It expresses the mean velocity vector of an ion of type i located at P, induced by
an external force K, to which must be added an internal force F" exerted by all the other ions of the solution. The product

of these forces with the intrinsic mobility w of the ion in the pure solvent gives a first vector contribution for the velocity of an

ion of type i with respect to the solvent at P to which must be added a contribution ye'1' called the electrophoretic velocity of

the ion of type i at P, which is due to an eventual hydrodynamic flow of the medium at P.

As a matter of fact, the mean one-particle velocities are the quantities which are measured as transport properties, under more

or less disguised transformations, according to the technique used and experimental conditions imposed. The transposition from

v's' to the ionic conductance )', and to the self-diffusion coefficient D', is only a matter of performing the following vectorial

operations.

=X)'/Fz2
= —DVplng" (10)

where X is the externally applied electrical field, (K2 = zeX), F the Faraday constant and e the proton charge. The case of

the chemical diffusion coefficient is somewhat more complicated and will be briefly summarized in section 6-3.

2-2. The mean one-particle internal force F"'

As shown in eq.(3), it contains two contributions:

A- A fictitious force, —kB TVp in g'', called diffusion force which is non-zero if the local concentration of the concerned

ion is not uniform at P. This term corresponds to the driving force in the problem of diffusion.

B- A contribution which is due to the direct interaction force, —VpU(iP, IS), exerted by each of the other ions of the

solution whose local mean concentration in the volume element dV8 is equal to ng since an ion i is present atP.

Let us note here that flj is a constant quantity defined by the ratio N,/V, where N1 is the total number of ions of

type 1 originally introduced in the whole volume V offered to the solution.

Thus, the evaluation of the internal force F"' necessitates the knowledge of both distribution functions g2' and g. The one-

particle distribution function is generally a known quantity which is a constant equal to unity, if the solution is homogeneous,

or which varies, in diffusion experiments, like the ratio of the locally-controlled concentration, = fl1glS to the overall

concentration n1 defined above. The case of the two-ion distribution functions is different since these quantities are unknown.

We shall see that all the physico-chemical problems of solutions always ultimately reduce to the evaluation of pair distribution

functions.
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2-3. The mean one-particle electrophoretic velocity vector vesF'

When an ion is moving with a time-averaged velocity vector which is not zero, its corresponding momentum is transmitted

entirely to the supporting medium ( since an equilibrium is reached between the driving force acting on the ions and the

hydrodynamic reaction of the medium ). As a consequence, any ionic motion causes a local hydrodynamic flow of the medium

and conversely, any ion immersed in the medium will experience a hydrodynamic force from the medium which will " push" it

with a velocity ve'' in the direction of the local flow. The evaluation of this velocity component ve is indeed a complicated

problem since it involves a number of intermediate quantities which participate at different levels in a double ion-solvent and

solvent-ion hydrodynamic coupling which, in addition, is acting in conjunction with the direct ion-ion coupling.

Fortunately this problem has received with eq.(6) a remarkably simple formulation which can be given the following interpre-

tation. Let us consider a volume element dV , centered at point S and an ion of type i located at P. All the ions contained in

dV exert on this volume element a driving force

dPs = ni(Kz +FflgdV8. (11)

The laws of hydrodynamics tell us that this force, exerted on dVq by particles of mobility w, induces in the fluid a flow whose

net action is to increase the velocity of a particle i at P of mobility w by the ainount (P, S, w, wj)dFs where is a tensor

operator given in appendix A.

As a consequence, it gives for the electrophoretic velocity increment

dve'' = >: nj(P,S,w1,wj)(K1 + F)gdVq (12)

whose integration over the whole space leads to the final formulation of the electrophoretic velocity vector ve' given by eq.(6)

of table 1.

2-4. The continuity equation for the two-particle distribution functions.

When the solute particles are in motion, depending on their velocities, their distribution functions may be affected or not. In the

absence of any local source or trap of particles, eq.(8) expresses the variation with time and space of the local concentration as a

function of the local velocity of the species considered. Eq.(8) merely expresses the mass conservation. A corresponding relation

holds between the pair-distribution functions and the two-particle mean velocity vectors as shown in eq.(9). This equation

is important since its solution, using appropriate boundary conditions, allows the evaluation of the two-particle distribution

functions which are key functions for the evaluations of piP, ve'' and thus of '1'. A careful analysis shows that the continuity

eq.(9) allows only the evaluation of that part of the pair distribution function g' which depends on the ion motion and which

has been shown (ref. 6), to be expressible according to the following general formulation in the case of linear irreversibility,

(v"—v'Q)Vx= Y12(r)cos6
kBT(W +w,) (13)

Here, r is the distance PQ; Vx is the unit vector in the direction of the driving force; e is the angle(PQ, Vx) ; kB is the
Boltzmann constant and T the Kelvin temperarure.

The solution for 15(r) of course depends on the value which is introduced in the continuity equation for the other part which is

independent of the ionic motion and which is supposed to be known. In conductance that part identifies with the equilibrium

pair distribution function commonly denoted , but in ionic diffusion and particularly in chemical diffusion the situation is

different since the distribution functions are already perturbed by the imposed gradient of concentration. As a consequence one

can write
iP — iP ViP tiP

g,Q — Y3Q r 1 g,Q

where g7,1 stands for the perturbation part due to the local concentration gradient which exists in the case of diffusion.

2-5. The hierarchies of the transport equations.

Along the different steps in the presentation of the successive problems to be attacked in the Onsager treatment, from the

definition of V1' to the evaluation of g, one observes a progression in the order of complexity concerning the restrictive

conditions in the time-averaging of the quantities concerned. This ended in a closed loop, since from considerations about vt',

which is the final goal of the theoretical problem, one now needs an evaluation of all the vectors for all possible couples

of ions. It is not difficult to develop a systematic formalism which in turn will proceed, as formerly, from v upward by

a succession of loops, containing the same sequence of equations. Indeed, each equation presented in section 2 can easily be

generalized by climbing, each time, one step in the number of conditions (the couples of subscripts in the symbolism used here).
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Each quantity leads to a whole set of similar equations which thus constitute a hierarchy. In table 1, only the first equations

of each hierarchy are presented and it would be a trivial problem to proceed further up. This is, however, unnecessary since

an approximation is commonly used which will stop this practically endless process of forward flight at the level of the second

order in each hierarchy.

3. THE KIRKWOOD AND THE DEBYE APPROXIMATIONS

It will first be assumed that the three.particle conditional distribution function can be expressed as the product
Is — Is iS

9iP,JQ X g2Q

which assumes that the probability of a three-ion configuration is pair-wise uncorrelated.

This indeed is not a very drastic restriction. It is always observed if the total potential energy of the system is pair-wise

additive. Unfortunately, this first approximation is not sufficient to make the mathematics much easier to handle and a second

approximation must be introduced. The most simple one consists in neglecting the last term in

(16)

Neglecting the cross-product term hhQ of the correlation functions does indeed simplify the mathematical problem substan-

tially, but it also limits the range of validity of the final theoretical equation to more dilute concentrations. Specializing now in

the space-range where the interaction functions are purely coulombic and substituting the above approximation in eq.(4) leads

to a straightforward derivation of the Poisson-Boltzmann equation

At,bQ = _>nkekgQR =
—----P7Q (17)

where t,bQ is the mean electrostatic potential at P when an ion of type j is present at Q and where PçQ is the mean electrical

charge density at P in the same restrictive conditions. One can but be struck by the fact that this result is in strict conformity

with the classical law of Poisson in electrostatics, which is itself a direct consequence of the Maxwell equations and such was

indeed the leading idea of Debye when he used it as a starting point. However, the Poisson law is applicable only to "real", not

to "average", configurations. At a given time, given a real configuration, it is exact, but for the average potential versus the

average ionic density, it is not. We know now what is the approximation involved in the daring proposition of Debye and that in

neglecting the cross-product term in eq.(16), one not only seriously reduces the range of application of the theory by neglecting

triplet effects of order 2 in concentration but one also loses the observation of the linear superposition of the potentials. This

last point was of course realized by Debye, but it happened that linearizing the PB equation, in a third approximation, led to

the well-known result

(18)

which was no longer affected by this deffect. This does not mean however that eq.(18) is better than eq.(17). The opposite is
true.

4. THE FUOSS-ONSAGER CONTINUITY EQUATION

It is possible to substitute succesively all eqs.(2-7) in eq.(9), to obtain ultimately an integral-differential equation which contains

only distribution functions of second to fourth order as unknown quantities. The result identifies, then, with the continuity

equation derived by Ebeling (ref. 7), after some approximations, from the Liouville equation which expresses the dynamic

evolution of a given distribution of interacting ion and solvent particles, in presence or not of an externally-applied perturbing

force.

If one now introduces in the Ebeing equation, the Kirkwood approximations described in the previous section, one obtains a

continuity equation which is a function of pair-distributions only,

(19)

where g1 (r) stands for g' which was defined in eq.(13), and where S1 and Ti terms are to be found elsewhere (ref. 8).

The S1 terms contribute to the limiting law and the T, terms to higher order terms only. It is then easy to identify each of

the S and T1 terms with those of the Fuoss-Onsager continuity equation, except for some which are simply absent due to

further approximations or omissions in the phenomenological approach used. It is also straightforward to compare the various

treatments of Pitts, Fuoss, Falkenhagen, Murphy and Cohen, Carman, Lee and Wheaton, Quint and Viallard, and Chen. This

comparison is to be found in table 2 of (ref. 8).
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5. THE EQUILIBRIUM DISTRIBUTION FUNCTIONS

These quantities are of paramount importance and they must be introduced as analytically known functions in the various

equations of the Onsager treatment. Use is often made of the classical Debye-Huckel (DH) truncated expansion functions, but

in that case one knows that even the linear contributions in concentration in all excess quantities cannot be exact. Another use

is the so-called DR-exponential (DHX) equation

( ;z 2q —= exp I ———e
\ z1z2 r 1+ica

or simply the Meeron equation
( zz,2q_= exp ( ———e
\ r

with q = z2e2/ekB T, commonly called the Bjerrum distance. It has been shown (ref. 9,10), that with these two equations the

linear contributions for the excess thermodynamic quantities at equilibrium can be derived exactly and one may legitimately

presume that such is also the case for the transport excess functions.

One can still make one step further in the improvement regarding the analytical expression for h,,. It can be shown (ref. 11),

from considerations dealing with the Mayer activity expansion that, given an exact formulation for the mean activity coefficient

of a RPM electrolyte 1± (a,c) an equivalent formulation is

f(a,c) = f(R,cy) (20)

1—Si c 2
2cf(R,cy)

= 2K_ + + K__ + a
with

K,, = 4ir r2 exp (— dr
Jo \ Iz,zal r J

This implies that at low concentrations the Bjerrum formulation is asymptotically exact, just as the DR limiting law is for

instance, but with a much stronger efficiency in a wider range of application. Recalling now the results obtained formerly, (ref.

10), this also implies that in the short range region, r < R, the following expression

= f(R,c)exp (21)

is better than any of the above formulations since it can lead to an exact evaluation of the linear terms of the activity expansion,

a performance that none of these can achieve. Similarly in the long-range region, the following (DHGX) equation

/I zz, 2q —scy112r e

g,3='yexp—1—---e 1+,c''/2R +1y

would constitute a definite improvement or even its truncated version (DHG). The latter would lead to a DR expression for

f±(R, c'y) in eq.(20), in conformity with Bjerrum's original proposal (ref 5). These analytical expressions are some simplified

variant versions of those derived by Friedman (ref. 12),who matched the short- and long-range functions by imposing continuity

up to first space-derivative, and by Grigo and Ebeling (ref. 13), who proved the necessity to achieve normalization when the

distance r tends to oo.

6. THE TRANSPORT EQUATIONS

6-1. Conductance
6-1-1. Symmetrical Electrolytes

It has been shown elsewhere (ref. 6), that the use of the echo-equation(13) leads to the following formulation

1XL £iXh Ae
A = 'yAo(l+ —y- +

1—y— = -A÷.c
'1

with (ref. 14)

= —4ir r2÷(r)dr (22)

Quite obviously the use of eq.(21) for . (r) leads exactly to the Bjerrum definition of the fraction 'y of free ions.
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6-1-2. Mixtures of electrolytes of any kinds

The generalisation of the above result to the case of ionic mixtures has been carried out (ref. 15). The result reads

103k = (i+ + + 4)+c(1—

= (23)

2 ____________=(z+z)
where x is the specific conductance.

Again the interpretation of this result in term of ionic association is clear. Let us emphasize that )jc identifies exactly with

the ionic conductance of an entity composed of two ions i and k which would be tightly linked together. With this result, one

obtains for the first time the mere kinetic definition of two associated ions without using that concept as a model at all in the

theoretical derivation.

6-2. Tracer diffusion

Using the RPM, Turq (ref. 16), has derived an equation for tracer diffusion with the same method and the same approximations

as Fuoss and Onsager for conductance. The result can be summarized as

= (i + c)) (24)

The utilization of the echo-equation(13) leads to the following generalization

D1 = iD (1 +
ID(Rcl)

) + (1- 'D+ (25)

where the ions of type 3 are the ions of the non-labelled electrolyte which carry a charge opposite to that of the tracer ion 1.

The demonstration of eq.(25) is given with some details as an example in the appendix B. This result legitimizes the identical

expression which Turq et al. found useful to introduce empirically, in order to explain quantitatively their experimental results

in solvents of lower dielectric constant (ref. 17,18).

6-3. Chemical diffusion

For a binary symmetrical electrolyte, the condition of electroneutrality requires that both ions of the electrolyte diffuse with

the same velocity
vip = =

The origin of this equality in the set of equations of table 1, is to be sought as the contribution of the non-zero gV and

gVP functions to the force pP eq.(3). It is generally implicitly assumed that this first contribution has no concentration

dependence. A consequence of the equality of the one-particle velocities is that the perturbation functions g, given by eq.(13),

are null and do not cause any relaxation effect. On the other hand, each ion induces, through its motion, a flow in the supporting

medium which leads to an electrophoretic velocity. It is assumed in the evaluation of this effect that the g, functions contribute

in a negligible way so that one needs only to take in consideration there, the equilibrium values b,,.

Once these assumptions are made, the evaluation of the chemical diffusion coefficient can be carried out according to the briefly

summarized following procedure.

The driving force acting on an ion i is

k = ! (1 — (26)

since it induces only that part of the total velocity which is not electrophoretic.

The electrophoretic velocity v1 ve'1 must be evaluated from eq.(6) with the following specialization:

The external force K1 is null.

The internal forces F, reduce to the driving forces pS k,, since there are no relaxation contributions.
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The equivalence symbols give the correspondence with the notation used by Pikal (ref. 19).

Substituting eq.(26) in eq.(6) shows that each electrophoretic velocity turns out to follow the formulation

Av1— = c,1(1 — —) + a,,(l — —) (27)
V V V

With these relations, one reaches a similar situation to that obtained with the echo effect on the relaxation contribution in

conductance and tracer diffusion: Each electrophoretic contribution /v1 is a linear function of iiv1 and 1v,. This was already

mentioned by Onsager and Fuoss in their original publication (cf. ref. 4, page 2765) but not used since their derivation concerned

the limiting law only. On the other hand, Pikal rightly used this property and substituted the Onsager-Fuoss limiting laws for

Ivj/v in the RHS of eq.(27).

The total driving force acting on the electrolyte is k = z'1k1 + u2k2. The thermodynamic diffusion coefficient is now defined by

M_V_ M0 28k1—M/M0
where

M0 = ii1/w1 + P21W2

and

IM=
Wi V W2 V

The chemical diffusion coefficient D which is the measured quantity proceeds from M by

D= RTi'M(1+m�2\ drn

where m is the molality and the mean activity coefficient in the molal scale of the electrolyte of stechiometric coefficient

= i.'1 + u2. This conversion takes into account the difference in the definitions of M, (diffusion along the chemical potential

gradient), and of D, (diffusion along the concentration gradient).

Formulation(28) is equivalent to eq.(B4) obtained by application of the echo effect to self-diffusion. It is then possible to extract

from Pikal's result for M the function LMA which contains the short-range anion-cation contribution

iM= MA+M' = +M+M'
and to proceed to the same analytical transformation which led from eq.(B4) to eq.(B7). The result reads

M =
1Mo/ [i — (i + + (1 — )(1 + B)M0 x A' (29)

with

A'M/Mo[1-(+)]
B = 2NAFuiJzi/31r?7qAoC 10_li

1M K' 2 30Af

and

= exp [—2icq/(1 + ica)J

The result for K practically identifies with the Bjerrum constant K since

K =ICo [Q()_Q()]

— ,,2q1 ,,2q
A o

where

Q()=E()—!-. (++)
whereas the function found by Pilial reads

Q'(z) =E(z) — — (1+!)



Theories of transport properties using Onsager treatment 1099

The improvement of Pikal's result in eq.(30) over that of Turq for fin eq.(B9) for the same quantity is due to the fact that

Pikal made use of the DHX approximation whereas Turq used only the usual DH one for the equilibrium distribution functions

ij (cf section 5). Again, if these authors had used eq.(21), the exact formulation of the Bjerrum mass-action law given by

eq.(B10) would have been obtained.This remark emphasizes the advantage of this new formulation. It should certainly improve

the efficiency of the Pikal theoretical equation as was observed already for conductance and tracer diffusion. Finally it also

shows that the counter part of using this reformulation is to substitute the cut-off length value R to the characteristic distance a

in the leading function LMA (a), a fact which was refuted by Pikal in his conclusions since , indeed, this is not explicitly obvious

in the original formulation(28), just as it is not apparent in eq.(B4) for tracer diffusion as well as in the full echo-formulation of

conductance.

A simplified version of eq.(29), obtained from considerations based on a chemical model of association, has already been used

with success by Tanaka et al, to process numerically chemical diffusion coefficient data for 2-2 electrolytes in water (ref. 20).

7. CONCLUSIONS

In the brief survey given here of the excess transport properties of electrolyte solutions, we have shown how a formulation in

agreement with the model of ionic association can be reached, without making any empirical use of that model, but rather

by taking into account some subtle aspects of the fundamental equations as they result from basic statistical mechanical

considerations. It was also shown that to obtain an optimal efficiency of this formulation, it was necessary to make use of a

formulation for equilibrium pair distribution which explicitly takes into consideration some important results obtained from the

Mayer activity expansion. This implies a space partition at a cut-off distance R. In the outer region (r> R), the usual Debye

truncated expansion of the new (cy) function may be used, which implies that the concentration c be replaced by c7 and the

RPM distance a by R. In the inner region (r < R), it is much more efficient to take explicitly into account the echo formulation

and to make use of the new expression(21) for the equilibrium distribution function.

Numerical analysis shows that in the range 0.5q> R> 2q no deviation is observed for the calculated quantity within a precision

of 0.01%. In addition to the net improvement observed when these results are applied to solutions of ions of higher charges

and/or of solvents of lower dielectric constant, one sees that these results are not restricted solely to the RPM model,at least

for the important contributions involving ions of opposite charges. Indeed all U,, functions with z,z1 <0 appear explicitly in

terms which identify with classical association constants.

One finally sees that a unified level of approximation is now reached in the analytical expressions for equilibrium and trans-

port excess properties in the case of linear response irreversibility. The interesting result which predominates is that, in the

concentration range in which these analytical solutions remain valid,

icqy112 <0.5

which is imposed by the somewhat restrictive long-range approximations still in use, all the specificity of the ionic interactions

remain free to be fixed explicitly since they appear in the Boltamaun integrals of the various U,, functions which define the

model.
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APPENDIX A

The hydrodynamic tensor is the sum of two tensors

X(P,S,w1,wi) = )(P,S) + A'(P,S,w,w1)
with a long-range contribution

(P, S) = (1/8irtr)[7 +/r2)
commonly called the Oseen tensor and a short-range contribution (ref. 21), which so far has always been neglected

\'(P,S,w,wi) = (1/8irvir3)(wT2 +wj2)(S/3 — rr/r2)
where is the unit tensor and the dyadic operator which, by definition, performs the following vectorial operation on a

vector V

=r(r.V)
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APPENDIX B

Let us consider the case of a ternary electrolyte where the labeled ions 1, which are at infinitesimal concentration, are of the

same chemical type as ions 2 and where z2 = —z3. In order to satisfy the electroneutrality condition, the balance of ionic flows

of ions 1 and 2 is such that the velocity of ions 2 is negligible compared to that of ions 1. The assumption that ions 1 and 2

cannot be distinguished, except for their nuclear instability, leads to the conclusion that the counterions 3 effectively behave as

in the equilibrium state, so that their velocity is null.

As a consequence, according to eq.(3), the perturbations in the distribution functions of ions 2 and 3 around the tracer ion 1

reduce to
v1Pvx

g1k(r) = —Ylk(r)cos8 (B1)
ICBT(Wl + Wk)

Substituting
= D/kT

and

= —D1VLn" = —D'Vlncj

in eq.(B 1), it comes

glk = —Ylk(r) cosODiD0Dk (1 + D1/Dj)- ln c1 (B2)

Another consequence is that the tracer ion will experience practically no electrophoretic velocity. This is confirmed by an

inspection of eq.(6) specialized to the case i = 1 and 1 = 2,3. Indeed, in diffusion the external forces K1 are null and in tracer

diffusion both contributions of Th and F to ve are completely negligible compared to that of piP to yiP eq.(1), as

indicated by eq.(4) for these two quantities.

The problem of tracer diffusion thus reduces to the evaluation of the relaxation force F'1'by eq.(6) in which 1 = 2,3. The result

can be expressed by

F" = k, + p1P (B3)

where k, is the driving force

k,Vx=k, = kT!.lnci.
The substitution of eq.(B3) in eq.(1) leads to v'— = w,(1 + —)
After appropriate unit conversion, that is after deviding by kB T, one reaches

D, =DM1+1).

In the usual approximation, these calculations are performed in neglecting the excess term D,/Dj in eq.(B2). The result will

then be denoted

D1, = D(1 + Al)11)

and it is easy to show that the exact formulation which is self-consistent with eq.(B2) is very simply given by

=
— D11/D (B4)

All the integrals involved in eq.(3) can be devided into short-range and long-range contributions. Let us define

= _2Lf VpU(1P,1Q)g','dVQ (B5)
o 1 QEO

and

P11L_2Lf VpU(1P,1Q)gdVQ (B5)
o 1 QE)fl

where Il is a sphere of arbitrary radius R centered on point P. Their sum represents the part of D1 which is due to the

interactions of ions I 1 on the tracer ions.



Theories of transport properties using Onsager treatment 1101

One observes that the classical derivation is in fact the linearization (after expansion) of the echo formulation. This conclusion

is the same as that reached for conductance. One might thus use directly the echo-formula(B4), but this is however not

necessary, nor even recommanded, since in fact both D112 and D113 are not known with enough precision. Much of the

numerical "improvement" which the echo-formulation should bring is lost by the fact that the long-range parts Dt12 and Df13

are not known with enough precision. However, this is not the case of the short-range contribution D13, of which the linear

contribution with concentration may be evaluated with precision so that the improvement may become very important.

As a consequence of this remark, one should restrict the application of the echo-formulation only to D3 as defined above in

eq.(B5). One may rewrite the sell-diffusion equation as

Di=D/(1_f13_f12_LL) (B6)

where
— £Dt12 Df3D - D +

Due to the opposite charges of ions 1 and 3, the perturbation g'13 can become numerically important at short distances for

ions of higher charge numbers or solvents of lower dielectric constant. An analysis of eqs.(B2,B5) shows that the short range-

contributions can be expressed by
AflSIlk_tS 0

— clkDi +D
with

Elk =
ICBT fREn

VpU(1P, kR)Ylk(r) cos 9dV

Eq.(B4) can now be rewritten as

00' D Dt,—

D01
—

E13DI + D
—

E12D1 + D
—

or

D — D' ç ______ q D IDf
1— 0/ l1 E13 +

Em3D1 +D + D
—

D'

Factorizing now the quantity

=1 c13

it becomes ,/ (IDf, D \ ____D, ='D0/ l_ _5i_+EI2D1+D2) 1D+Dg
and finally

(B7)

with

A =
D1/D [i - + (B8)

and

(B9)

Some remarks are appropriate at this point. So far, the system of equations(B7-B9) is identical to the simple echo-formulation

(B4), and the transformation may seem a useless complication. However, if one improves the evaluation of ef3 which concerns

the analytical treatment of the short-range anion-cation interactions (between ions of type 1 and 3), it becomes substantially

more efficient than any former derivation. Indeed, when the coulombic attraction becomes large between the ions of opposite

charges 1 and 3, one observes that 'y is a number which varies from 0 to 1, since E3 can vary from 0 to —oo. The second term

in the RHS of eq.(B7) can easily be interpreted as the contribution to the diffusion of the fraction 1 — y of the ions of type

1 which are coupled with ions of type 3 to form pairs of ions which would diffuse as a single kinetic entity. The first term in

eq.(B7) corresponds to the fraction 'y of the ion of type 1 which are free (as a kinetic entity). Since, in opposition, the term

er2D0 is always numerically very small as it corresponds to short-range configurations of ions of same algebraic sign, the
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diffusion coefficient of the free ions is, through the termL , practically a function of R only, the arbitrary cut-off distance

which is chosen in the space partition used in eq.(B5). This is in conformity with the initial proposition of Bjerrum of 1923,

who empirically used a priori the chemical model of ionic association to correct the Debye-Huckel activity coefficient law.

Coming back to eq.(B9) it is easy to show that the quantity formally identifies with the homologous conductance term

A_ of eq.(22) so that if use is made of the approximation proposed for given by eq.(21), y is then given by the complete

mass-action law

2cf(;,c) =2K_ (B1O)

One should be cautious though in making use of eq.(B7) and retain in it only those contributions which can be considered as

exact.

This is the case of the coefficients y and (1 — 'y) which are factors in both of the terms in the RHS of eq.(B7). Indeed, their chief

contribution, which is linear in concentration, is proved to be analytically known exactly. This is not the case of the contribution

of y-term in the denominator of the first term, nor of A in the second term of the RHS of eq.(B7). There are strong indications

that the long-range functions which they contain are not sufficiently evaluated to be adequately corrected that way, that is to

match the potential improvement which is offered. Waiting for more progress in that field it is better to fix = 1 and A = 1 in

those terms, that is, to use them in the usual linear expansion approximation.

As a result, the best that can be proposed for application of the echo-effect at this moment is

1 ( LDf1 D
1 DD

Dl=1DO1+—.i_+e12D1+D2)(_r)D1+D3
which already constitutes a significant improvement when ' is calculated with eq.(B10).

If now one recalls that the Ej2 contribution is always numerically very small and can be dropped, one obtains a full legitimation

of the equation(25) which also results more directly from a strict application of the Bjerrum concept of association.
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