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Statistical thermodynamics of small systems and
interfaces
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Abstract - This review sets out the differences between the theory of small
systems and of the infinite systems of conventional statistical
thermodynamics. The best choice of thermodynamic potential is the grand
potential, 2, which is a function of temperature, T, chemical potential, y,
and a functional of the external potential, Y(r).

Various forms of the virial expansion of Q and of its partition function,
Z = exp(-Q/kT), are examined and the virtues of the latter function are
emphasised for systems such as fluids in zeolites.

The local distribution of molecules in small systems is expressed in terms
of the intermolecular forces by means of integral equations based usually
on the one-body functions. These functions lead to the calculation of
the surface tension, but there are difficulties in the definition of this
property for highly curved surfaces and for fluids in contact with walls.
Consideration of such systems leads to a brief review of the theory of
wetting and of similar phase changes.

INTRODUCTION

The familiar equations of statistical thermodynamics apply only to systems of infinite size;
that is, they are the equations we obtain by going to the thermodynamic 1limit, N - o,

V + o, (N/V) = constant, where N is the number of molecules in a system of volume V. They
apply also only to systems in which there is no external potential, such as gravity. Such
systems are, on average, homogeneous even if they comprise more than one phase, since the
phases occupy all possible positions if there is no external field to restrain them.

These limitations are necessary if we are to obtain from the statistical equations the even
more familiar results of classical thermodynamics, eg. the phase rule.

Small systems are ones to which these restrictions do not apply; they are of finite size,
they have external potential fields (including those that constitute the boundaries of the
system), they are inhomogeneous, they may have well-defined interfaces between phases of
definite shape and size, and they do not obey the phase rule or many other of the rules of
classical thermodynamics.

The statistical theory of such systems has developed rapidly in the last ten years,
although the roots of the subject go back to the nineteenth century. In this review I
describe the tools that have been developed for this field, and give, in outline, some of
the recent results.

CHOICE OF THERMODYNAMIC POTENTIAL

The statistical thermodynamics of infinite homogeneous systems can be handled in many
different ensembles, all of which become equivalent in the thermodynamic limit. The

choice between them is one of convenience only. In small and inhomogeneous systems that is
no longer so; the different ensembles correspond to different choices of external
constraints and give rise to different physical behaviour. The choice between the
ensembles becomes therefore not merely a matter of convenience, but is dictated by the
physical problems we wish to solve.

A one—component system with a planar interface between two phases, eg. liquid and gas, can
be handled in either the canonical ensemble, F(N,V,T), or in the grand canonical ensemble,
Q(u,V,T), where F is the Helmholtz free energy, and Q is the grand potential. The balance
of convenience is generally with Q. The Gibbs free energy, G(N,p,T), is less useful,
indeed there is more than one way of defining it for such a system (ref. 1).
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16 J. S. ROWLINSON

If we turn to inhomogeneous systems of less simple geometry then the choice of the grand
potential becomes almost inevitable. A fluid in a narrow pore, or in the cage of a
clathrate or zeolite structure, may contain few molecules, and is usually studied as an
open system by equilibrating it with a homogeneous and effectively infinite reservoir of
known p, T and u. Two of these variables, T and |, are well-defined also inside the pore
or cage, and are everywhere equal to their value in the reservoir. Formally we can write

T(E) =T, U(E) =u , (I)

where r is a point inside the system of interest. It is important to note that there is no
similar expression for p(r), which is well-defined in the reservoir, but is an incompletely
defined tensor inside an inhomogeneous system, and so also at any interface between two
phases (ref. 2 - 4).

The volume of a small system may also be imperfectly defined, since the molecules are
confined not by geometrical boundaries but by the force field of the intermolecular
potentials of the atoms, ions or molecules that form the cage. We avoid, therefore, not
only p but also its conjugate variable V, in writing the fundamental equation for a small
change in 8Q, caused by small changes ST, &u, and SY(x);

cSQ=—S<ST-ﬁ<Su+Jd£ p(r) &Y(r) , (2)

where S, N, and p(r) are the mean entropy, number of molecules, and local density, in a
system defined by T, W, and ¥(r), where Y(r) is the potential of the external field.
Clearly

¥ - J ar o(x) . )

The grand potential of an infinite homogeneous system is - pV, and if there is an interface
of area A, then it will contain an additional term + 0A, where 0 is the surface tension.

In a system of complex geometry the potential cannot be expressed in such geometric terms,
but nevertheless all measurable properties such as energy, heat capacity, local density, etc.
can be expressed in terms of it.

It is related to the molecular properties through the grand partition function Z;

Q=-kT & =, (4)
® N

- A

5=y Loov (5)
N=0 N! N

where A is the absolute activity, which is proportional to exp(u/kT), and Vy are generalised
volumes that are integrals of the Boltzmann factors of the total intermolecular energy
U(zN), and the total external potential ¥(rN), where rVN denotes the positions of the N
molecules, ri,———,r\-. If we restrict the integration to N-n of the molecules then we
obtain the generalised volumes VN(rD) that can be used to define the molecular distribution
functions p(r™) that are proportional to the probability of simultaneously finding molecules
at ri,=——,rp.

v @™ = J dr_,, == drg expl-WEH/AD - @G /T (6)
—- o
Vg =) )]
w N
p(En) _ E_l E A v (rn) . (8)
Nen (N-n)! N'=

These are the basic equations of the statistical thermodynamics of inhomogeneous systems.
We now see how they can be turned into working equations for the calculation of physical
properties.
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VIRIAL EXPANSIONS

In a homogeneous system it is customary to expand p = — /V either in powers of the activity
A or of the uniform density p. The coefficients of A and p are expressible in a well-known
graphical notation in which, for pair-wise additive potentials, the bonds of the graphs
represent the Mayer function fji = exp(-uj:/kT)-1, where ujj is the pair intermolecular
potential. The coefficients of the powers of X are the set of comnected graphs, by, and
the coefficients of the powers of p are the irreductbly connected graphs, By (ref. 5).

In an inhomogeneous system 2 has similarly expansions in powers of A and of W. The former
is essentially of the same form as in a homogeneous system, but the latter is not. It can
be written in two forms of which the first is the more elegant, and the second the more
useful for calculations. The first (ref. 6 - 7) has powers of p(ri) inside the integrals
instead of the powers of p outside, but is otherwise of the usual form. However the p(rj)
are the, a priori, unknown local densities. The second (ref. 8) has local weightings of
the known functions exp(-y(rj)/kT) inside the integrals, but the irreducible set of graphical
integrals has to be supplemented by a set of connected but reducible integrals and those
integrals obtained by cutting these at their nodes, that is, at the points where several
bonds meet at a point.

These results are a formal solution to the problem of obtaining a virial expansion. They
can be put into specialised forms for particular problems, as was first done by Bellemans
(ref. 9) for molecules near planar <deal wall, that is, a wall at which the potential rises
from zero to positive infinite on crossing a plane, say z = z,. His results were extended
to more complicated walls by Sokotowski and Stecki (ref. 10 - 13).

It is natural in these cases to divide  into a bulk part (= - pV) and a remaining surface
part Q(S), and to equate the latter to OA. There is no problem at a planar ideal wall, but
for an arbitrary wall potential the surface tension so defined can be shown (ref. 14) not to
be the same as that obtained from the two-body distribution functions by another statistical
route (ref. 15). Thus there is, in general, no unique way of defining a surface
contribution to Q unless we are dealing with a planar ideal wall.

The expansions of ) are the natural generalisations of the expansions of p in homogeneous
systems. There may, however, be great advantages (ref. 16) in expanding not ) itself but

Z = exp(-Q/kT). The coefficients of the expansion in powers of )\ are now the generalised
volumes Vy (see eqn 6), and for a small system, such as a cage in a zeolite, this series
terminates when the cage is full, since higher Vy are zero. The corresponding coefficients
of the expansion of §, the connected graphs by, continue indefinitely but with alternating
sign. Thus we can, in these small systems, sum a virial expansion to infinity to yield the
ratio of two finite polynomials. This is a potentially powerful result which has yet to be
fully exploited. So far it has led to some new formal results in graph theory, from a
comparison of the expansions of Q and exp(-Q/kT) (ref. 16 — 17), and has allowed us to obtain
a complete and exact set of results for the distribution of hard rods on a line of finite
length, that is in a one-dimensional cage (ref. 18). It should have further applications
to fluids adsorbed into zeolites, particularly if it can be modified to allow the use of
repeating boundary conditions to a model set of linked. cages.

INTEGRAL EQUATIONS FOR THE MOLECULAR DISTRIBUTION
FUNCTIONS

In order to calculate the physical properties we need to know where the molecules are; that
is, we need to know at least the first two members of eqn 8, p(r1) and p(ri,r2). The
direct route to these functions, via Vy(r:1) and Vy(ri,r2) is usually too difficult to follow
except for the special case discussed in the last section. A variety of relations between
distribution functions of different kinds can be generated by operating on both sides of
eqn 8, and by similar methods. These relations are collectively known as the integral
equations, and their solution, with varying degrees of approximation, is one of the main
avenues of progress in this field.

Thus if we take the gradient of p(ri) we obtain the first Yvon-Born-Green equation,
(ref. 19) which, if U(z“) is composed only of pair potentials, takes the form

= kT Vip(r1) = p(x1)Vay(r1) + f drz p(r1,r2)Vhiu(riz). 9

To solve this equation we need first an expression for p(ri,r2), and this we could get in
principle by taking the gradient of the second member of eqn 8, and so obtaining Vip(ri,r2)
as an integral over p(ri,r2,rs). Historically this second member of the hierarchy was
studied intensively before the first, since it is the first non-trivial equation in a
homogeneous system. For an inhomogeneous system, however, the first, eqn 9, is non-trivial,
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and, in practice, the only one that has been studied in detail.

Clearly this set of equations is an infinite regress and, for interfacial systems, we break
the chain in the simplest way possible by inserting into eqn 9 an approximation for p(ri,r2)
that expresses it in terms of known functions, eg p(ri1,r2) for a homogeneous system. In
this way Toxvaerd (ref. 20), Fischer and Methfessel (ref. 21), and Nieminen and Ashcroft
(ref. 22) have been able to obtain profiles for the density across a planar gas-liquid
interface that are in reasonable agreement with those obtained by computer simulation

(ref. 4, 23, 24).

The first Yvon-Born-Green equation is essentially the condition of mechanical equilibrium
which can be expressed more concisely in terms of the gradient of the pressure tensor,

Vop(@ + p(@W(r) = 0 (10)

Thus although p itself is not precisely defined in an inhomogeneous system its gradient is
(ref. 2 - 4). = The condition of mechanical equilibrium is, in turn, equivalent to the
condition of constancy of the chemical potential throughout the system (eqn 1); this was
shown recently by Henderson (ref. 25) who then related both conditions to a further useful
result, the potential distribution theorem.

This theorem has had a complicated history. In its simplest form, as put forward by Widom
in 1963 (ref. 26), it related the density p and the activity A (normalised to reduce to p as
p goes to zero) in a homogeneous system,

p/A = <exp(-u;/kI)> , (11)

where u; is the change in energy inserting an extra test particle into a typical equilibrium
configuration. The average was taken in the canonical ensemble. He showed similarly that
p(ri12) is related similarly to the change in energy on inserting two test particles
separated by a distance ri2. The scope of the theorem was greatly increased when he showed
that the results were equally valid for p(r:) and p(ri,r2) in an inhomogeneous system, such
as an interface (ref. 27 - 29). Later the scope of the theorem was increased further by
extending both the one-body (ref. 15) and multibody (ref. 30) forms to the grand canonical
ensemble. There is also an inverse form of the theorem that yields the ratio A/p, but this
has proved less useful in practice (ref. 31, 32).

The ratio p(r)/A plays an important role in the theory of inhomogeneous systems since it
defines the lowest member of another set of functions, the direct correlation functions
c(r1), c(ri,r2),~——,c(cM), etc. The second of these was the first to be studied in detail,
since it is the lowest non-trivial function in a homogeneous system, but again it is the
first that is the prime object of calculation in an inhomogeneous system since it is
directly related to p(r1i).

c(r1) = Y(r1)/kT + nfp(x1)/A] . (12)

If we make a small change in density at a nearby point, 8p(rz), then the change in c(r:)
is the second direct correlation function; that is, in the language of functional
differentiation,

8c(r1)/8p(x2) = c(r1,r2) . (13)

The hierarchy can be continued; c(ri1,r2,r3) is the functional derivative of c(ri,r2) with
respect to p(r3). The second function is related to the usual density distribution
function, 0(ri1,r2), by the Ornstein-Zernike equation which, for an inhomogeneous system
takes the form

p(ri,r2)/o(r1)o(xr2) = 1 + c(r1,r2)

+ J drs c(ri,r3)p(rs) [p(ra,r3)/p(r2)p(rs) - 1] . (14)

Functional differentiation of p(r:1) with respect to the external field Y(r:) yields further
relations between the one- and two-body functions. These are first and second Yvon
equations.
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Sp(r1)
p(r1,r2) = p(r1)e(ra) = - p(r1)8(ri-r2) - kT TG (15)
) Sy(r1)
p(r1)o(r2)e(r1,r2) = p(r1)8rr2) + T S0 (16)
where 8(ri-r2) is Dirac's delta function.
The direct correlation functions also have virial expansions. In homogeneous systems the

re-summing of some of the graphs in the density expansion of the pair function, c(ri2), is
one route to the well-known integral equations that carry the names Percus-Yevick (PY) and
hyper-netted chain (HNC). In inhomogeneous systems we again start with the first member
of the series c(r;) and are led to the expansion of Massignon (ref. 6) and Arinshtein (ref.
33) in which the graphs in the density expansion are the singly-rooted irreducible graphs
with the field points over which we take the integrations weighted with the local densities
p(r2), p(rs), etc. This result has come to prominence recently as the basis of approximate
methods of studying the melting of a solid, which is a special case of an inhomogeneous
system in which the inhomogeneity has the periodicity of a lattice. This field is beyond
the scope of this review, but it is one that is developing rapidly (ref. 34 - 39). Only
tentative explorations have yet been made of the possibility of using this expansion for
inhomogeneous fluid systems (ref. 16).

The Percus-Yevick integral equation has been used for systems in contact with a planar wall
in two forms, the first of which might be described as a 'trick' solution and the second as

the true PY equation. We recall first that for a homogeneous system the PY approximation is
a relation for c(ri2) in terms of p(ri2), namely

c(r12) = [1 - exp(u(ri2)/kT)] p(r12)/p? . a7

The combination of this result with the Ornstein-Zernike equation yields an integral
equation for p(riz).

C(P12)

7

clz) clr.20,2;)

Fig. 1. Symbolic representation of the solutions of the Percus-Yevick equations.
On the left we have the 'trick' solution, in which the pair correlation function
of a system of unlike molecules is transformed into the singlet function in the
presence of a plane wall. On the right we have the true PY solution.

This equation is readily generalised to a mixture of molecules of two different species,
represented symbolically in Fig. 1, and then we can transform the equation by taking the
limit as one species goes to infinite dilution but the size of the last remaining molecule

becomes infinite. We have then one molecule (the circle) interacting with a planar wall
(shaded). This may be called the trick PY solution; it is applicable to a fluid in contact
with a planar wall. Nevertheless for that problem it is an acceptable solution to the

determination of p(z), where z is the distance from the wall, at least when the molecules
are hard spheres or molecules for which the structure of the fluid is dominated by the
repulsive forces (ref. 40).

A more exact theory follows from the generalisation of eqn 17 to an inhomogeneous system,
c(ri,r2) = [1 - exp(u(ri2)/kT)] p(r1,r2)/p(x)e(r2) , (18)

and substituting this into the inhomogeneous Ornstein-Zernike equation, eqn 14. This
generates an approximation for c(ri,r2), or, in a planar system, as in Fig. 1, for a function



20 J. S. ROWLINSON

of three variables, c(ri2,2z1,22). Unfortunately the solution of eqn 14 plus eqn 18, which
is already a three-body problem (two molecules and the wall), cannot be undertaken without
knowing first p(r), or, in the planar case, p(z). Fortunately there is a pair of equationms,

which follow from the two Yvon equations, that solve this difficulty. They are (ref. 41,
42y,

Vi 0 op(ry) + Vai(W(r1)/kT

- J drz2[p(r1,r2)/p(x1) - o(r2)1V2 (W(r2)/kT) (19)

J dra c(ri,r2) Vap(ra) . (20)

The second of these equations relates c(ri,rz) to the gradients of the density at r; and ra,
and, in principle, completes the solution of the true PY approximation for an inhomogeneous
system. In practice the solution would be difficult to obtain except for the simplest
geometry, and even there the problem is not trivial. It has been solved recently by
Plischke and D. Henderson for the simplest cases, namely hard spheres (ref. 43) and Lennard-
Jones molecules (ref. 44) near a planar ideal wall. Their results for hard spheres agree
well with the results from the computer simulations of this system by Snook and D. Henderson
(ref. 45) and by J.R. Henderson and van Swol (ref. 46), for both p(z) and for p(ri2,z1,22).
The results for the HNC approximation are less good (ref. 43), as might be expected for a
system with repulsive forces only.

SURFACE TENSION

The integral equations of the last section give us, formally in principle, and to some
degree in practice, a method of calculating the one- and two-body distribution functions for
inhomogeneous systems. It is now a relatively simple matter to obtain the surface tension
in terms of these functions.

In a homogeneous system there are two routes to the pressure, via the virial theorem and via
the compressibility equation of the grand ensemble. There are similarly two routes to the
surface tension of an interface, via the pressure tensor and via the direct correlation
function.

We distinguish first two kinds of system for which the surface tension is well defined.
First, we have a free interface, such as that between liquid and gas, or between two liquid
phases. Such an interface can be fixed in space by an external field, eg. the gravity g,
but we can let that field become arbitrarily weak, and calculate the tension in the limit of
its becoming zero; in that sense it is a free surface. The thickness of such an interface,
or, more generally, the function p(z), may not be well-defined as g goes to zero, but the
tension 0 has a well-defined limit. Secondly, we have an interface against a wall in which
we choose to consider the wall as a non-zero external potential rather than a phase whose
molecular structure we try to calculate. The tension of such a tied system is also well-
defined if the external potential has simple geometric properties.

The simplest free interface is the planar surface between a liquid and its vapour in a weak
gravitational field. Here the tension can be expressed in either 'virial' or
'compressibility' form (ref. 19),

Q
"

J dz[py(2) - pp(2)] @1

=

00
kT J dz; p”(z1) J dr2 p”(z2) (r}z-z}2) clriz,z1,22) , (22)
-—00

where py and pr are the components of the pressure tensor normal and transverse to the
interface. The pressure tensor can itself be expressed in more than one way in terms of the
virial of the intermolecular forces, ri2u’(ri12), and the two-body distribution function
p(ri12,21,2z2). Although the pressure tensor is therefore not well-defined in the interface,
the integral in eqn 21 is invariant to all choices that satisfy the condition of mechanical
equilibrium. The equivalence of eqn 21 and 22 is not obvious, but has been proved by
Schofield (ref. 47). Calculations based on eqn 21 and 22 agree well with computer
simulations, and, given the uncertainties of our knowledge of intermolecular forces, with

the surface tension of real simple liquids (ref. 23).
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A curved free surface is more difficult. The scalar pressure pa and pB are not equal in
two homogeneous phases separated by a curved surface, but if we have a system at equilibrium
p% and pP must be everywhere constant within the bulk phases a and B. Hence it is
unprofitable to try to calculate the tension of surfaces of arbitrary curvature, although
there have been attempts to do so (ref. 48 - 50); we are restricted to surfaces of constant
total curvature. These surfaces form the class called unduloids, but the only cases of
practical importance are the limiting ones of the sphere and the cylinder. In the former
the two principal radii of curvature are equal (R; = Rz = R), in the latter one is infinite
(R1 = R, Rz = @), A thermodynamic argument due to Tolman (ref. 51) tells us that the
tension of these surfaces differs from that of a plane surface:

O(R) = o(=)[1 - SR + RV, (23)

8

[
=]
|
=

(24)

and Rg and Rg are, respectively, the radii of Gibbs's equimolar surface, and the surface of
tension defined by Laplace's equation.

p -p = 20/Rs (sphere) (25)

O/RS . (cylinder) (26)

The derivation of eqn 23 makes it clear that it holds only in the 1limit R ! = 0, so that §

is the limit z, - zg, where z, and zg are the planar limits of Ry and Rg. Since § is of
the order of the thickness of the surface, it is expected to be only of the order of the
size of a molecule, say 2 - 5 K. It has, therefore, been difficult to test experimentally
the correctness of Tolman's result. Fisher and Israelachvili found a change of 0 with R,
with § > 0, for cyclohexane (ref. 52), but could detect no change with water (ref. 53). It
is rather easier to test the equation by the computer simulation of spherical drops, and
confirmation of its correctness of the form has been obtained for systems with truncated
Lennard-Jones potentials (ref. 54, 55). Moreover there is one model, the penetrable-sphere
model, for which § can be obtained explicitly in mean-field approximation, and exactly at

T = 0 (ref. 56, 57). Explicitly for this model (ref. 58), and more generally by a Landau
theory (ref. 59), it is possible to show that Tolman's equation has the correct form near
the critical point, and to calculate the critical exponent of & which shows a weak

(v - 0.06) divergence at the critical point, although Phillips and Mohanty (ref. 60) have
suggested the exponent may be larger, namely a divergence as the correlation length

(v - 0.63). There seems, nevertheless, little reason to doubt the correctness of Tolman's
equation for spherical systems, i.e. drops and bubbles. For cylinders the thermodynamic
argument is equally clear, but statistical mechanical arguments (ref. 61) show that the
expansion here breaks down at order R },not at R 2; that is, the Tolman expansion is not
valid and only the planar surface tension has any meaning. This disagreement is a warning
that classical thermodynamic arguments cannot be applied indiscriminately to bodies whose
relevant dimensions (here the length, §) are the molecular size.

The extension of the 'virial' and 'compressibility' equations to spherical surfaces yields

{ee]
o(R) = [0 dr (R_/r) [py(r) = py(r)] (27)
] 00
=7 kT J dry p“(r1) Idgz P’ (r2)[r} - (e1.1r2)?] c(ri,r2) , (28)
o
where e) is the unit vector in the direction of ri. The first gives us (0/Rg) but not O or
Rg separately (cf. eqn 25). There is a similar equation for Ry (ref. 62), namely
00
- 2 —
o(R) = Jo dr (/R ) [py(r) - pp(0)] , (29)

but unfortunately we do not know that eqn 27 and eqn 29 are consistent beyond the planar
limit, that is, beyond RO. Eqn 28 is the extension of eqn 22 to a spherical system

ef. 56) and is correct to R™' as was shown above, since it was the equation for o(R) used
in the tests of Tolman's equation.

Henderson (ref. 15) extended these results to give the tension of a fluid at a planar or
spherical wall. Little work has yet been done with these equations, except in one dimension
(ref. 15, 18) but the results are, as stated above, at variance with the expressions for
surface tension at walls obtained by virial expansions by Sokotowski and Stecki (ref. 10-13).
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PHASE TRANSITIONS IN INTERFACES

Interfacial systems exhibit changes of phase in the same way as bulk systems; that is, a
change of a thermodynamic field, T or |, can bring about a qualitative macroscopic change in
the structure of an interface. Such a change can be sudden, i.e. of first order, or
continuous, i.e. of higher order, just as for bulk systems. The best known of these changes
is the wetting transition which can occur at the surface of a solid (Fig. 2) or at the
surface between two liquid phases (Fig. 3).

A liquid is said to wet a solid if it spreads over it in a continuous film. The surface
tensions between the solid (o), the liquid (B), and the vapour (Y) satisfy Antonow's rule
(ref. 63),

0. =0, + .
ay ~ % * %8y (30)
A liquid does not wet a solid (or is sometimes said to wet it partially) if it does not
spread smoothly, but meets the solid at an angle 6. The tensions are then related by
Young's equation
= + . 0 < < 31
OaY %8 OBYcose ( 8 <m) (31)

The local density, p(z), as a function of the distance z across the a-y surface, changes
from a profile that denotes essentially infinite adsorption, to one of finite adsorption, as
the angle O reaches the limit of O.

7 Y

aABly a

N

Y,
p(z) Z

(z2) / \
z zpz L

Fig. 2. The transition from wetting to par- Fig. 3. The transition from wetting to par-
tial wetting for a liquid (f) at a solid tial wetting for a second liquid phase (f)
() — vapour (y) interface. The lower at a liquid (®) - vapour (Y) interface.
part of the diagram shows the density of The lower part of the diagram shows the
the fluid phases on crossing the a-y density profile for a component found
surface. mainly in phase B, on crossing the a-y

surface.

In a mixture of two or more components, the liquid (a) - vapour (y) surface is said to be
wetted by a second liquid phase (B) if this spreads uniformly, or not to be wetted if it
forms discrete drops with non-zero contact angles. The density profile, p(z), of a
component found predominantly in phase B again grows from a finite to an infinite adsorption
as the wetting becomes complete. The most striking difference between p(z) for the solid-
liquid-gas and liquid-liquid-gas interfaces is the presence in the former of strong peaks
and troughs induced by the rigid wall of the solid.

The theoretical methods already described can give a detailed molecular description of an
interface and so should be able to describe also these changes of phase. In practice they
go into too much detail, and it becomes difficult to apply them to these situations without
drastic approximations. A less detailed theoretical description has therefore been
developed which foregoes much of the detail in order to develop more clearly the broad
features of the change of phase. The treatment is based on free—energy functionals, which
are generalisations of thermodynamic potentials, such as F or §, to functionals of arbitrary
density distribution, p(xr), which are not the equilibrium distribution for the prevailing
values of the fields T and pj. Thus if we divide the intermolecular potential into a
short-ranged part and a long-ranged part, we can construct a Helmholtz free energy
functional, F[p], as follows (ref. 64),

Flp] = J dr £_(o(x) + %[ dry drz p(z1) o(rz) u (ri2) , (32)
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and a grand potential functional, [p],

Qel = Fle] + J dr o(r) (P(x) - w. (33)

In these equations f,.(p(r)) is the Helmholtz free energy density of a homogeneous system of
density p(r) and with only the repulsive part of the intermolecular potential. This
function is well-defined since such a system has only one fluid phase. The energy u,(riz)
is the attractive part of the intermolecular potential. It is now readily seen (ref. 65)
that Q[p] is a minimum, and equal to its equilibrium value Q, if p(r) is everywhere equal to
the equilibrium distribution. The equations are therefore solved by choosing the
distribution p(r) that minimises Q2[p]. This, and related functionals, have been widely
used, by, among others, Sullivan (ref. 66-67), by Evans, Tarazona, Telo da Gama and their
colleagues (ref. 68-72), and by Gubbins and his colleagues (ref. 73), for studying wetting
transitions at planar surfaces and in pores of different shapes. The results are promising
but are restricted by two limitations. The first arises from a limitation of the first
integral in eqn 32, namely that the form of f, smooths out the layered structure shown for
p(z) in Fig. 2. The second arises from the fact that the second integral is of essentially
a mean—-field form, and so is subject to all the restrictions of that approximation in its
suppression of fluctuations, and in its improper treatment of critical points. Improvements
to both integrals are in progress, and a full review of the rapidly growing field has
recently been written by Sullivan and Telo da Gama (ref. 74).
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