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Theoretical considerations of solubility with
emphasis on mixed aqueous electrolytes
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Abstract — The theoretical bases for prediction of solubilities are pro—
vided by thermodynamics and statistical mechanics. In many cases
statistical mechanics yields the chemical potential as an equation in-
cluding several terms. While one or more terms may be fully determined
theoretically, the parameters in other terms must be evaluated empirically
at present. Then the solubility is obtained by equating the chemical
potential for each species in different phases or by minimizing the total
Gibbs energy at constant pressure and temperature. As an example of a
recent major advance, the problem of the solubility of salts, including
complex minerals, in multicomponent aqueous solutions is discussed in
some detail. The status of predictive calculations for 25°C is described
and new results for higher temperatures are reported. Brief comments are
added concerning theories for other types of solubility systens.

INTRODUCTION

Thermodynamics provides a structure of the quantities required for the calculation of solu—
bilities together with valuable relationships between these quantities and other measurable
properties of the substances involved. From statistical mechanics one obtains valuable
equations based on molecular models where the form of the equation and some terms may be
fully determined from theory while the numerical values of parameters in other terms remain
to be determined from experiments on the systems of interest. These procedures, however,
allow a few experiments to determine the well—defined parameters from which predictions can
be made for wide ranges of composition, temperature, and pressure. After a brief summary of
equations and status of knowledge for solids the primary emphasis will be on the properties
determining solubilities in mixed aqueous electrolytes. In this area there have been major
advances in the last decade; these will be reviewed in some detail. Brief comments will be
added about other types of solubility systems at the end.

GENERAL THEORY

The basic theory for a solubility equilibrium is well known. At constant temperature and
pressure the equilibrium lies at the minimum of the Gibbs energy, G.

G=nipi (1)
i

Here is the chemical potential of the substance or species of which there are n. moles.
If the species i is present in more than one phase, this requires that be the same in
each phase. For a phase of variable composition, it is convenient to define activities
a. for each species as follows:

RTthai=i_Pi (2)

where p.° is the chemical potential in a defined standard state. Both a's and p's are func-
tions of T and P; p° is independent of composition but both p and a are also dependent on
composition variables which may be defined as molalities or mole fractions.

For aqueous solutions the composition is ordinarily given by the molalities mi of all solute
species where mi is the number of moles of i per kilogram of water. Then for a neutral
solute the activity is

ai = miii (3)
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with
-r the activity coefficient. In the case of a strong electrolyte, MX, which dissociates

into VM positive ions, M, and negative ions, X, of molality m and m, respectively, the
activity becomes

aNX = (lyM)M (nxyx)X (4)

One cannot determine absolute values of y's for ions. One procedure is to define a mean
activity coefficient which is unambiguous,

"N X l/\)
-Y±

=
'X (5)

with v = \))( then

V VM VX
aMX=-Y± mM mX (6)

Each electrolyte has its own -ç and v; an additional subscript, MX, is implied for each.

It can be shown, however (ref. 1), that one can write equations for and where the only
ambiguity is a term which cancels for the product for any charge type. It is optional
whether equations for -ç are used or those for and The former are given in (ref s. 1
and 2) for the general Thtatistical model described below. whereas we will give the separate
equations for and y. In a complex mixture such as seawater including minor components,
the number of possible ç is much larger than the number of and hence, the latter
system is advantageous. -

The conventional standard state for aqueous solutions is taken at infinite dilution where all
become unity. The activity of water is related to the osmotic coefficient, .

n a1 = —(M1/lOOO) m. (7)
i

where N is the molecular mass of water in g and the sum covers all solute species. Water is
given tie subscript 1 for aqueous solutions. The Gibbs—Duhem equation relates the composi-
tion dependence of l to that of the various solute and therefore to the various y. or

In the case of a hydrated crystal; with molecules of water as well as M positive ions, N,
and v negative ions, X, the total chemical potential becomes

=
(VMVN°

+ + p0p 0)/RT + 2n(m)

+ v n(mfx) + '0Pn a1 (8)

where the last term is related to the osmotic coefficient through equation (7).

For the calculation of the solubilities of solids in aqueous solutions one requires the i.
values for the solids and for the species in solution. If the solids have fixed

compositions, the values equal the i? and are functions only of P and T. The relation-
ships between the dependencies of on1P and T and volumes, entropies (or enthalpies) and
heat capacities are well known. The data base for these quantities is well organized (ref s.
3—5). While there are inaccuracies and voids at higher temperatures where research is
needed, the methods are well established and will not be discussed further here. If the

solid has variable composition, then the depends also on composition variables. This is
an important field and a few comments will be made subsequently concerning it.

ACTIVITIES IN MIXED ELECTROLYTES

The recent advances which have made it feasible to predict solubilities of a wide variety of
salts in complex mixed electrolytes have concerned the activities or chemical potentials of
various species in the liquid. We turn now to that topic.

Equations

For nonideal gases the virial series, an expansion in increasing powers of the concentration,
is a valuable expression and the successive coefficients are related by statistical mechanics
to the potentials of interaction of molecules pairwise, threefold, etc. The McMillan—Mayer
(ref. 6) formulation of solution properties allows the same expansion, but now the solute
interactions are given by the potentials of mean force in the solvent. Also the
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relationships apply strictly to conditions of osmotic equilibrium with pure solvent, but for
semi—empirical applications the same form of equation may be used with coefficients
determined from macroscopic measurements at constant pressure. These equations apply to
neutral molecules or solute species, but Mayer (ref. 7) showed that the statistical equation
for an ionic system could also be transformed to a virial expansion. For the ionic system,
however, there is an additional term, which is found to be exactly the Debye—HUckel limiting
law, and all of the virial coefficients now become dependent on the ionic strength.

The virial expansion is in terms of concentrations of solute species, but at moderate concen—
trations the molalities are nearly proportional to concentrations. Concentration is an in-
convenient measure of composition since it depends on pressure and temperature. Thus, it
seemed a good, practical procedure to recast the virial expansion into a series in molalities
with the result for the excess Gibbs energy (ref. 8);

GEX/nwRT = f(I) +
mimi

(I) +
"i111f k + (9)

ij ijk
Various working equations are derived by derivatives of equation (9); these are now commonly
called the Pitzer equations. The first term on the right includes the Debye—Hückel limiting
law while nw is the number of kg of solvent, Xi(I) is the second virial coefficient (or ion—
interaction parameter) with the dependence shown on the ionic strength, I.

I = (1/2) mizi2
(10)

Here z is the number of charges on the particle. In equation (9) the third virial co-
efficient i.k also depends in principle on I, but in most cases this can be ignored. An

exception was found recently (ref. 9) where the ionic strength dependence of p was
significant. The virial series continued, of course, to fourth and higher order terms but
these are only rarely needed. Also i•k can ordinarily be ignored when all three inter-
acting particles have the same sign of charge. This is reasonable since the virial co-
efficients arise from short—range interparticle forces and the electrical repulsion keeps
like—charged particles away from one another most of the time. Note that this p. •k is not
the chemical potential. The X and p depend on temperature and pressure but on 13

composition only through the ionic strength.

While the Mayer theory introduced just the Debye—ffückel limiting law as the additional term,
it is found that there is a redundancy between extended Debye—Hickel terms and the ionic
strength dependence of the second virial coefficients. The latter can be simplified by

making f(I) a simple extended form, specifically

f(I) = -(41A /b) in(l + b1½) (11)

where b is a constant selected to be 1.2 kg½. mol independent of temperature, pressure, or
solute type for the full range of applicability of this type of equation. A is the

Debye—HUckel parameter given by

(l/3)(2vN0d/l000)1'2 (e2/ckT)3"2 (12)

with c the relative permittivity and d the density of the solvent. The factor 4re,
precedes c for SI units.

w

The requirement of electrical neutrality precludes the evaluation of A1. or p. •k for
individual ions; rather one evaluates terms for neutral combinations as 13 follows:

B = A + Iz /2z A + Iz /2z A (13)ca ca a c cc c a aa

C = (3/2)(p /Izf + pIzi) (14)

cc' = A, — (Z v/2Zccc — (z/2Z,)A,, (15)

= 6p , — (3z ,/z )p — (3z /z ,)p , , (16)cca cca c c cca c c cca

Here c,c',...are cations and a,a',...are anions. B' and '' are the ionic strength deri-
vatives of B and 4. Other terms in , and p

ca
ariseca from permutation of the

aa caa
indices.

The appropriate derivatives of equation (9) with respect to nw and mi yield the osmotic and
activity coefficients:



1602 K. S. PITZER

(4)-i) = (2/m )[-A 13/21(1 + b1½) + m m (B4) + Z C1 4) ca ca ca

+ mm,(, + m,) + mm,(, + m,) (17)

' =
zMF + ma (2BM + Z C) + m 2Mc + m)

+
mama, Maa' + ZNI mcma Cca (iCa)a>a ca

x = z2F + m(2B + Z Cx) + m(2 + m)

+ mm, ' +
I z mcma Cca (18b)c>c ca

The quantity F includes the Debye—Hückel term and other terms as follows:

F = -A [1½/(l + b11) + (2/b) th(l + b1½)J + n m B'
4) cacaca

+
mcmc, c' + mm, a' (19)c>c a>a

Also

z = mizj (20)

B4) =
Bca + I B'

(21)

= cc' + c' (22)

Sums over I include all solute species; uncharged species do not contribute to I or Z. For
equations (17) and (18), Ci. and lPi.k were assumed to be independent of ionic strength; if
these quantities are I dependent, there are additional terms.

The ionic strength dependency was first studied for the osmotic coefficient and the best
simple expression was found to be (ref. 8):

B = + exp(_aI½) (23)

where and are constants at a given P and T and are characteristic of the

interaction of the ions N and X. A transformation related to equation (9) then yields

= + g(a1½) (24)

B = g'(a11)/I (25)

g(x) = 2[l-(l + x) exp(-x)J/x2 (26)

g'(x) = -2[l-(l + x + x2/2) exp(-x)]/x2 (27)

For a wide variety of 1—1,, 2—1, nd 3—1 electrolytes equations (23—27) fit experimental data
very well with a = 2.0 kg' .moll (ref 5. 8,10). However, other values of a can be used
without undue complication (ref. 11).

In the case of 2—2 electrolytes there is an electrostatic ion pairing at quite low concentra-
tion which must be represented. Many investigators assume an additional species, the MX ion
pair, with its own chemical potential, etc. This treatment involves an iterative solution
for the amount of ion pair present. Actually, better agreement with experiment is obtained
(ref. 12) by a modification of equations (23 to 25) by the addition of a third tern of the
same form as the second.

B = +4 exp(_a11½) + 4 exp(_a21½) (28)



Theoretical considerations ofsolubility 1603

B — (0) (1) , ½) + (2) ½ 29MX MX MX g NX g( c2 ( )

, (1\ t! f)\ 1

R —rr'' ( T2\4-Q1 t( TMX L gcx1 ?IX ga2

The coefficient of the additional term is large and negative. It can be shown that the
initial effect of this term at low concentration is the same as that of the ion association

reaction with = —K/2 where K is the association constant. For aqueous 2—2 electrolytes

at 298 K the optimized value of 2 is 12 kg . mol and for these cases u1 = 1.4 kg . mol 2•

These values of 1.4 and 12 for l and n2 can be held independent of P and T for many appli—
cations. However, there are theoretical reasons for taking u2 to be proportional to the
Debye—HUckel parameter A. These matters are discussed in detail in ref. 13.

The terms in and i for mixing different ions of the same sign appear only for mixed electro—
lytes. They are expected to be small because like—charged ions repel one another and there—
fore will seldom be close enough to have significant short—range interaction. Also, from
equations (15) and (16) one notes that these terms are differences between small quantities
and, therefore, are even smaller in magnitude. Nevertheless, these small terms are needed
in many cases to yield quantitative agreement with experiment at moderate or high molality.

In principle a depends on ionic strength since the x's have that dependence. Also for
unsymmetrical mixing such as Na+ with Ng+2, there is a large ionic—strength dependence of
which arises from long—range forces and is given by theory (ref s. 14 and 15). Thus one
writes

ij = 0ij + E0••(1) (31)

= (32)

= + + E01 (33)

where E0 and E0v are the terms arising for unsymmetrical mixing from purely electrical forces
for which the theoretical formula involves the ionic charges and the solvent properties c,
d, etc. The remaining term 0 arising from short—range forces is taken as a constant for
any particular c,c' or a,a' at 3a given T and P.

The quantity 0ij in equations (31) and (33) is independent of ionic strength and is tabulated
for various pairs of ions of the same sign. Even when the ions have the same charge there
may be an ionic—strength dependence which would add ionic—strength dependent terms to

equations (31) — (33), but this effect is very small and is usually neglected. Recent calcu-
lations of heats of mixing (ref. 9), however, find this effect to be significant in some
cases. With future measurements of activity and osmotic coefficients at higher precision,
there will be need to recognize the ionic—strength dependence of the 4's for symmetrical
mixing, but for the present this can usually be ignored.

Parameters for 298.15 K

The C (and if pertinent) are evaluated from osmotic or activity coeff i—

cient data for pure electrolytes. This information is available for a large number of
solutes at 298.15 K (25°C) (ref s. 1,10,12). If the measurements do not extend above ionic
strength 2 mol'kg-, the third virial parameter C should be omitted. For cases of very
high solubility, such as CaC12, one must either restrict the range of m (to m 5, I < 15
for CaC1 ) or add higher virial coefficients to the series (ref s. 16 and 17). Unless there
is real interest in the range of very high concentration, the former procedure is preferable.

The remaining parameters Oi(f0r and ijk can be evaluated from activity or osmotic

coefficient data for common—ion mixtures. Thus, for 0N K and 'Na K Cl interaction one may

measure the osmotic coefficient in NaC1—KC1 solutions. The 0 . parameter is independent of
the ion of opposite charge. Thus, all data for Na+_K± mixingiJare considered together
(NaCl — KC1, NaNO3 — KNO3, Na2SO4 — K2S04, etc.) to determine a single value of 0Na,K and

values of the various Na K Cl' Na K NO
etc. The solubility of a solid salt in a common—

ion mixture depends on a i value, and the best values of i for many cases come from
solubility data (refs. 18 and 19).
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There are extensive tables of parameters for 298 K which have been tested for solubility
calculations; values of T1°/RT for solids and for ions in their standard states are also
included. Since these are in conveniently available sources (ref s. 18 and 19), they will not
be listed in full here. Tables 1—4 contain the values at 298 K for certain cases (ref s. 20—
24) where there are data over a wide range of temperature.

TABLE 1. Values of for various temperatures

250 50° 100° 1500 200° 250° 300°C

1:1 Electrolytes

HClab
LiC1

0.1775
0.1485

0.1690 0.1509 0.2117 0.5235
0.1446 0.1369 0.1291 0.1214 0.1137

NaClc 0.0754 0.0892 0.1002 0.1000 0.0938 0.0848 0.0768

NaIad
NaOH
KC1b
CSFa
CsClb

0.1195
0.0864
0.0481
0.1306
0.0335

0.1353 0.1559 0.1757 0.1790
0.0943 0.0827 0.0640 0.0543 0.0520
0.0593 0.0695 0.0718 0.0707 0.0674
0.1294 0.1197 0.1061 0.0689
0.0467 0.0576 0.0609 0.0624 0.0630

0.0476

CsIa 0.0244 0.0415 0.0567 0.0625 0.0348

1:2 or 2:1 Electrolytes

Li2SO4
0.1308 0.1398 0.1445 0.1356 0.1157 00868e

Na2504
0.0181 0.0629 0.1029 0.1227 0.1338 00929e

K2S04
0.0000 0.0277 0.0682 0.1124 0.1743 02596e

Cs2504

MgCl2

CaCl2

SrCl2

0.0804

0.3509

0.3053

0.2834

0.0936 0.1273 0.1381 0.1497 01656e

0.3442 0.3242 0.3094 O.3l9l

0.3067 0.3024 0.2922 O.2S47

0.2956 0.2993 0.2975 O.3O7O

aSaluja
bHolmes

et al., ref.
and Mesmer,

20. dpabalan and Pitzer, ref. 23.
ref. 21. eHolmes and Mesmer, ref. 11.

cpitzer et al., ref. 22. Phutela et al., ref. 24.

TABLE 2. Values of for various temperatures; see Table 1 for references

25° 50° 100° 150° 200° 250° 300°C

1:1 Electrolytes

HC1 0.2945 0.2978 0.3030 0.3070 0.3102
LiCl 0.3070 0.3229 0.3547 0.3865 0.4183 0.4501
NaC1 0.2770 0.2967 0.3326 0.3726 0.4175 0.4667 0.5192
Nal 0.3439 0.3630 0.3935 0.4168 0.4352
NaOH 0.2530 0.3022 0.3985 0.5036 0.5886 0.6078 0.5132
KC1 0.2187 0.2494 0.3042 0.3592 0.4149 0.4705
CsF 0.2570 0.2708 0.2928 0.3096 0.3228
CsC1 0.0429 0.0854 0.1665 0.2438 0.3186 0.3916
CsI 0.0262 0.1064 0.2346 0.3324 0.4096

1:2 or 2:1 Electrolytes

Li2SO4
1.2913 1.3212 1.3679 1.6383 2.4707 4.5383

Na2504
1.0559 1.1708 1.3421 1.5710 2.0773 3.6887

K2S04
1.1023 1.2578 1.4637 1.6415 1.8578 2.1511

Cs2SO4
1.3660 1.4783 1.5140 2.1072 3.0920 5.8923

MgCl2
1.651 1.735 1.989 2.294 2.503

CaC12
1.708 1.806 2.049 2.351 2.706

SrC12
1.626 1.702 1.910 2.233 2.701
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Parameters for high temperatures
Parameters for other temperatures can be obtained by either of two methods or by a least—
squares optimization of the results of both methods. One approach involves the same type of
measurements as were made at 25°C to obtain osmotic or activity coefficients. Freezing point
measurements often yield especially precise osmotic coefficients for 0°C. Vapor pressure
measurements have been used to temperatures of 350°C (refs. 25—27), and once vapor pressures
are established for reference substances, isopiestic measurements are effective (ref s. 11 and
21). These sources of osmotic coefficients at high temperatures are excellent for concentra-
ted solutions but often lack precision for dilute solutions.

The other general method involves calorimetric measurements of heats of dilution and of
mixing and heat capacities. This information gives the temperature derivatives of the vari-
ous parameters and the expressions can then be integrated from 298 K to the temperature of
interest. As a test, the parameters for Na2SO4 were determined by use of heat capacity data
up to 473 K together with heats of dilution and other data at 298 K (ref. 28). Comparison
with high—temperature osmotic—coefficient data was reasonably satisfactory, but a better set
of parameters was derived from fitting to the combined set of all data.

There are now an extensive array of data for the most important aqueous solutes extending
upward in temperature. Where the second temperature derivatives are given by accurate heat
capacity measurements, extrapolation of the parent parameters should be valid to considerably
higher temperatures. Tables 1—4 summarize these results and the pertinent references. Thus,
one can now calculate the chemical potential of water (ref. 29) and of various solute species
for a variety of mixed electrolytes of great complexity over a wide range of temperature.

TABLE 3. Values of C at various temperatures; see Table 1 for references

250 500 100° 1500 2000 2500 300°C

1:1 Electrolytes

HC1

LiC1

NaC1

Nal

NaOH

KC1

CsF

CsC1

CsI

4.00x104

l.86x103

O.70x103

9.00x104

2.05x103

-3.94xl04

-2.15x103

-1.31xl04

—l.82x103

l.12x103

l.29x103

-O.40x103

—6.l8x105

9.54x104

-l.00x103

-7.05x104

2.26xl03 3.14x103 3.83xl03

3.75xl04 -3.51x104 -9.48x104

-l.65x103 -2.24x103 -2.42xl03

—l.60x103 —2.77x103 —3.70x103

6.15x105 -l.82x104 -4.38x104

-l.56x103 -l.72x103 -l.72x103

-2.15x103

-l.14xl03 -1.25x103 -l.28x103

l.82x103

l.46x103

-2.32x103

-7.19x104

-l.58x103

-l.20x103

-l.95x103

-6.71x104

1:2 or 2:1 Electrolytes

Li2SO4

Na2SO4

K2S04

Cs2SO4

NgC12

CaC12
SrC1

-8.94x104

2.02x103

6.65xl03

-9.66x104

2.30lx103

7.6lx104
—4

—3.15x10

-2.75x103

-l.07x103

6.17x103

-l.37x103

9.558x104

-3.353x104

-5.06x103 -5.43x103 -4.24x103

-4.05x103 -6.OlxlO3 -6.32xl03

2.87xl03 —2.62x103 —9.60x103

-2.02x103 -2.52x103 -2.91x103

-l.193x10 3 -2.834xl0 3 -4.128x104

-2.088xl03 -3.426x10 3 -4.481xl03
—4

—3.15x10

-l.75xl03

-3.03xl03

—l.76x102

-3.23xl03

TABLE 4. Pitzer parameters for NgSO4(aq) at various tempera.turesa

Parameter 25° 50° 100° 150° 200°

(0) 0.2150 0.2275 0.2491 0.2862 0.3795

g(l) 3.3636 3.6130 4.0980 4.8046 5.9123

102 x (2) -0.3274 -0.4021 -0.7237 -0.13910 -2.5558

l0 x C 6.993 4.939 0.727 —3.688 —11.783

a Phutela and Pitzer, ref. 13.
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Pressure effects
The effect of pressure on the chemical potential is given by the molar or partial molar
volume and can be determined from density data. For moderate pressures, these effects are
usually small but can be significant. Thus, the pressure dependency of the various para-
meters for solution properties are of interest and have been determined for a number of
solutes. As an example, the changes in the parameters from saturation pressure to 1 kbar
(100 NPa) for NaC1(aq) are given in Table 5 (ref. 22). Equivalent information for other
solutes is given in references 20, 23, 24.

TABLE 5. Pressure dependence of the parameters related to the chemical potential of H20 and
NaCl(aq). The entries are the value at 1 kbar less that at saturation pressurea

25° 50° 100° 150° 200° 250° 300°C

(p/RT)

(14/RT)

0.7132

0.745

0.6643

0.718

0.5921

0.587

0.5410

0.387

0.5031

0.126

0.4727

—0.225

0.4453

—0.764

A
(0)

—0.0171

0.0102

—0.0195

0.0050

—0.0276

0.0022

—0.0420

0.0030

—0.0684

0.0031

—0.1197

—0.0025

—0.2339

—0.0226

lO3C —0.64 —0.24 —0.03 —0.02 0.13 0.56 1.45

aThe pressure dependence of is zero; values from ref. 22.

SOLUBILITIES IN AQUEOUS ELECTROLYTES

The solubility of a solid in a mixed aqueous electrolyte can be calculated by minimizing the
Gibbs energy or by setting the chemical potential of the solid equal to that for the same
material in solution, equation (8). Both methods are iterative; an initial solution compo-
sition is assumed and then improved in successive approximations until the criteria are
satisfied within acceptable limits of precision. There are various mathematical methods for
this calculation (refs. 18,30); they will not be discussed in detail here.

Calculations for 298.15 K

Harvie and Weare (ref. 18) demonstrated the effectiveness of these methods by a remarkable
series of calculations of solubilities of all possible salts related to the seawater system
Na—K—Mg—Cl—S04—H20. A fixed point in this system involves four solids and there are 13 such
fixed points, all of which have measured carefully (ref. 31). Table 6 compares the predicted
and observed compositions of the solutions at each of these fixed points (the unstated
molality of C1 is determined from electrical neutrality). The agreement is remarkably good
throughout and is probably within experimental error. Harvie and Weare (ref. 18) present in
addition a number of solubility calculations for other systems; one is for CaSO4 solubility
in NaCl —

Na2SO4 solutions. Figure 1 shows two of these comparisons which indicate excellent
agreement for the present solution equations and poor agreement for earlier methods (ref 5.
32—34).

I tOrn NoCI

I"
\. GYPSUM

SOIMNEQ
MIRABILITE

WTEQF-''
1.0 2.0

rn No2 S04

Fig. 1. Calculated mineral solubilities (solid curves) in the Ca—Na—Cl—SO4—

H20 reciprocal system compared to the experimental points (at
25°C). The dashed curves show the calculated values from previous
models.

.03

0.5rn NoCI

.01

rn No2 S04
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TABLE 6. Invarient points for the system Na—K—Mg—Cl—S04—H20. Calculated values from ref. 18
above; experimental values below and in parentheses from ref. 31

'11Na mK
m504

Solid Phases

2.62 1.63 2.08 .84 Halite + Sylvite + Glaserite + Schoenite
(2.69) (1.58) (1.97) ( .78)

2.52 1.59 2.16 .84 Halite + Leonite + Sylvite + Schoenite
(2.41) (1.51) (2.19) ( .78)

1.16 1.01 3.40 .86 Halite + Sylvite + Leonite + Kainite
(1.31) (1.10) (3.17) ( .79)

.48 .57 4.21 .32 Halite + Sylvite + Carnallite + Kainite
( .49) ( .64) (4.05) ( .29)

.30 .22 4.75 .40 Halite + Kieserite + Carnallite + Kainite

.26) ( .20) (4.81) ( .35)

5.20 1.04 .95 1.31 Halite + Thenardite + Glaserite + Bloedite
(5.32) ( .90) ( .89) (1.24)

3.08 1.31 2.00 1.14 Halite + Glaserite + Gloedite + Schoenite
(3.21) (1.30) (1.85) (1.06)

2.49 1.18 2.40 1.11 Halite + Bloedite + Schoenite + Leonite
(2.96) (1.22) (2.01) (1.05)

1.43 .85 3.31 1.14 Halite + Epsomite + Bloedite + Leonite
(1.25) ( .72) (3.46) (1.10)

1.16 .85 3.51 1.03 Halite + Epsomite + Leonite + Kainite
(1.18) ( .75) (3.54) (1.04)

.76 .50 3.95 .81 Halite + Kainite + Hexahydrite + Epsomite

.66) ( .68) (4.01) ( .79)

.40 .23 4.57 .59 Halite + Kainite + Hexahydrite + Kieserite

.33) ( .32) (4.63) ( .45)

.09 .02 5.74 .06 Halite + Bischofite + Kieserite + Carnallite

.07) ( .02) (5.83) ( .05)

Harvie et al (ref. 19) have considered the even more complex system Na—K—Mg—Ca—H--Cl—S04—OH—
HC03—C0—C02—H20 with comparable success. In this extended system, however, it is necessary
to consder the dissociation equilibria of water and carbonic acid in addition to the solu—
bility of the various solids.

Calculations for high temperatures
There are several published calculations related to the solubility of NaC1 in H20 to 300°C
(ref. 22), of NaCl and KC1 in aqueous mixtures to 200°C (ref. 35) and of NaCl and Na2504 in
aqueous mixtures to 350°C and of NaC1 and NgCl7 in aqueous mixtures to 200°C (ref. 36).
These calculations were made by the simple metliod of calculating activity coefficients for
the known composition of the saturated solution both (1) from solution parameters and (2)
from the thermodynamics of the solid and the standard—state properties of the solute. The
comparison of the two values tests the solution equations and indicates whether a calculation
of the solubility would have yielded agreement. This calculation requires no iteration, but
it is not a true solubility calculation. The agreement was good throughout the range of
expected accuracy of the solution model and indicated for NaC1 — NaS04 that the sodium
sulfate parameters could be extrapolated from 200 to 300°C with useful results but that there
were substantial departures at 350°C.

An especially demanding case at high temperature is that of a 2—2 electrolyte where there is
increasing electrostatic ion—pairing as the temperature rises. Figure 2 compares the calcu-
lated and experimental solubilities of MgS047H20, MgS046H20, and MgSO4H)0 in their
respective ranges of stability up to 200°C. The chemical potential of each solid was
adjusted slightly to fit the solubility at the lowest temperature. But the heat capacity and
either the entropy or enthalpy (whichever is more accurately known, ref s. 4,5,37) were
determined from measurements on the solid and were independent of the solubility. Thus the
temperature dependence was predicted in each case. The agreement gives strong confirmation
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of the equation for the chemical potentials of the solution (ref. 13).

5.C \/ I I

Hexohydrite
I (MgSO46H20)

4.0 -

3.0 -
Epsomite Fig. 2. Calculated solubilities of

(MgSO4-7H20)
MgSO4 compared with experi—

o mental values for various
hydrated solids as a

2.0 - - function of temperature.

Kieserite
.0 -

(MgSO4-H20)

50 00 50 200

Temperature °C

OTHER TYPES OF SOLUBILITY SYSTEMS

One can consider as a solubility any equilibrium of a component between two or more phases.
The pertinent theory is just that of the activity or the chemical potential of each species
in each phase.

Gases

For solubilities in low—pressure gases one can assume the ideal gas law or, at somewhat
higher pressures, add the effect of the second virial coefficients. But at high gas
densities and with strong interactions, higher order terms become significant.

An interesting case is the solubility of solid NaCl in high—pressure steam (ref. 38). In
this case the NaC1 is almost all in the ion—pair form in the gas, but virial coefficients
involving several water molecules interacting with one NaC1 must be included. The primary
effect is attractive; hence, one may think of this virial series as a set of successive
hydration equilibria:

NaC1(H20).1 + H20 = NaCl(H20). (34)

Strictly, there are repulsive effects which also enter the exact equations for the virial
coefficients. Once the virial coefficients and their temperature derivatives have been
determined, the solubility of NaC1 in steam can be calculated over a wide range of conditions.

Nonionic liquids

There is a very extensive literature concerning the chemical potential or activity of each
component in a liquid mixture of neutral molecules. If a wide composition range is to be
covered, mole fractions are the appropriate measures of composition. The ideal solution
equation can be derived from a simple model which is valid, however, in a very limited range
of real systems. But the ideal mixing terms usually arise as the leading terms in more
complex theories. Wohl (ref. 39) has discussed purely thermodynamic expansions in increasing
powers of mole fraction. There are also many theories derived statistically from various
potential models. Prausnitz (ref. 40) and Rowlinson (ref. 41) present excellent reviews of
these theories.

Solid solutions
A very important area is that of solid solutions. Most intermetallic systems have solids of
variable composition as do many silicates and other minerals. There is an extensive and
rapidly advancing body of theory for the chemical potentials of the components of such solids.
The details depend on the particular crystal structure in each case, the assumed pattern of
substitution at particular lattice sites, and the types and locations of vacancies. But in
any case, one considers the configurational entropy related to random rearrangements at each
type of site and the energy for each nearest neighbor interaction. Possible refinements
include more distant energy interactions and the effect on the entropy of nonrandomness of
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distributions. An excellent example of this type of analysis is that of Chang and Neumann
(ref. 42) for the intermetallic phases with the B2(CsCl) structure. They calculate the
activities and enthalpies of about 30 systems with excellent agreement with experimental
data. A typical example is AuCd at 700 K over the range 43 to 56 mole%Cd; the model involved
two empirically adjusted parameters. The activity of cadmium was measured by the solubility
of the vapor in the solid (ref. 43), although electrochernical cell measurenents were also

reported (ref. 44) and gave higher precision.

A different type of nonstoichiometric system is that of CeO. in which x ranges from 0 to
0.33 and data extend from 900 to 1800 K. The measured quantity is the solubility of oxygen
in the solid (ref. 45). Below 950 K the solid solution system shows a miscibility gap near
x 0.1 which is reproduced by the model (ref. 46). The model also yields calculated oxygen
pressures in good agreement with experiment over the entire range of x and T. In this case
the model is essentially the same as is widely used for nonelectrolyte liquid solutions
(ref. 39); it can be regarded as a model for the mixing of oxygen atoms and vacancies on a
single set of sites and would be applicable without regard to the particular lattice
structure. In fact, however, the cerium is present as +3 or +4 ions and their respective
locations must be related to the vacancies.

Many silicates and other minerals are nonstoichiometric and there are model calculations of
chemical potentials for these systems (ref. 47). The equations used in many of these cases
is either the simple regular solution (van Laar) equation or an extension of the Wohl type
(ref. 39).
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