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Abstract — The synthesis, structure and some properties of
therrn6tropic liquid crystalline polymers with side xnesogenic
groups are discussed. Approaches towards the synthesis of such
systems are presented, as well as the data revealing the
relationship between the molecular structure of the liquid-.
crystalline polymers and the type of mesophase formed. The
structure of smectic, nematic and cholesteric mesophases as
well as models of chain packing in them are analyzed. The
possibility to affect the strtcture of a liquid—crystalline
polymer by an electric field is demonstrated.

INTRODUCTION

A new scientific trend related to the synthesis and study 0±' thermotropic
liquid—crystalline (LC) polymers was formed and extensively developed in
the field of chemistry and physics of high molecular weight compounds in
the past decade (refs. 1—5).

The general approach towards the synthesis of such systems is incorporation
of mesogenic fragments into macromolecules with formation either of linear
systems (A), or branching (comb—like) (B), when me sogenic
groups are found in the side chains:

where x' and x" are the lengths of flexible and rigid fragments, res-
pectively, x0 is the distance between points of branching, • is the
attachment bridge.

An important role in the both cases belongs to the length of flexible frag-
ments (spacers) linking either mesogenic groups with each other (A) or
separating mesognic groups from the main chain (B). This above—mentioned
pathway was the first time used in refs. (6-8) for the synthesis of LC comb—
like polymers (refe. 6—7) and linear systems (ref. 8), it is currently
universally adopted (ref. 5)*•

Liquid—crystalline side chain polymers are obtained either by synthesis of
monomers containing LC (mesogenic) groups with their subsequent homopoly—
merization (Pig.la) or by copolymerization with non—mesogenic (Pig.lb) or
mesogenic compounds (Fig.lc), or by attachment of molecules of low molecular
weight liquid crystals to the polymer chain via polymer—analogous reactions
(Pig.ld). These methods open in fact unlimited possibilities for combi-
nations of different me sogenic fragments within macromolecules (ref. 11).

Among synthesized LC comb-like polymers, those of acrylic and methacrylic
series, containing various types of widespread mesogenic fragments of low—
molecular weight liquid crystals (Schiff's base, cyanobiphenyl groups,

*There are some other pathways of obtaining linear LC polymers when
"foreign" units distorting the initial regular structure of the polymer
chain are incorporated (refs. 9,10).
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Fig. 1. Synthesis o± LO polymers with niesogenic side groups
1—rnesogenic groups; 2-maiu chain; A and B functiona1 groups.

esters of alkoxybenzoic acids, cholesterol esters etc.) occupy the central
position. A great number of copolyrners of mesogenic monomers with alkyl-.
acrylates and methacrylates were synthesized (ref. 12). Organoelemental LC
compounds (linear and crosslinked polysiloxanes) (ref. 13), LC polymers with
discotic molecules (ref. 14) as well as LO polymers containing a number of
mesogenic groups in each monomer unit (ref. 15) were obtained.

Recently already several hundreds of LC comb—like polymers have been
obtained and the possibilities given by synthesis are quite evidently far
from being exhausted.

Therefore the number of "synthetic" papers increases, while that on studies
of the structure and regularities of physico—chemical behavior of LC poly-.
mers is still very small, in particular, in comparison with the papers on
studies of physical properties of low molecular weight liquid crystals.

This situation is, probably, explained by two reasons. The first is that the
synthesis of thermotropic LC polymers is still more difficult than that of
low molecular weight liquid crystals. Hence, small amounts of substances
are available for researchers. The second is the consequence of the first —
most synthesized LC polymers are available for polymer chemists and
"synthesis" chemists. Without disparaging the merits of this group of
researchers, it should be said that, this fact, naturally, restricts the use
of the wide arsenal of physical methods of studies conventional for the low
molecular weight liquid crystal researchers.

This paper presents the result of comb—like polymer structure studies and of
some other studies carried out in general at Moscow State University; some
of the data have been obtained in collaboration with the scientists of Kiev
Institute of Chemistry of High Molecular Compounds of the Ukranian Academy
of Sciences.

PECULIARITIES OF MOLECULAR STRUCTURE OF THERMOTROPIC
LIQUID CRYSTALLINE SIDE CHAIN POLYMERS

Let us start from the common peculiarities of the structure of LC polymers
containing side mesogenic groups. The macromolecules of these polymers are
of dual nature. On the one hand, they are carriers of "polymeric" properties
determined by the main chain. On the other hand, the side mesogenic grüps
are carriers of mesomphicproperties. More complicated structure of LC
polymers in compàiLon to that of1ow molecular weight crystals hampers
studies of their properties and especially the interpretation of their
physico-chemical behavior. As low molecular weight fragments are
simultaneously carriers of liquid and crystal properties they are figu-
ratively called centaurs, and then attachment of these centaurs to the
polymer chain transforms them into peculiar polycentaurs and the behaviol6r
of these complicated hybrids cannot be always predicted and cannot be
always explained.

First let us consider briefly the role of each of the fragments of the
macromolecule, i.e. of the main chainof the spacer,of the attachment
bridge and of mesogenic fragments in LC state formation.
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The main chain
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It is natural to start from the role of the main chain since it distin-
guishes polymer liquid crystals from low molecular weight liquid crystals:

a) Pirst of all attachment of low molecular weight liquid crystals to the
inacromolecular chain increases the thermal stability of mesophase as it is
seen in Pig.2. The interval of LC state, determined by the glass transition

Pig. 2. Glass transition temperatures
tl—3), clearing points (1'—3',4)
and melting temperatures (5) vs.
number (n) of carbon atoms in the
aliphatic substituent (refs. 16—
18).

OH3
1,1'

(OH2) -O..©--CN( PS-n)

2,2'— CH2—CH—]
Oo-(OH2)n°©

3,3'—CH2—C(CH3)—1
(PA—n.)

OH2)

4, 5-CH1 -O---CN (PMA—P.)

temperature (T9) (the low limit) and the clearing temperature (Tee ), is
much wider in the case of polymers than that in low molecular analogues.

b) The clearing temperature rises with increasing degree of polymerization
(DP). It should be indicated that there is some critical value of DP
starting from which does not depend on DP (Pig.3) (refs. 19—21). It is
seen in figures 3a and 3b that only slightly depends on the nature of
the polymer main chain.

Pig. 3. Clearing points of biphenyl—cyano-containing polymers
(a) and cholesterol—containing polymers (b) as a function of
molecular weight: i-.PA—5; 2-.PMA—5; 3—PA—li (see symbols in
legend to Pig.1) (in parentheses: for fractions of PA—5)
(refs.19—2l).
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rearrangements in thermotropic LO polymers. It is clearly seen in the
table where the time of orientation,'1, in the electric field is given for
polymer fractions with various degree of polymerization P (ref.21).

ECH2-CH-)
COO ( (I)

Pw 5—10 250 350 1200

?,s 4 18 25 510
-

d) Just retardation of all structural and relaxation processes results in
the appearance of a great number of nonequilibrium (metastable) states
which may be often erroneously interpreted as equilibrium states. Reaching
the equilibrium for LC polymer often requires a very long time (or T rise).

On the other hand, it is one of the most interesting specific features of
LC polymers, allowing to affect the anisotropic liquid LC phase and to
control its properties and to fix (by cooling below T3) LO structure with
inherent anisotropy of mechanical, optical, electric and other properties
in a solid material (refs. 3—5,11—13).

e) The importance of the chain length is manifested at the studies of orien-
tation of LC polymers. Recently at least two quite opposite orientations of
mesogenic groups for one and the same polymer, depending on DP, were found
(ref.23). Using the method of IR spectroscopy, authors (ref. 23) have
calculated the value of the dichroic ratio R9 for a number of the characte-
ristic absorption bands of different polymer fractions in the process of
the mechanical orientation.

Fig. 5. T3 and vs. spacer length
and relaxation time,'r, of dipole
polarization in solution for
cholesterol—containing polymers
(refs. 28—29)

It is seen in Pig.4 that at small DP mesogenic groups are oriented in the
direction of the force action, i.e. in the same direction as the molecules
of low molecular weight liquid crystals. If some value of DPriS exceeded,
quite opposite orientation is observed. Different orientations of mesogenic
groups are, evidently, determined by the ratio of the rates of rearrangement
of mesogenic groups and main chains under the action of the mechanical
field affecting different structural elements of a polymer sample at
different DP.

Pig. 4. Dichroic ratio as a
function of Pw and schemes
of mesogenic groups
arrangement in PA-5 (ref. 23).
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TABLE 1. Influence of the main chain flexibility on LC temperature
interval for polymers with identical niesogenic groups (refs.
13, 18, 20, 24).

R0.<J-()-CN T,°C T°0 R_O_-©d.0_©..0OH3 T,C

-

OH3
— C —)

000(0112) 6—R

55 S 100
OH3

—CH2—C—)

0CO(CH2) 2R

96N121

[.0H2_?H_J

oCO(0H2)6—R 35 S 125
[_0H2—CH_]

OC—0(0H2)2—R 47N77

OH3
—Si—0--]

(OH2) 6

14 S 166
CH3

—Si—0—J

0H2_( OH2) 2—R

15N61

f) It should be noted that the main chain flexibility affects the tempera—
ture range of LC phase (Table 1). As is seen from Table 1 when flexibility
of the polymer backbone increases from polymethacrylates to polysiloxanes
(a drop of T9), an elevation of clearing temperature for polymers with oxy—
cyanobiphenyl groups is observed, while for polymers with methoxyphenyl-
benzoate groups Tct decreases. Different phase behavior of the two groups
of polymers is, probably related to different types of mesophases formed by
these two groups of polymers, however, the problem of the importance of the
main chain flexibility in the formation of LC state of polymers and its
effect on mesophase type and Tc cannot be considered as completely
elucidated.

Spacer-groups

a) The main function of a spacer is to provide autonomy in the behavior of
side mesogenic groups. There is certain correlation between the main and
side chains for polymers without spacers. This correlation disappears for
comb—like polymers, especially when spacers become longer. That is clearly
shown by the data of studies of birefringence in solutions and by the
comparison of the values of optical anisotropy (-) and Kerr constant,
K, (characterizing in fact the degree of binding of various structural
units) (Table 2) (ref. 25). It is seen that "separation" of a mesogenic
fragment from the main chain by "polymethylene bridge" consisting of 10
methylene units results in a drastic decrease in the correlation of side
groups and backbone orientation.

b) The other not less important function of spacers is related to their
plasticizing effect on polymer, Pigs. 2 and 5 show that an increase in the

TABLE 2. Segmental anisotropy (c-'oL,), the Kerr constant K and
the number of monomer units in the Kuhn's segment V(ref.25).

No Structure of the monomer unit (d. - -) '1 02m3
(solvent)

K' 1010
(cm5 g")
V/300J-a

V

1. f-0H2—c(0113)-3o
0O—00C0Ci 6H33

—3100(0014) —10 24

2. Monomer of polymerl — +0.21 —

3. -CH2—9(OH3)—J 0

0C_0_O_0_©_O 91119
—2700(0014) —(8.0±

3.0)
25

4. [-0H2—O(0H3)—] 0 0

0O—0—(0H2)

—90

(dioxane)
—(0.8+

0.2)
26
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spacer length results in the T shift towards lower temperatures.

c) The mesophase type can be greatly affected by the spacer group length.
More than 4-6 methylene units in a spacer group give a possibility to trans-
form the nematic mesophase to smectic one under other similar conditions.

d) The flexibility of a spacer group considerably affects the formation of
LC mesophase (Table 3).

TABLE 3. Influence of the main chain and spacer flexibility on
the phase st te polymers with identical mesogenic
groups (R 0 Q ON) (ref s. 16,20,26)

No Main chain Side chain Temperature of phase
transitions 00

,
2.

-CH2-.C(CH3)—]
00-0—

—(0H2)2--o—(0H2)2—oR

—(CH2)5—oR

TgGSO No mesophase

Tg65° 8120 I

3.

4.

ECH2_OH_]
00-0—

—(0H2)2—o—(cH2)2-.oR

—(OH2) 5—OR

Tg=35° No mesophase

Tg400 Si 20 I

5.

6.

OH3'
{_i_o_J
OH2—

—(0H2)2—o(0H2)2—OR

—(OH2)5—OR

Tg=S° LO phase 6o I

Tg=i4° si66 I

The attachment bridge
The attachment bridge connects a mesogenic group through a spacer with the
main chain. It would have seemed that this small fragment is of no
importance for the physico—chemical behavior of a macromolecule. Let us
demonstrate, however, its importance by two examples only.

a) Below two polymers with identical mesogenic groups, but with different
directions of ester groups are presented:

ECH2-.CH—] ECH2—CH—)

0c-0-.—- 0-c0--—-
(II) (III)

Polymer II forms a smectic mesophase with T200°, polymer III does not
exist in LO state (ref.27).

b) The other example (Pig.5) shows the effect of the formation of hydrogen
bond between attachment bridges on transition temperatures and molecular
mobility (refe. 28,29).

Thus, we attempted to show the role played by each of the structural ele-
ments of the macromolecule of LO polymer without considering the role
played by a mesogenic group. But actually the situation is more complicated
and the mutual influence of different structural elements and their contri-
bution to the structure and behavior of macromolecules essentially aggra-
vates the finding of general regularities in the properties of LC polymers.
However, some theoretical studies concerning orientational ordering in the
melt of linear and comb—like polymers with mesogenic groups (see types A
and B macromolecules on the first page of this paper) and finding of the
certain correlation between molecular structure (x0 ,x' and x" ) of these
polymers and their properties are already being developed (ref s. 30—31).

Let us consider now the structure of smectic, nematic and cholesteric
mesophases.
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SMECTIC MESOPHASES

Most LO comb—like polymers form smectic mesophases. Previously, in struc-
tural studies of LC polymers, researchers considered that only A, B and C
mesophases exist in polymers. Recently E,P,G mesophases and chiral sinectics
C'have been obtained (ref s. 32—37). Examples of some types of mesophase
polymorphism are listed in Tables 4 and 5.

TABLE 4. S and SA - polymorphism of LO polymers

ECH2—C(X)—] OH3

[—si—o—J36 (j
(refs. 17,32) (CH2)3—0_©-_0C---R (ref. 24)

S S S—i.I

No X n T1C H1?/ TCIC aH,a/ No R T T1C 4H1/ TCIC

1 H 6 76 4.2 115 8.4

2 H 11 90 6.7 149 11.3

3
OH3

6 77 3.3 115 7.9

4 0113 11 86 5.0 140 12.5

5 —OCH3 — 46(E) 10.7 169 4.4

6 —0C4H9 65 79 7.7 179 5.2

7 —0C5H1 43 52 1.0 177 6.0

8 —0C6H13 75 115 2.7 176 10.8

9 0C8H17 67 82 3.1 156 10.7

TABLE 5. Some types of smectic mesophases (refs. 19, 35—36)

No Polymer R Type of mesophase and
phase transitions, 00

1. -OH S 6oS 95N1161
[—oH2—cH—J

3 7

CH2) 5—C00——C00-.<—0R
P 40

2.
—04H9 SF 60 5o 145 I

3. -OH S 60 N 120 I
ECH2—oH—]

3 7

00-(OH2)5—O00—<.—00C----0R
4

—04H9
SF 70 N 1 35 I

5. —OCH S 80 S 139 I
.OH2—C(CH3)—] p

' 15 0

0C—0—( OH2)1 0—C—0—-—0C0_©—.R
6. 0

0H3

—O—o—(CH2)2-'oH ' 85 I

02H5

The character of the arrangement of mesogenic groups in mesophase (Pig.6)
may be displayed by X—ray diffraction analysis. Side groups of adjacent
macromolecules in smectics A are arranged, as a rule, parallel or anti—
parallel to each other; packing with partial or full overlapping of side
groups is also possible (Pig.7). Mesogenic groups form a one—layer or a
two—layer packing. Depending on ordered or disordered arrangement of me so—
genic groups in layers there are ordered smectics (B,E,I,P and G) and dis-
ordered smectics (A,C).

A specific feature of smectics A and C is the presence of a wide diffuse
halo in X-ray diagrams at wide angles and ordered smectics are characterized
by a narrow reflex at wide angles (Fig.8a). The transformation of an
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Pig. 10. a— Schemes of dipole ordering of side mesogenic groups for chiral smectic S.
b — Temperature dependence of spontaneous polarization, P, and pyrocoefficient, 'for chiral polymer 6 (Table 5) (refs. 35,36).

TABLE 6.. Some structural parameters of LC polymers (refs. 34,37)

No Polymer Type of d,X
mesophase small

L,A ,X g,%

angles

1.

2.

CH3 Sc 38

n9
coo-..-oc---ocH21 m.12 SA 41

230

200

40

42

16

17

4.
[—cH2—(cH3)_]

n16 SA 46

C00—(CH2)10—cOO-..-coO....—Oc4H9
-

32

550

680

130

160

11

6

TABLE 7. The comparison of some structural parameters of
molecular weight liquid crystals and LC polymers

low
(ref. 38).

No Lc compounds Type of D,A, wide
mesophase angles

d,A
sisall

angles
x tt'

1. N 4.51 22.0 28 80

2. C8H17O—----CN SA 4.49 32.6 29 500

3.

4.

cH2—cx)—J X1-f 5A 4.49

coo—(cH2)5—o-.--(...cN x=c3 5A 4.53

0113 5 4.38
(-si-o—]
(cH2)3—o—(cH2)2—o—.©-—..cN

32.0
31.0
31.0

27
26
25

500
500
390

Pig. 9. a— One—dimensional correlation functions (x); b— small angle X—ray
scattering curves (ref. 34)
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b) Using the regime of electrohydrodynamic Instability (EHD) in polymer LO
phase, polymeric films can be obtained with "frozen" regu1ai and controlled
domain structure (of the type of Williams domains) (Pig.llb). This reveals
interesting perspectives for controlling the structure and optical proper-
ties of polymeric films.

CHOLESTERIC MESOPHASE

Cholesteric mesophase is observed in cholesterol containing homopolymers or
in polymers containing chiral groups in side branches (ref. 42) (Table 8).
A convenient method for obtaining a cholesteric mesophase is copolymeri—
zation of chiral and nematogenic monomers. In this case a neznatic mesophasej and as a result a broad range of copolyiners with varied choles—
teric helix pitch can be obtained (refs. 4,5,13,43—45).

X—ray patterns of cholesterol containing polymers (,olymers 1—4, Table 8)
display a wide diffuse halo at wide angles (5.8-6.2A) and a number of in-
tensive small angle reflexes showing the formation of layer structures.
Depending on the spacer group length (n 10) one—layer packing may be
formed, where mesogenic groups of adjacent macromolecules are antiparallel
(Pig.6a). In the case of short spacer groups (n'=5) two—layer packing is
observed (Fig.6c); an intermediate type of packing with overlapping of all—
phatic fragments of cholesterol tails is also possible (Fig.6d). The types
of layer packing considered actually correspond to smectic mesophase,
formed at temperatures lower than that of smectic—cholesteric transition
(Table 8). Elevation of temperature, however, does not cause considerable
changes in the character of packing of mesogenic groups. It is seen in
Pig.12, where temperature dependence of structural parameters of polymers
2 and 4 (Table 8) are shown. The small angle reflexes dj — d3 are retained
(though their intensity I — 1 decreases dramatically) and simultaneously
the distances between side branches D are increased. The correlation
lengths 1have sufficiently high values, comparable with the similar
values of jfor smectics, showing a high degree of ordering of mesogenic
fragments within layer structures, even in a cholesteric mesophase. And
only above Tt a complete disturbation of the layer ordering is observed.

TABLE 8. Cholesteric homopolymers and copolymers (refs. 44,45).

No Polymer n Phase transitions,°C

1.

2.
¶_CH2—C(CH3)—

OC—0(CH2)C00Chol

5

10

Tg85S190 Chol 210

Tg60 S124 ChollS8•
4.

—CH—CH—
0C—0—(—CH2)C00Chol

5

10

Tg55 S— Ohol2l8

Tg35 S140 Choll48

molA— $Ki
5.

6.

CH 0

CH—d!-O(CH2)10—C0OChOl(A)LL'

28

31

SA100 Cholll8 I

SA9S CholilO I

710

510

8.

40OH 02 If

CH—C-O—(CH2)5—C00-
—COO—

.-0C3H7 55
-I

SA8O Cho196 I

S85 ChollO4 I

480

420

*po].ymer 3 forms monotropic mesophase; 'o.t TT-Ootti0°C

A helical structure of cholesteric mesophase determines its unique feature,
namely, selective light reflection in an IR-., UV— or a visible part
of the spectrum. Varying the composition of cholesteric copolymers, it is
possible to control the value of 'Am which is related to the helix pitch,
P, by the relationship Pn where n is the average refractive index
(Table 8).

If a copolymer forms only a cholesteric mesophase then, as a rule, the
helix pitch has a weak temperature dependence over the whole temperature
range. A drastic temperature dependence of P, (determining the high selec—
tivity of cholesterics) is observed near the cholesteric—smectic transition.
Since cholesterol containing polymers are characterized by layer ordering,
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Pig.12. Temperature dependence of structural parameters calculated
from X—ray diffraction curves at wide (a) and small (b) angles of
polymers 2(1) and 4(2) (Table 8).
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Fig. 13. a - Temperature dependence of for copolymer cholesterics
consisting of a neinatogenic monomer and cholesterol containing (Chol)
monomer units with different contents of Chol. b — Kinetic curve of
two—stage process "untwisting" of cholesteric helix of LC polymer
chole steric.

the introduction of cholesterol containing monomer units into macromolecules
of a nematic polymer, increasing the trend to the formation of layer struc-
tures, results in the appearance of strong helix pitch temperature depen-
dence (Pig.13a).

Specific macromolecular nature of LO polymers permits to"freeze the colour"
of polymeric cholesteric,s by cooling their films below T. Using an elec-
tric field it is possible to deform and untwist the cholesteric helix and
as a result the colour of polymeric films is changed (Pig.13b).

Thus, LC polymers with side mesogenic groups behave in many respects as low
molecular weight liquid crystals. Simultaneously the specific polymer
nature of these compounds permits to obtain and fix a number of new (or
intermediate) structures due to the action of external fields on the mobile
anisotropic LC phase with the following freezing of these structures in a
solid state.
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