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Abstract — Concepts which may be used in interpreting the complex rheology

of liquid crystalline polymers are reviewed. Some of them are taken from

the nematodynamics of low molecular weight liquid crystals as described by

the Leslie—Ericksen theory, others are intrinsic to the viscoelasticity of

ordinary polymers. Tentatively, these concepts are used to construct an

explanation of the band texture which is frequently observed when liquid

crystalline polymers are sheared, and to interpret the complex behavior of

normal stresses which exhibit both positive and negative values.

INTRODUCTION

The rheology of liquid crystalline polymers appears to be exceptionally complex. The

phenomena observed during and/or after flow are extremely diversified and generally

different from what is found in either ordinary polymeric liquids or low molecular weight

(LMW) liquid crystals. Some understanding of these phenomena seems necessary, however,

especially for what concerns molecular orientations. In fact, polymeric articles are

manufactured via flow processes and the materials properties in the solid state are strongly

influenced by flow induced molecular orientations.

Limiting our attention to nematics only (possibly, to cholesterics), we may expect that in
general a flow has the following effects:
1 — The distribution of molecular orientations about the nematic axis (director) is altered.
2 — The director itself is affected by the flow.

The first effect is due to the polymeric nature and the consequent (relatively) large values

of relaxation times. In LMW liquid crystals, the flow is never strong enough to compete with

thermal motions and the equilibrium orientational distribution is preserved. In polymers,

conversely, whether liquid crystalline or not, relaxation rates may be smaller than shear
rates and the orientational distribution is therefore altered. In ordinary polymeric liquids,

this effect (in the sense of deviation from isotropy, of course) is the only one which is

present and yet the rheology is already complex. In particular, elastic phenomena are

generated such as normal stresses in a simple shear flow. These, however, are always

positive in ordinary polymers.

The second effect is the only one that is present in LMW liquid crystals and, by itself,

also gives rise to a complex rheology. The interplay between director and velocity gradient

generates a viscous stress which is characterized (at the phenonenological level) by five

independent viscosities, known as Leslie coefficients. Furthermore, the director is

generally non—uniform in space. The spacial distortion of the director generates elastic

stresses, named after Frank or Ericksen, which of course bear no relationship with polymer

elasticity.

Whenever the director varies considerably throughout the sample, with the possible occurrence

of discontinuities (defects or disclinations), we speak of a polydomain structure, a domain

being a region where the director is approximately uniform. Polydomains appear to be the

rule rather than the exception in polymeric liquid crystals, much more so than in the LMW

case. Flow processes are found to alter the structure of polydomains in more than one

possible way. There is evidence that the flow may increase the defects or discontinuities

(ref. 1) as well as decrease them to form a monodomain (ref. 2). There is also an

accumulating evidence about the formation, during or soon after a shear flow, of a peculiar

texture made up of bands perpendicular to the shear direction (ref s 3—5). The band texture
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appears to be linked to the occurrence of another anomalous rheological phenomenon, i.e., of

negative normal stresses (ref. 6 & 7).

In what follows, some concepts and results, which are considered relevant toward an under-

standing of these complex phenomena, are reviewed. The attention is focused in particular on

the above mentioned band texture and negative normal stresses. To use the words of Kiss and

Porter (ref. 7), "we are very far from unraveling the puzzle", not to mention the possibility

of formulating a comprehensive quantitative theory. Thus, concepts will be drawn mainly from

what is known for LMW liquid crystals, from theoretical results for rodlike polymers, and

from a few experimental results on linear properties recently obtained by Meyer et al.(ref.8).

LESLIE COEFFICIENTS IN POLYMERIC NEMATICS

Two of the Leslie coefficients are of special importance in simple shear flow, because they

determine whether the director has the tendency to align at a fixed direction or else wants

to rotate indefinitely in the shear field. These coefficients are a2 and a3 , and their sign
determines which alternative will apply. Since a2 is always negative (with the possible

exception of disc—like molecules (ref. 9)), what counts is the sign of a3 . In most LMW
nematics a3 is also negative. In such a case, the director wants to align at an angle

with the shear direction (Fig. 1) given by

cos(20) = — + a3) (1)

Usually a3! is much smaller than 1a2J. Thus, the direction determined by is very close
to the shear direction.

Fig. 1. The orientation of the

director in a shear flow (a3<O)

Words such as "wants" or "has the tendency" are used because the effect of flow may be

effectively counteracted by the Frank elasticity which arises from distortions of the

director field. Strong anchoring conditions of the director at the walls and/or defects

oppose the aligning tendency due to shear. A compromise is therefore reached which, however,

is more displaced toward alignment as the shear rate increases.

A completely different situation is present in nematics which have a positive a3. This case,

though less frequently, is also encountered in LMW nematics. A fixed direction toward which

the director wants to move no longer exists: aside from effects due to Frank elasticity (see

next section), the director keeps tumbling indefinitely. By ignoring elasticity, the tumbling
frequency may be linked to the shear rate in a simple way. Calling the rotation angle as

depicted in Fig. 2, the condition of zero torque gives the equation

d/dt = y (Ia2 cos + a3sin2)/(Ja2j +
a3) (2)

Fig. 2. Definition of in the tumbling

case (a3>O). OP is the projection

of the director in the x,y plane.
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where y is the shear rate. By taking = 0 at t = 0, Eq. 2 is integrated as

1 /2 __________________________________3112I) tan = tan {
1/2

(1a2I/c3)
+

(a3/1c21)

The tumbling period T is given by

Y T = ¶ { (1a213)12 + (a3/1a21)112}
a

(1n21/a3)112
(4)

where the latter equality holds in the case <<

It should be noted that indefinite tumbling of the director does not imply that the shear

flow has no orientational effect. If the inequality c3 << l21 holds true, Eq. 3 shows that
the time spent by the director at values of close to v/2 constitutes the largest part

of the rotation period. Thus, the shear orients the nematic axis along some direction of the

shear plane (the x,z plane in Fig. 2), though periodically the director "jumps of f" that

plane and rapidly performs a 1800 rotation to "settle down" again in the plane of shear.

Notice that the shear plane rather than the shear direction has been mentioned above because,

in fact, the other polar angle of the director remains undetermined. Figure 3 shows possible

trajectories of the director over the unit sphere in a representation used by Carlsson

(ref. 10). The trajectories are closed curves over the sphere, parametric in the magnitude
of the angle (called 0) that the director makes with the shear direction when crossing the

plane of shear. The flow per se has no influence on 00 , which is therefore maintained

indefinitely.

e o
shear direction

Fig. 3. Unit sphere representation of Fig. 4. Schematic of the tumbling process as

director trajectories. a3/1a2! = 0.01 observed perpendicularly to shear planes.

Figure 4 depicts schematically what would be observed by looking perpendicularly to the

plane of shear. Moving along the shear direction, the director maintains the angle 00 while

staying close to the plane of shear; it then jumps off the plane, makes half a turn and
returns to the plane of shear with the orientation — 0 . At the next jump, it goes back

to Oo , and so on indefinitely.

Which alternative applies to polymeric nematics, orientation along o (as given by Eq. 1) or

tumbling? An answer to this question may be found, at least temporarily, in the theories

developed for rodlike polymers. Following an approach suggested by Doi (ref. 11) and using
a decoupling approximation, Marrucci (ref. 12) calculated the Leslie coefficients, obtaining

in particular: a2 < 0 , a3 < 0 , 1a31<<1a21. Later, however, Semenov (ref. 13) and Kuzuu and

Doi (ref. 14) succeeded in removing the decoupling approximation and, though confirming the
previous result for most obtained instead: a3 > 0 , a3 << a2]. Thus, as regards
nematics of rodlike polymers, the answer seems to be that they are of the tumbling type.

Experiments on a racemic mixture of PBG, a semi—rigid polymer, indicate the results (in poise)
a2] = 34.8 , = 0.16 (ref. 8). Although a3 appears to be negative in this case, its

magnitude is so much smaller than a2! that it is not unreasonable to expect that even a

weak departure from linearity might induce tumbling in this system as well. On the other

hand, it is well known that ordinary polymers always rotate in a shear field. In the

following discussion, the assumption will be made that tumbling is the most likely occurrence

in liquid crystalline polymers. Whether this is indeed the case cannot be assessed at this
time.

off plane off plane
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THE INFLUENCE OF FRANK ELASTICITY

The discussion in the previous section did not include the effect of elasticity arising from

distortions. As is well known (see, e.g., ref. 15),whenever the director is non—uniform

in space, an elastic energy is present, given by

E = K1 (div )2 K2 (n . curl )2 K3 (n x curl )2 ()

where K1 , K2 , K3 are constants having the dimension of a force.

In the absence of defects, the combined effects of flow and elasticity in LMW nematics is

described by the Leslie—Ericksen theory. Solutions of the equations are found in some simple

cases. For example, in the shear flow of a negative—ct3 nematic, it is found that, at large

shear stresses G, the director is everywhere aligned along except in a boundary layer
close to the walls, the thickness of this layer being

= ( K/a )1/2 (6)

where K is some appropriate combination of the elastic constants.

The same problem in the case of a positive n3 is already much more complex. Under certain

conditions, a stationary solution may exist (no tumbling). This solution was studied in

detail by Carlsson (ref. 16), and its stability by H6gfors (ref. 17). They also discuss

previous results by Pieransky and Guyon (ref. 18) and by Cladis and Torza (ref. 19). In the

stationary solution, the director does not rotate in time because of a balance between the

torque due to shear and that due to Frank elasticity. Rather, the director varies along the

direction perpendicular to the shear planes, sometimes performing several turns. With

increasing y, the number of "windings" of the director increases discontinuously.

These solutions of the Leslie—Ericksen equations, though very important in interpreting the

results of carefully performed experiments in LMW nematics, appear to be of limited use in
the case at hand. For one thing, because the presence of defects makes the director field

extremely complex from the very start. Secondly, because the defect dynamics in a flow field

is unknown, even in principle. Finally, because the polymeric nature per se might add effects
not included in a linear theory.

As regards the second point, i.e., the effect of flow on defects, it is generally observed

that flow drags disclination lines as if they were elastic strings. Although the elasticity

of these strings can again be related, at least approximately, to Frank elasticity (ref. 15),

other features remain unknown. For example, we do not know whether the fluid goes through

the defects or around them, or both. One may guess that the local viscosity is in any event

much larger than that of the surrounding fluid because of the discontinuity in molecular

orientation, which makes the defect core similar to a region of isotropy and, therefore, of

reduced mobility. Thus, the fluid should preferably go around, rather than through, defects
as if they were solid. An exchange of material between defective regions and surrounding

fluid must nevertheless take place because defect lines are elongated by the flow (ref. 15)

thus drawing material from the surroundings. Furthermore, defects are created (ref. 1) and
possibly annihilated. For the case of semi—rigid polymers, one further envisages the

possibility that different strands of the same macromolecule may belong to different domains,

macromolecules of the border regions going across domain borders and/or defects and

discl inations.

Lacking a comprehensive theory, an 'educated guess" can perhaps he made on how this complex

system might behave under the influence of shear. The guess is based on the relative magnitude

of the parameters involved and is inspired, of course, by what has been experimentally

demonstrated so far. In the following, i will indicate a viscosity, somehow related to the

Leslie coefficients of the nematics, K is a characteristic elastic constant, collectively

representative of the three constants in Eq. 5, T is a molecular relaxation time, a is some

characteristic average dimension of the domains, whose value in the rest state is a0.

At sufficiently low shear rates, such that yT << 1, molecular relaxation processes are

virtually at equilibrium, and the parameter T may be ignored. Domains are acted upon by the
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shear and tend to tumble. In the previous section it was shown that, in the absence of other

effects, tumbling has some regularities. It occurs with a definite period and maintains the

director in the plane of shear (at some O or —Os) for most of the time. No regularity can

be achieved, however, as long as neighboring domains are out of phase and have different O

values. On the other hand, bringing domains into register from an initial random distribution

implies overcoming forces due to Frank elasticity, which are especially strong in the

vicinity of defects. This process will hardly occur as long as viscous forces are weak, i.e.,

as long as

a = fl < K/az (7)

Thus, in the regime corresponding to the above inequality, domains and defects are expected

to tumble irregularly with no special pattern emerging.

By increasing a beyond the range of inequality (7), viscous forces are strong enough for two

effects to become possible: i) reduction of the original domain size a0 to a smaller value,

a, such that the following equality is satisfied in an order—of—magnitude sense (Eq. 8 may be

thought of as the equivalent of Eq. 6 in the polydomain case)

a = (K/a)112 (8)

and, simultaneously, ii) a tendency of neighboring domains to fall into register in their

tumbling motion. The latter effect implies that, for example, two domains such as those in

Fig. 5, with both their directors resting temporarily in the plane of shear but at different

00, will tend to assume a common 00—value. The driving force for domain coalescence is Frank

elasticity which, in this case (domains side by side with respect to the shear direction,

and tumbling together), does not work against shear forces.

shear direction

Fig. 5. Coalescence of domains Fig. 6. Director field in tumbling bands

having different 00—values observed perpendicularly to shear planes

It is tentatively suggested that the formation of a band texture is a consequence of this

mechanism, i.e., of an ordering of neighboring domains along the direction perpendicular to

both the shear and the gradient directions. Coherent tumbling of these structures would give

rise to a molecular orientation pattern such as that depicted in Fig. 6, where orientations

at 0 and —00 in the shearing planes alternate regularly along the shear direction, separated
from one another by a short tumbling region.

The experimental observation whereby the bands are sometimes observed during flow whereas in

other cases they are present only after shearing is not in contrast with the above suggestion.
In the latter case, one may assume that the process of falling into register of the tumbling

units could not be completely achieved during flow. The orientational distribution of the

director field created by the shear is however such (i.e., close enough) that, in the rest

state, Frank elasticity alone temporarily creates the regular structure before the latter

slowly vanishes again into randomness.

NEGATIVE NORMAL STRESSES

The suggestion by Kiss and Porter (ref. 3) that the band structure and negative normal stress

differences are related phenomena may be reinforced by considering explicitly the stresses
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arising from Frank elasticity. Cartesian components of the Ericksen stress tensor are given

by (ref. 15)

a.. = -Tr. .n (9)
1] ik jk

where nk are derivatives of the director components (i.e., components of the director

gradient) and tensor rk is defined as

vk •n )
(10)

ik
E being the distortion energy given in Eq. 5.

In order to simplify the mathematics, use is made of the theoretical result for rodlike

polymers (ref. 20) whereby the bend elastic constant K3 is predicted to be much larger than

both K1 and K2. Equation 5 can then be written in the simpler form

E K3 (n x curl n)2 = K n.n. .n .n (11)- - ij ik jk
When the band structure is developed, derivatives along the band direction are zero. If, as

in Fig. 2, x, y, z, are coordinates along the shear, the gradient and the band directions,

respectively, one finds

2 2 2 2
(a - a )/K = - n {(3 n ) + (3 n ) + (3 n) } (12)
xx zz 3 x xx xy xz

(a - a )/K = - n2{(3 n )2(3 n )2÷(3 n )2} + {(3 n )2(3 n )2(3 n )2}n2 (13)
xx yy 3 x xx xy xz yx yy yz y

The normal stress difference in Eq. 12 is thus shown to be always negative in a band struct-

ure. Lacking sufficient information on the director field, the sign of the difference in

Eq. 13 is uncertain; yet a negative result is not only possible but perhaps even likely. In
the band structure, n is larger than ny most of the time, and where this does not occur (in

the tumbling zone) it is not implausible that derivatives along x are larger than those

along y. It is further noted that the sign result of Eq. 12 (perhaps also that of Eq.13) does

not depend crucially on having neglected K1 and K2. In the opposite extreme assumption, i.e.,
in the case where all three constants are taken to be equal, a similar result is obtained.

This indicates that a negative normal stress difference due to Frank elasticity is intrinsic

to the band structure (at least as regards — azz).

Of course, the Ericksen stress considered in this section is not the total stress.

Contributions other than that arising from distortions may be significant. These are

discussed in the next section.

EFFECT OF MOLECULAR RELAXATIONS

If T is of order unity or larger, molecular relaxation phenomena are to be taken into

account. In a shear flow of ordinary polymers, relaxation effects reveal themselves through

positive normal stress differences due to stretching of molecules in the shear direction

(both —
ayy and axx — azz are positive), and by the companion phenomenon of a non—Newton

ian viscosity, decreasing with increasing shear rate.

One may perhaps expect that a similar stretching of semi—rigid polymers occurs in the

tumbling domain situation considered here. Especially at the border between domains, where

orientation of the director changes abruptly and the mobility is presumably reduced, molecules

belonging to both domains do not have the time to diffuse freely from one domain to the next

and get stretched accordingly. A situation similar to that of "tie molecules" in semi—crystal

line polymers is envisaged, where neighboring crystalline regions are mechanically linked by

polymer molecules belonging to both.

Considering in particular the band structure depicted in Fig. 6, one expects that in the

border regions between orientations E3 and —9 "tie molecules" exist which link consecutive

domains. It is possible that the value of O in any given case results from a balance between

Frank elasticity and polymer elasticity. Since the former arises from distortions of the

director field, its effect is in the direction of minimizing the distortion energy. In the
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tumbling case, there exists a single orientation of the director which minimizes distortion

energy, i.e., the direction orthogonal to both the shear and the gradient. Thus, as a

consequence of Frank elasticity, O would tend to become Tr/2. On the contrary, polymer

elasticity wants to align the molecules in the shear direction, i.e., toward O = 0.

Different values of O seem to have been observed experimentally (usually after the sample

has solidified). Kiss and Porter (ref. 3) report a value of 45°. A similar value, ca. 400, is

reported by Zachariades et al. (ref. 5). However Qian (ref. 21) has evidence of a much

smaller value, of the order of a few degrees. Finally, the optical results obtained during

flow by Asada et al. (ref. 2) indicate O = 0 (less than 100 in any event) though the

existence of bands was not investigated in their work.

Competition between Frank and polymer elasticities might also explain the transition from

negative to positive normal stresses which takes place by increasing the shear rate. The

order of magnitude of normal stresses due to Frank elasticity is obtained from Eqs. 12—13

and Eq. 8 as

10
- 0 1 K/a2 = (14)xx yy Frank

i.e., these normal stresses should grow like the imposed shear stress a. Conversely, for

ordinary polymers at least, it is known that normal stresses due to polymer elasticity grow

like

10 J I T{G (15)xx yy polymer

i.e., they are smaller or larger than the shear stress depending on Ty. Thus, a value of T

of order unity should mark the crossover from negative to positive overall normal stresses.

Of course, the opposite transition (from positive to negative values) which occurs at small y

(ref. 6 & 7), cannot be explained in terms of the same competition. As a consequence, the

positive normal stresses observed at very low y should not be interpreted in terms of

ordinary polymer elasticity but rather as a manifestation of the liquid crystalline state.

The positive to negative transition would occur because disordered domains organize them-

selves in the band structure, thus generating Ericksen stresses of the form reported in

Eq. 12 & 13.

ESTIMATESAND COMPARISONS

As mentioned previously, not much is available in support of the various conjectures

presented so far. The purpose of this section is to show that, at least, no striking

contradiction with experiments is found either.

For what concerns domain size in sufficiently strong shear flows, we have the prediction of

Eq. 8 which can be regarded as an obvious consequence of dimensional analysis. Actually, if

also polymer relaxation effects are important, Eq. 8 should be generalized as

a = (K/a)1/2 f(Ty) (16)

but we have no inkling on the shape of the function f. Notice, however, that effects due to

molecular relaxation might already be accounted for to some extent in the non—Newtonian

character of in this region. The order of magnitude of K to be used in Eq. 8 seems to be

io6 or 10 dynes (ref. 8 & 20). In those cases where bands are observed, a is typically of

order iO dynes/cm2. Then, Eq. 8 correctly predicts a domain size in the micron or sub—micron

range. Notice further that a is predicted to decrease with increasing shear rate as is

indeed observed (ref. 5). The — 1/2 power law in a implies a weaker power with respect to y

because the material is usually shear thinning in this region. As mentioned above, the

possible influence of f(Ty) (beyond shear thinning) is unknown.

As far as the complex behavior of normal stresses is concerned, the experiments of Kiss and

Porter (ref. 6 & 7) on PBG and PBZCL solutions show the following features. Normal stresses

at very low shear rates undergo a qualitative change when, by increasing polymer concentration
the liquid crystalline state sets in. Whereas below the transition normal stresses grow with

a power of y close to 2 (as expected in polymers which are isotropic at rest), the exponent

becomes close to 1 after the transition. This behavior is in agreement with the expectation

that, in nematics, normal stresses are first order effects (ref. 11). Notice further that
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this behavior is preserved, in the very low shear rate range, also for concentrations which

give rise to the negative normal stress phenomenon at intermediate y—values. Thus, the first

region of positive normal stresses seems to be linked to the liquid crystalline character of

the system, rather than to polymer elasticity, as discussed in the previous section.

In the negative normal stress range of PBG solutions, the magnitude of these normal stresses

is very close to that of the shear stresses attained in the same range. For PBCZL solutions,

the negative normal stresses are somewhat smaller than shear stresses. These results compare

favorably with the idea that the quantity which is measured in this range is a difference of

the quantities given by Eq. 14 and Eq. 15 when, in the latter equation, T is already close

to unity.

Finally, beyond the negative to positive transition, normal stresses should become larger
than shear stresses, according to Eq. 15. Whenever the data extend somewhat beyond the

transition, this is indeed what is found (e.g., 14 wE PBG solution, 14.1 wE PBLG solution,

27.6 wE PBCZL solution, etc.).

CONCLUSIONS
On the assumption that polymeric nematics are of the tumbling type, the possibility has been

discussed that the band texture is a manifestation of ordered tumbling. Once they have gone

into register, domains tumble continuously between 0o and —00, where 0 is the angle between

director and shear direction in the shear plane. It has been shown that Ericksen normal

stress differences associated with this structure are likely to be negative. The transition

from negative to positive normal stresses which is observed at large shear rates would mark

a dominance of polymer elasticity over Frank elasticity. The competition between the two

kinds of elasticity might determine the value of 0 in any given system.

Although the proposed interpretation is highly speculative and obviously incomplete, it has
the merit of being based on concepts which are expected to play a general role in these

systems, quite independently of the particular chemistry. Even if special effects may well
exist in some systems which are absent in others, it is not unreasonable to expect that most

of the rheological complexity exhibited by liquid crystalline polymers could be explained
in general terms by developing a theory which encompasses both LMW nematodynamics and

polymer viscoelasticity.
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