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Abstract - The study of the structures and properties of non-crystalline solids and
their interrelationships is a rapidly growing field of research, involving
interdisciplinary efforts at the frontiers of chemistry, solid state physics, and
materials science. These materials differ from the better-understood crystalline
solids by the lack of long range three-dimensional translational periodicity in
their atomic arrangements. Consequently, this study cannot make use of the
simplification attendant with the use of repetitions of a small unit cell. We
present a review of the state-of-the-art in the theoretical study of the structures
of such non-crystalline solids. The topics covered include structural models, the
nature of order and disorder, model systems of low dimensionality, chemical bonding
considerations, thermodynamic and kinetic considerations, dynamic simulations,
elastic and vibrational properties, electronic structure and properties, amorphous
metals and alloys, silica glasses and related alloys, liquids and superlattices.
It is our hope that this review will generate more interest among chemists in the
scientific and technological problems and challenges presented by these materials.

1. INTRODUCTION

The atomic arrangement in non-crystalline (or "amorphous") solids lacks translational
periodicity; therefore, unlike crystalline solids, these materials do not have a long range
order consisting of the repetition in three dimensions of a well-defined unit cell. They
have, for this reason, traditionally been in a no man's land between the realms of physics
and chemistry. It has been impossible to describe their electronic wave-functions in terms
of the powerful concepts and techniques of crystalline band theory (such as Brillouin zones,
Bloch functions, k-space, etc.), discouraging solid state physicists from studying them. On
the other hand, the fact that they are extended solids rather than molecules with a fixed
number of atoms, has made their study appear to be outside the scope of conventional
chemistry. Their lack of a repeating unit cell has also severely limited the detailed
structural information that can be gained by such standard experimental techniques as x-ray
diffraction. The apparent sensitive dependence of the structures of these materials, and
hence of their physical, chemical, and electrical properties, on the methods used in
preparation and processing, has further obscured the existing regularities.

During the past two decades, the study of the structures and properties of non-crystalline
solids has gradually emerged as an exciting field of both experimental and theoretical
research, involving interdisciplinary efforts at the frontiers of solid state physics,
chemistry, and materials science. The barriers to communication between scientists from
these diverse disciplines have been disappearing, as this field becomes better defined, with
its own folklore and mythology, with its own dedicated workers and their characteristic
technical jargon, and with the rapid progress brought about by three important motivating
and enabling factors:

(1) The realization that non-crystalline solids have many important technological
applications which go far beyond ordinary window glass. Some of these applications
are: (i) as thin film photovoltaic materials used in solar cells for the
conversion of light into electricity; (ii) in photographic films and xerographic
drums; (iii) in electrical and optical switching; (iv) in electrical and optical
data storage; (v) in ultra-transparent optical fibers used for telecommunications;
(vi) as hard protective coatings for tools and machine parts; (vii) as decorative
coatings; (viii) as metallic glass ribbons used in transformer cores; and (ix) as
active elements in large-area thin film displays such as flat-screen television
sets. (In addition, polymeric materials, which ordinarily are also a type of
non-crystalline solid, have many additional applications; however, these will not
be considered in the present review.)
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(2) The rapid progress in computer technology. The ability to process much larger
amounts of data, and the much shorter times required to carry out large
computations, are the cornerstones of this advance. Consequently, it has become
increasingly more efficient to build large-scale structural models for
non-crystalline solids via the use of computer programs, making it less necessary
to go through the tedious process of building "ball-and stick" models; furthermore,
it has become feasible to carry out large numerical calculations of electronic
structure by using supercomputers. Finally, realistic simulations of dynamic
processes such as glass formation via quenching, which require the use of
techniques such as Monte Carlo and Molecular Dynamics, have become possible.

Several current directions in the advance of computer technology insure that computers will
play an increasingly important part in future research on non-crystalline materials. For
example, advances in parallel processing will probably be especially helpful in dynamic
simulations where the collective behavior of large ensembles of particles is examined. The
ability of smaller computers to perform larger calculations, and do this faster than ever
before, will put sophisticated numerical techniques for electronic structure calculations
within the reach of an increasing number of researchers. In this respect, it is especially
encouraging to note the new classes of "supermini" and "advanced technology personal"
computers. Finally, advances in three-dimensional color graphics technology, the declining
cost of graphics hardware, and the increasing availability of graphics software, are all
destined to help in computer-aided modeling and visualization of atomic arrangement
patterns, just as they have helped in studying polymers and biological macromolecules.

(3) Recent advances in physics and chemistry. Some new theoretical approaches
that have proved valuable in understanding amorphous solids include localization
theory, percolation, the utilization of "curved space" techniques which were, in
the past, mainly reserved for problems in general relativity and cosmology, and the
use of higher and fractal dimensions, previously limited primarily to the analysis
of wunified field theories. On the chemical side, a gradually deepening
understanding of the nature of chemical bonding has helped the study of
non-crystalline solids by contributing to the determination of the local (or short
range) order around the atoms. 1In the absence of long range periodic order, this
local order is of paramount importance in understanding the structures and
properties of these materials.

The theoretical progress has been paralleled and aided by advances both in the array and
precision of experimental techniques available to us and in our understanding of how to
apply these methods to non-crystalline solids and then extract structural information from
the data. The techniques which have been useful in the latter regard include diffraction
(x-ray, neutron and electron), EXAFS, various types of spectroscopy (Raman, IR, NMR,
Mossbauer and ESR) and measurements of electrical and optical properties such as
conductivity, luminescence and reflectivity.

The increased importance of research in non-crystalline solids has been highlighted by the
awarding of Nobel Prizes to three scientists (N.F. Mott, P.W. Anderson and P.J. Flory) for
their contributions to the field. The growth of interest in the area has also been
reflected in a rapid increase in the number of conferences, symposia and workshops held on
various aspects of the study of these materials. One of the most recent of these
conferences was the International Conference on the Theory of the Structures of
Non-Crystalline Solids, which was held 3-6 June 1985, at the Institute for Amorphous Studies
in Bloomfield Hills, Michigan, U.S.A. The Proceedings of this Conference [1] are strongly
recommended to readers who want to learn more about these materials. Two other recent
books, one written by Zallen [2], and the other edited by Adler et al. [3] should also prove
quite useful.

The present review includes a wide range of subjects. Structural models are discussed in
Section II, focusing mainly on continuous random network and random close packing models.
Several alternative models, and experimental techniques relevant to selecting and evaluating
appropriate models, are also discussed. The subject of "order and disorder" is examined in
Section III, in the contexts of short range order, "network momentum", icosahedral order,
quasi-crystals and the curved space approach. Model systems of low dimensionality (with one
or two dimensions), which facilitate the performance of certain calculations, are considered
in Section IV. Chemical bonding considerations useful in understanding short range order
are presented in Section V, while fundamental thermodynamic and kinetic considerations are
discussed in Section VI. The use of dynamic (especially molecular dynamics) simulations is
examined in Section VII. Section VIII is devoted to an examination of elastic and
vibrational properties, and Section IX discusses the computation of the electronic structure
and properties of nonmetallic amorphous solids. This discussion is followed by Section X on
amorphous metals and alloys, Section XI on silica glasses and related alloys, Section XII on
liquids (which are structurally related to glasses), and Section XIII on superlattices. Our
conclusions are summarized in Section XIV. In order to put the current developments into
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perspective, we also provide the general context and background, and present our own
opinions and judgements concerning the work described, in each section, as well as making
recommendations on how chemists can most easily enter the field and make significant
contributions.

II. STRUCTURAL MODELS

Standard models

Unlike in crystalline solids, where the atomic-scale structure can be precisely determined,
at least in principle, by diffraction experiments, in amorphous solids, the lack of a
periodic repeating pattern makes it impossible to determine a unique structure. This may
reflect a real ambiguity, since these materials could have a wide array of alternative
structures with essentially the same total energy or it could represent simply our lack of
knowledge of the precise structure. 1In any event, it therefore becomes essential to attempt
to generate realistic models which will provide insights into the actual structures and
properties of these materials.

The most developed homogeneous models of the atomic-scale structure of non-crystalline
solids are [2,4]:

1. The continuous random network (CRN) model, which has proved valuable in the

understanding of covalent solids such as amorphous silicon (a-Si), silica (a~Si02)
and a—Aszse3;

2. The random close packing (RCP) model, also sometimes referred to as the dense
random packed (DRP) model, which has been quite useful in studying metallic glasses
such as nickel-phosphorus, gold-silicon and copper-zirconium alloys;

3. The random coil model, which is primarily applicable to polymer-chain organic
glasses such as polystyrene.

CRN (continuous random network) models for covalent amorphous solids

Two examples of the similarities and the differences [2,4,5] between a CRN structure and its
crystalline analog are presented in Figs. 1 and 2. The following similarities can be seen
between the pair of structures in each figure:

(a)

Fig. 1. (a) One layer of a three-fold coordinated crystalline solid, such as arsenic;
(b) an analogous continuous random network (CRN) structure.

e
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Fig. 2. (a) One layer of crystalline Aszs3 or A525e3, where the large

open circles represent S or Se; (b) an analogous CRN structure. (Note that
these two structures can be derived from the corresponding ones in Fig. 1
by replacing each bond between the three-fold coordinated atoms by a pair
of bonds to an intervening two-fold coordinated "bridging" atom.
This process is called a "decoration" transformation.)
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1. The coordination number of each atom is the same in both the CRN structure and
its crystalline analog.

2. Bond lengths are nearly constant, because a great deal of energy is required to
significantly increase or decrease bond lengths from their optimum values; in
contrast, since it is considerably easier to bend bonds an thereby change the bond
angles by several degrees than it is to stretch or compress bonds by several
picometers, bond angle deviations are ubiquitous (see below).

3. Both pairs of structures are ideal in the sense that they contain no broken (or
"dangling") bonds or other defect bonding configurations (i.e., atoms with
non-optimal coordination), except at the surfaces where atoms may not be available
to satisfy all the valence requirements.

There are two significant differences:

1. A significant spread in bond angles, not permitted in the crystal, is
characteristic of the CRN structure. It is also worth noting, in Fig. 2, that
there is more distortion of the bond angles around the divalent atoms than around
the trivalent atoms, since distortions around the divalent atoms require less
energy (they involve only one bond angle distortion, as opposed to two or three for
trivalent atoms).

2. As a consequence of this spread in bond angles, long range order, i.e.,
translational periodicity, is absent from the CRN glass.

CRN-type models have been widely utilized in attempts to describe the overall structural
features of many types of covalently bonded non-crystalline solids. These models have
usually been built by actual construction of macroscopic ball-and-stick type physical
representations of the assumed atomic-scale structures, followed by energetic relaxation via
computer, using an assumed atom-atom pair potential. 1In order to generate a model which
hopefully will represent the overall structural features reasonably well, models with a very
large number of atoms have often had to be built, in spite of the tediousness of this task.

Some "classic" CRN models are: (1) the Polk [6], Polk and Boudreaux [7], Temkin, Paul and
Connell [8], and Steinhardt, Alben and Weaire [9] models for tetrahedrally bonded amorphous
semiconductors such as a-Si and a-Ge; and (2) the Bell and Dean [10] model for a-sioz, which

is likely to also be useful for describing other amorphous ABz-type compounds with (4,2)
coordination such as GeXZ(X=0,S,Se or Te), SiTez, and Ber. Two recent examples of

hand-built and computer-relaxed models are Popescu's models for a-Ge [11] and for amorphous
ice [12]. These types of models, which are in the spirit of the "classic" CRN models, are
likely to continue to be built as long as adequate, fully computerized algorithms do not
become readily available to workers in the field.

In recent years, considerable advances have been made in the fully computerized generation
of realistic CRN models. Although the development of satisfactory algorithms is an
extremely challenging task, the rewards of being able to automatically generate any number
of such models without spending the time and effort needed to build each one of them atom by
atom by hand, will certainly be very significant. The recent models of Wooten et al. [13]
and of Lapiccirella et al. [14] are especially noteworthy. These have been built entirely
by a systematic computer algorithm, and can be distinguished from hand-built models by the
fact that they can be computer-relaxed to minimize the free energy by controlling the bond
stretching and bond bending distortions.

The algorithm of Wooten et al. [13] enables the generation of realistic CRN structures with
periodic boundary conditions. The resulting structures have no long range order, and
contain 5-fold and 7-fold rings in addition to the é-fold rings which are the only type of
rings present in the crystalline (diamond) structure. On the other hand, short range order
is preserved, i.e., the atoms remain fourfold coordinated with bond lengths and bond angles
occupying narrow ranges around the crystalline bond length and tetrahedral bond angle
respectively. The algorithm consists of two stages: (1) Starting from a large cluster with
the diamond structure, long range order is destroyed and an amorphous structure is generated
by several bond switching steps. (2) After an amorphous structure is obtained, further bond
switches are performed to selectively lower the energy of the structure. At a given
temperature T, a random topological rearrangement is accepted with a probability p=1 if the
energy is reduced, and probability p=exp(-AE/kT) if the energy is increased by AE. This
second stage might cause the amorphous structure to either revert to the initial diamond
structure, which is the absolute minimum on the potential surface, or stabilize to become a
truly metastable amorphous CRN, which is a relative minimum on the potential surface. The
CRN structures obtained at the end of the algorithm give excellent agreement with the
results of neutron diffraction experiments. Another noteworthy aspect of this work is its
demonstration of how, as mentioned in Section I, advances in three-dimensional color
graphics technology and molecular graphics software can aid in the visualization of atomic
arrangement patterns in models of non-crystalline solids.



106 J. BICERANO AND D. ADLER

The algorithm of Lapiccirella et al. [14], on the other hand, starts with a small, initially
relaxed cluster, and adds atoms sequentially. Each new atom is added so as to saturate the
dangling bond nearest to the center of mass of the cluster. After the addition of each
atom, its position is examined relative to the other atoms in the cluster to prevent the
inclusion of unrealistic bonding configurations such as bond lengths not within 10% of the
normal bond length, multiple bonds, or 3-fold and 4-fold rings. After a few atoms are added
in a way which satisfies these constraints, the structure is partially relaxed so as to
avoid the generation of highly strained regions frozen in the bulk of the solid. When these
steps are repeated to generate the full CRN, the structure obtained is both non-defective
and spherical in shape. The spherical shape has the advantages of both minimizing the
surface of the growing cluster and producing a model similar to that derived for an infinite
number of atoms. 1In contrast to the algorithm of Wooten et al. [13] where all the atoms of
the final CRN are present in the starting large cluster with the diamond structure, the
algorithm of Lapiccirella et al. [14] can be visualized as consisting of the addition of
successive concentric spherical shells to an original nucleus.

Limitations of CRN models

Although the CRN model has occupied a central position in the modeling of the structures of
covalently bonded non-crystalline solids, it is by no means the only useful model. 1In fact,
there is evidence that it may not be strictly valid for many amorphous alloys.

One obvious practical limitation of any type of model for an amorphous material is that,
since there is no long range order and no repeating unit cell, any single structure, whether
built by hand or by computer, is non-unique and only represents one example of an entire
class of related conceivable structures. It has therefore been proposed [15] that the word
"model" be used for a specific well-defined algorithm or set of rules for generating
examples of such a related class of structures with any given number of atoms, rather than
being used for individual examples. The overall properties of the model can then be
determined by generating many examples by applying the algorithm and then averaging over
these examples.

Idealized CRN models do not ordinarily admit any defect configurations, which must be
introduced later. It is well-known from studies of crystalline solids, that defects and

impurities, which are often present in concentrations of less than one per 10~ atoms, are
crucial in determining important physical properties such as the magnitude of the electrical
conductivity. Defects play a similar, very crucial role in non-crystalline solids, in which
it is often much more difficult to pinpoint the specific types of defects involved and the
roles they play [16]. It can be expected that they arise when the energy increase of a
particular defect is comparable to that arising from the necessary bond distortions in their
absence. Alternatively, relatively low-energy defects can arise for purely thermodynamic
reasons [16]. In addition to dangling bonds, other types of point defects important in
amorphous materials include: (1) Valence Alternation Pairs (VAP's) [16,17]. These
low-energy defects are expected to be especially common in alloys which contain normally
two-fold coordinated chalcogen atoms. The lowest energy electronic state of a chalcogen
atom such as S, Se or Te is a two-fold coordinated neutral one, denoted by cl. 1n general,
however, it takes very little energy to break a bond and rearrange the resultant bonding

pattern to replace two such atoms by a triply coordinated positively charged (C;) and a
singly coordinated negatively charged (Ci) atom, in a reaction which might formally be

represented as 20260++C£. Both C; and C, are low-energy defects since they have a filled

outer octet of electrons, and no electrons in anti-bonding states. (2) Charge Transfer
Defects (CTD's) [16,18] in tetrahedrally bonded amorphous semiconductors such as a-Si and

a-Ge, in which the lowest energy configuration is denoted 19.  These CTD's can be
represented as a pair of positively and negatively charged atoms with one or two broken
bonds (T++T‘ and TZte1Z” respectively). These are not low-energy defects, but, as is
discussed later, are expected to arise from strains upon processing.

A fipal limitation of CRN models, relevant to their application to alloys, is their
assumption of chemical ordering, i.e., an inferred strong preference of atoms to bond more
favorably with atoms of different kinds than with the same kind. For example, in a'ASZSEB’
it is assumed that only As-Se bonds are present, although one would expect some As-As and
Se-Se bonds to also be present as low-energy defect configurations, on simple thermodynamic
grounds. In standard CRN models, homonuclear bonds are only allowed in non-stoichiometric
alloys (e.g., in Asl 9Se3.2 for which it is clearly impossible to find enough As atoms to
satisfy the valence requirements of all the Se atoms). Because of all the limitations
summarized in this subsection, CRN models should be viewed mainly as useful idealizations of
the actual structure, and the possibility of significant deviations from them should be kept
in mind whenever a new material is studied.
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Alternative models for covalent amorphous solids

The earliest structural model for covalent glasses was Lebedev's microcrystallite model [19]
which assumed that the structure of glasses consisted of microcrystalline units. This model
was challenged and eventually replaced by Zacharaisen's CRN model [2,4,5]. Not
surprisingly, however, it is possible to find materials where neither the microcrystallite
model nor the CRN model is completely adequate to represent the structure and bonding.
Borate glasses are examples of such alloys. Extensive nuclear magnetic resonance (NMR) data
[20] support the hypothesis that borate glasses such as a-B203 are not composed primarily of

CRN's of individual 304 and BO} units. Instead, these small units form structural groupings

such as boroxyl, diborate and metaborate units similar to the groupings that exist in the
crystalline compounds of the particular borate system. Some of these structural groupings
are illustrated in Fig. 3 [20]. These larger (but still quite small) units are then
connected randomly to each other to form the glass structure. The situation is therefore
intermediate between the microcrystallite and the CRN models. It has also been pointed out
[21] that for many types of glass structures it is the intrinsically broken chemical order,
i.e., deviations from perfect chemical ordering which are present even in stoichiometric
alloys, that generates the defects which control the electronic properties of the
materials. This possible limitation of the Zacharaisen model can be seen from hyperfine
effects, i.e., the proposed clustering into "molecular cluster networks" [22] of large
morphologically and stoichiometrically distinct molecular clusters such as "chain" and
"raft" configurations via molecular phase separation with intrinsically broken chemical
order [21], and exciting recent Mdssbauer [23], infrared (IR) [24], and Raman [24]
experiments.

Fig. 3. Structural groupings in 1lithium borate glasses.
Solid circles represent boron atoms, and open circles
represent oxygen atoms. An open circle with a negative
sign indicates a non-bridging oxygen. (a) Boroxol unit;
(b) pentaborate unit; (c) triborate unit; (d) diborate
unit; (e) metaborate wunit; (f) pyroborate unit; (g)
orthoborate unit; (h) loose BO, unit. A tetraborate unit

is formed by connecting one oxygen of the BOA unit in the
triborate unit to a BO)’ unit of the pentaborate unit [20].

These experiments are instructive since they probe the local environments around the atoms,
rather than providing statistical averages over the bulk material. Their interpretation,
however, is a matter of considerable controversy at the present time. As further Mdssbauer,
IR and Raman data become available and properly interpreted, a deeper understanding of the
nature of the various types of glass structures is likely to emerge. After more than half a
century, the field is still open for significant new conceptual advances!

RCP (random close packed) models for metallic glasses

The RCP (or alternatively DRP) models presently provide the most satisfactory
representations for the structures of amorphous metals [2,4]. A traditional method for
generating RCP type models is as follows [2]: A large number of hard spheres of uniform
size are quickly poured and packed into a container having irregular surfaces, resulting in
disordered configurations. The coordinates of the sphere centers are then determined by
direct measurement. The overall long range interparticle attraction is usually provided by
compression and gravity, while the short range repulsion is provided by the impenetrability
of the balls used. Just like the CRN models for covalent amorphous solids, the resulting
RCP structures are metastable, i.e., local minima on the free energy surface. Such models
include those of Bernal [25], Scott and Kilgour [26], and Finney [27]. Fig. 4 [28] shows an
example of a portion of an RCP structure.

Since atomic orientations in metallic glasses are much less directional than in covalently
bonded solids, it is easier to write satisfactory computer algorithms to generate RCP
structures than CRN structures. The earliest such computer program for the disordered
packing of hard spheres was written by Bennett [29].
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Fig. 6. Schematic sketch of the random coil
model for polymeric glasses.One polymer chain
has been "labeled" for ease of visualization [2].

Fig. 4. Computer-generated portrait of a
100-atom portion of a random close
packed (RCP) structure [28].

Fig. 5. (a) A boron atom (small filled circle) surrounded by six Ni atoms at the vertices of
a trigonal prism and three further "capping" atoms forming half-octahedra (only one of which
is shown). (b) The structure of Ni3B showing a plane through the boron-centered trigonal

prisms. Note the edge and vertex linkages. (c) Dissection of the structure into "arrow-
like" units consisting of a trigonal prism "tipped" with a tetrahedron and with a half-octahe-
dron as the "tail". (d) Dissection emphasizing the arrangement of tetrahedra and octahedra [30].

The RCP model for metallic glasses is clearly a direct analog of the CRN model for covalent
amorphous solids. There is, however, evidence that the local environment of certain atoms
in glassy metallic alloys is well-defined [30]. For example, the structures of transition
metal/metalloid glasses such as Ni,B seem to be be best represented by a 9-atom polyhedron
centered on B, and likely to be atricapped trigonal prism; therefore, the best structural
models of such glasses may be generated not by random close packing of individial atoms, but
by random close packing of larger structural units such as tricapped trigonal prisms,
tetrahedra and. octahedra. Fig. 5 [30] provides an illustration of these ideas, which are
similar, in the context of metallic glasses, to Bray's observations [20] of deviations from
the simple CRN model for the borate glasses. The lesson to be learned, again, is that the
homogeneous models of the atomic-scale structure of non-crystalline solids should not be
taken too literally, but should be viewed more as useful idealizations.

Random coil model for polymeric glasses

This model, sometimes called the spaghetti model, is due to Flory [31]. It can be viewed as
an analog of the CRN and the RCP models, subject to the same types of limitations, and
especially designed for organic polymeric glasses such as polystyrene. It is based on the
random-walk configurations adopted by flexible, interpenetrating and intermeshed polymer
coils. An example of a random coil model is sketched in Fig. 6 [2,4].

Conversion from RCP to CRN

Raman studies ([4] have been carried out on a-A5253 thin films, prepared by solvent
deposition from organic solution, in which the dissolved seed material originated from
crystalline A5253, amorphous Aszs3, and crystalline Asasa. Films derived from the two A5253
sources exhibit Raman spectra very similar to that of the bulk glass, suggesting a
predominantly CRN type structure. On the other hand, the Raman spectra of films
solvent-deposited from the Asasa source, as well as of vapor-deposited a°A5253’ can be best
visualized as containing predominantly RCP character, with the presence of rather spherical
molecular units of Asasa which are in a random close packing configuration. Upon annealing,

these spectra gradually evolve in time to spectra much more similar to those in the bulk
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Fig. 7. A possible bond reconstruction
mechanism for the digestion of a small molecule
by the extended network of a chalcogenide
glass. The bonds represented by the dotted
lines replace the ones represented by the
dashed lines [2].

Fig. 8. An illustration of ring size
and bond angle distributions [2].

glass, indicating that the structure is probably undergoing a phase transition from RCP to
the more thermodynamically stable CRN by the "digestion" of the Asasa molecular units in a

manner that is schematically represented in Fig. 7 [4]. This is a beautiful example of the
interrelatedness of the various types of structural models, as well as of some of the
subtleties involved (such as the significant effect of the method of preparation and
processing on the type of structure that results).

Comparisons with experiment

We have already mentioned the Mossbauer [23], IR [24], and Raman [4,24] experiments
performed to probe the local order, and the NMR experiments carried out on borate glasses
[20]. The most familiar types of experiments used for analyzing the structures of
non-crystalline solids, however, are neutron, electron, and x-ray diffraction [32], and
controversies are quite common between proponents of Mdssbauer and Raman experiments and
those of diffraction experiments concerning which type of experiment is more informative.
We feel that such controversies are unnecessary, since each type of experiment provides some
useful information not available from any of the others. It seems more fruitful to attempt
a synthesis of these results, with full awareness of the strengths and limitations of each
method. Furthermore, most of these types of experiments are not too different from the
techniques used by structural chemists in examining molecules, crystals, and biological
macromolecules. We therefore strongly encourage experimental structural chemists looking
for new challenges to consider getting involved in such experiments on amorphous solids.

Since amorphous solids lack periodicity, overall structural symmetry and long range order,
there is no simple structural formalism (such as a unit cell repeating by translational
symmetry) that can be used in the calculation of microscopic properties. The results of a
diffraction experiment can, in some rare cases, be non-unique even for a crystalline solid,
with the calculated set of vector distances corresponding to more than one possible set of
Cartesian coordinates. For non-crystalline solids, in which these experiments can produce
only a one-dimensional (scalar) correlation function (whereas the underlying structures are,
of course, three-dimensional), the ambiguity is far more severe. Agreement of the
predictions of a structural model with the diffraction data is therefore a necessary but not
sufficient condition for the validity of a model. In other words, although any model which
is inconsistent with carefully obtained diffraction data is certainly wrong and must be
rejected, even a model which gives a perfect fit has no guarantee that it gives the correct
structure, since other models may well exist that fit the data just as well [32].

Diffraction data from covalent non-crystalline solids are often divided into two classes:
(1) short range order, involving the order within a single structural unit and its
connection to its immediate neighbors [32], i.e., characterized by the coordination numbers
of the atoms involved, and the bond lengths and bond angles between them [33]; and (2)
intermediate (or medium) range order, describing the overall network topology, often
characterized in terms of the "ring statistics”, i.e., the distribution describing the
frequency of occurrence of n-atom rings as a function of n. An illustration of ring
statistics and bond angle distributions is given in Fig. 8 [2].

Wright remarks that when CRN models are constructed, whether by hand or by computer, and the
results are then compared with carefully obtained diffraction data, as shown in Fig. 9 [32,
34] for a-Ge, none of the models fits all of the major experimental features to within
experimental error, showing that there is probably still room for significant improvement in
structural modeling. On the other hand, Zallen [2] also compares diffraction data with
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Fig. 9. Correlation functions for
three different continuous random
network models of amorphous Ge (dashed
lines), compared with experimental
results [32].
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theoretical predictions for the refined versions of the tetrahedral CRN models, and for RCP
models of metallic glasses. He finds that the agreement is "truly impressive" for the
former, and "satisfactory overall" for the latter. This difference between the opinions of
two prominent scientists who are experts in the field on just how satisfactory the agreement
is points out the subjective nature of acceptability!

Synchotron radiation has recently become available, allowing researchers to perform x-ray
diffraction experiments at any wavelength of their choice, rather than being dependent upon
those wavelengths which are available from x-ray tube anode materials. This new flexibility
greatly enhances the power of diffraction techniques [35]. For example, the Extended X-ray
Absorption Fine Structure (EXAFS) method [35,36], one of the several new structural tools
which have come into its own after the availability of synchotron radiation, allows the
acquisition of data on the average atomic arrangement around each particular type of atomic
species in an alloy, rather than an average over the entire material. For example, an
application of EXAFS to a-A52533 can yield information about the average local environments

around the As and the Se atoms separately, rather than an average over both types of atoms.
EXAFS experiments are likely to become increasingly prominent in the future, among the most
powerful techniques for investigating the structures of non-crystalline alloys.

Recent work by Cervinka et al. [37] on the study of two-dimensional models of disordered
structures by optical (Fraunhofer) diffraction, promises to contribute further to the
understanding of x-ray and neutron scattering due to intermediate range ordering. Another
new approach to understanding intermediate range order, based on IR absorption via
vibrational modes, has been applied by Lucovsky and Wong [38] to amorphous selenium, and in
particular, to the sequence of dihedral angles in this material. They find [38] that the
chain model which best replicates the IR properties of a-Se is one in which the magnitude of
the dihedral angle is fixed, while the phase of the dihedral angle (*) varies in a random
way along the chain. 1In the absence of long range periodic order, understanding the extent
and nature of intermediate range order is a challenging but crucial part of characterizing
the structure and understanding the properties of a material. It will, therefore, be very
fruitful to carry out detailed experimental and theoretical studies of intermediate range
order for many different types of interesting non-crystalline materials. (See Sections III,
VIII, and XI for further discussion and examples of intermediate range order.)

Data from measurements of optical and electrical properties can also provide valuable
structural information [2,3]. Some useful types of experiments involve measurements of
optical absorption, reflectivity or transmission as a function of photon energy; and
measurements of photoluminescence, photoconductivity and electrical conductivity. These
experiments provide information on electronic structure and on phonon (i.e., vibrational)
energy distributions, which can then be used to draw conclusions about the underlying
structure.

An example of how learning about electronic structure can help in understanding the
underlying atomic-scale structure, is provided by considering the results of electron spin
resonance (ESR) experiments. These experiments enable, for example, the observation of the
number of unpaired spins on neutral dangling bonds in a-Si, via their characteristic ESR
signal (g=2.0055). One can then use this information to infer the concentration of dangling
bonds present [16]. Such information on some of the prominent structural defects in the
material is very important to any understanding of its physical properties. In considering
an idealized structural model for non-crystalline solids, it has to be borne in mind that
defects can play at least an equally important role in them as they do in crystalline solids.
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11l. ORDER AND DISORDER

‘Amorphous’ is not ‘formless’

Non-crystalline solids have traditionally been referred to as "amorphous" solids. This is
unfortunate, because the word "amorphous", in its direct translation from its Greek roots
(a-, without and morphe, form), means "without definite form" or "shapeless" [39]. It
therefore, incorrectly implies that these materials lack any identifiable and well-defined
types of order, making it hopelessly difficult to study them systematically.

In reality, nothing could be further from the truth. A brief review of the structural
models presented in the previous section will immediately show that "amorphous" solids are
far from "formless", but in fact, have well-defined types of order, albeit different from
the monotonous repetitive patterns of crystalline solids. For example, the disappearance of
periodic order in continuous random networks is associated with a spread in bond angles,
while coordination numbers and bond lengths remain at their ideal values. The NMR studies
on borate glasses [20] suggest the presence of even more order, since it is whole structural
groupings, rather than individual atoms or small structural units, which are connected
randomly. The molecular cluster network models [22] assume the presence of large
morphologically and stoichiometrically distinct molecular clusters in glasses. The random
close packing models [2] for amorphous metals also have order imposed by the constraints of
the densest possible packing consistent with the impenetrability of the hard sphere atoms.
For many transition metal/metalloid glasses (such as NiBB), there seems to be even more
ordering, with polyhedral building blocks such as tetrahedral, octahedral, or tricapped
trigonal prismatic units of atoms forming the solid by random close packing [30]. Finally,
in the random ceoils of a polymeric organic glass [31], the long and flexible coils are
intermeshed in random-walk configurations as illustrated in Fig. 6, but each individual coil
is formed by the repetition (up to ~10” times) of a monomeric molecular unit, so that the
local environment of each atom, formed by those atoms (all within the same coil) to which it
is bonded, is quite well-defined. An individual styrene molecule, and the bonding pattern
in a coil of the polystyrene polymer [40] are illustrated in Fig. 10.

CH,;=CH ~CH;—CH—CH;—CH—CH,;—CH—~
@ peroxides,
Styrene Polystyrene

Fig. 10. (a) A molecule of styrene. (b) One coil of polystyrene,

formed by many (~107) monomeric units of styrene, three of which are shown.
Note the well-defined local environment of each atom in the coil.

Importance of short range order

As we have seen, the types of atomic-scale order observed in solids can be classified as
short range (or local), intermediate (or medium) range, and long range, depending upon how
far a predictable order extends when the arrangement of atoms is considered starting from a
given atom or region in the solid.

Crystalline solids are characterized by long range periodic order. The atoms are located in
a lattice generated by the repetition of a unit cell with a finite (usually small) number of
atoms. The constraint of three-dimensional periodicity imposes the severe limitation of the
existence of only seven crystal systems, 32 crystallographic point groups, and 230 space
groups resulting from the application of the translational symmetry operations of the
crystal [41].

This rigid long range periodic crystalline order, analogous to a regiment of soldiers in
formation marching in a parade, is absent from non-crystalline solids by definition. A
certain amount of intermediate range order may exist, however, as in the large and
well-defined molecular clusters of the molecular cluster network models [22] for covalent
glasses, the large structural groupings in borate glasses [20], the tricapped trigonal
prismatic building blocks in transition metal/metalloid glasses [30] and the sequence of
dihedral angles in a-Se [38]. Another interesting example of intermediate range order can
be found in the hydrogenated and fluorinated amorphous silicon (a-Si:H:F) alloys [42] used
for electronic applications (especially as solar cell materials). These alloys, when doped
with moderate to large amounts of phosphorus to make them n-type semiconductors, manifest an
intermediate range order similar to a microcrystalline state with a characteristic length
(average particle size) of 20 to 60&, as observed from Raman, electrolyte-electroreflectance
(EER) and transmission electron microscopy (TEM) experiments [43].

A very important factor in the determination of the structures and properties of
non-crystalline solids is the short range order around the atoms in the material [21]. This
local order can be considered in the context of a "total interactive environment" depending
on several factors including the nearest-neighbor bonding, the effects of chemical forces,
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and the electrical charge distribution, all of which are reflected in the overall
three-dimensional topology, in the nature of the electronic density of states distribution,
and in various excitational processes [44]. This total interactive environment encompasses
both the "normal structural bonding" consisting of the constituent atoms bonding with their
optimal coordination numbers and bond types, and the deviations from these optimal
coordination patterns, as represented by the "deviant electronic configurations" that are
caused by the various types of defect states and are essential to understanding important
phenomena such as the electrical transport properties [45,46].

A useful systematic classification of the types of nearest neighbor environments about
constituent atoms in a wide variety of non-crystalline inorganic solids has been presented
by Messmer and Wong [33] who characterize these environments in terms of three parameters:
(1) the bond angles sustained at a given atom by pairs of its nearest neighbors; (2) the
bond lengths between a given atom and its nearest neighbors; and (3) the coordination number
of a given atom. This classification scheme is very helpful in pointing out some of the
major structural trends in non-crystalline inorganic solids, and in demonstrating the
presence of systematic aspects in these "disordered" materials. For example, they observe
that the well-defined short range order around the central atom (Si, Ge or B) is preserved
in simple oxide glasses such as a-SiOz, a-GeO2 and 3-8203, where very strong bonds are

formed. The topological disorder in these glasses arises from variations in the X-0-X
angles over a wide range. In a majority of other non-crystalline solids, such as the
elemental semiconductors (i.e., a-Si, a-Ge, a-As, a-Se, etc.) and compound semiconductors
(such as a-GeSez, a-Aszs , a-As.Se,, etc.), the bond angles deviate from a single central

value, while bond lengths and coordination numbers remain at their optimal values for most
of the atoms in the material. In one glassy salt, a-Ber, the three parameters follow the

same trends as in the isostructural a—SiOz. In another glassy salt (a-ZnClz), only the bond

angles around Zn, but all three parameters around Cl, vary over a range of values.
Amorphous carbon (a-C) films formed by evaporation seem to be an intricate mixture of
three-fold (graphitic) and four-fold (diamond-like) coordination. These films have an
average C-C bond length and a C-C-C bond angle intermediate between those of diamond and
graphite, and a fractional average first coordination number between 3 and 4. Metallic
glasses such as Fe-P and Pd-Si alloys are characterized by ranges of values for all three
parameters around the metallic atoms (Fe, Pd), and well-defined sets of values for the bond
lengths and coordination numbers but ranges of values for the bond angles around the
metalloid atoms (P, Si). In general, more short range order parameters appear to be
preserved around those atoms and in those systems where the bonding is more strongly
directional [33].

Network momentum

We have already mentioned that the lack of a periodic structure makes it impossible to use
the standard concepts and techniques of crystalline band theory (such as Brillouin zones,
Bloch functions, k-space, etc.) which have been so useful in the understanding of
crystalline solids [47]. It is worth considering, however, whether the presence of at least
a quantifiable short range order in non-crystalline solids can be utilized to define an
analog of crystal momentum. It seems that such a generalization can be carried out, leading
to the idea of "network momentum" [48], an observable which commutes with the Hamiltonian
for the system. This quantity arises from order in the local environments of the atoms,
without requiring any long range order or overall structural symmetry. The network momentum
can be used as a conserved quantum number to classify stationary states of definite network
momentum. The Bloch waves of a crystal can be replaced by '"network waves". The
generalization of the Brillouin zone, i.e., the set of possible values of network momentum,
is the “"reciprocal network".

These generalizations have been applied [48,49] to systems with tight binding Hamiltonians
of the Thorpe-Weaire model [50] for networks of constant valency, and for extensions of this
model, useful for studying the electronic states of disordered solids. For example, a

three-fold coordinated model system, whose electronic basis set is taken to be the sp

hybrid orbitals directed along each bond, has been examined [48]. Future research will show
whether it will be possible to define infinite networks related to real materials, carry out
this type of analysis, and obtain physical insights as wuseful in understanding
non-crystalline solids, as the standard momentum space description has been in understanding
crystalline solids. At present, this seems like a possibility worth exploring further. It
seems, nevertheless, likely that the information that can be gained from the application of
such considerations to non-crystalline solids will never equal the amount, unambiguity and
accuracy of the information available from the momentum space description of crystalline
solids, whose structures can be better defined.

Icosahedral order

The question of the possible existence and properties of materials with icosahedral patterns
of atomic arrangement has recently become one of the most exciting fields of research in
solid state physics. The new understanding that is emerging out of this work not only
presents deeper insights into the nature of order and disorder but also seems to hold the
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promise of providing powerful new theoretical techniques that can be utilized to understand
a wide variety of structures within a unified formalism, and to discover hidden order in
non-crystalline structures.

An example of a perfect icosahedron occurring in chemistry can be found in the structures of
the boron hydrides [51,52]. Many fascinating polyhedral arrangements are possible with the

general formula BnH(r:\’ where the boron atoms occupy the vertices of a polyhedron, the

hydrogen atoms are directed outwards, and c=-2 in the vast majority of cases. By far, the
most stable of these polyhedra occurs for the icosahedral structure with n=12 [52], as shown

in Fig. 11.
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Fig. 11. Calculated energies per BH unit (E=|E|/n) Fig. 12. Three views of a regular
as a function of n for the preferred polyhedral icosahedron [53]: (a) Looking
B HZ™ structures [52]. down a face. There are ten
nn three-fold axes of  symmetry
connecting the midpoints of
opposite triangular faces. (b)
Looking down an edge. There are
15 two-fold axes connecting the
midpoints of opposite edges. (c)
Looking down a vertex. There are
six five-fold axes connecting
vertices at opposite ends.

Although the perfect icosahedron is a highly symmetric and very dense arrangement of atoms,
full icosahedral order is not possible in a crystal. The reason for this becomes clear when
we look at the three views of a regular icosahedron, as presented in Fig. 12 [53]. As the
view looking down from a vertex shows, an icosahedron possesses six five-fold symmetry axes,
each one connecting two vertices at opposite ends. It can easily be shown [41] that only
one-, two-, three-, four-, or six-fold axes of rotation are consistent with full
three-dimensional translational periodicity and therefore possible in a crystalline solid.
Full icosahedral order is therefore impossible. Any crystalline structure, where the local
bonding requirements can be best satisfied by icosahedral arrangements of atoms, has a point
group and a space group which are lowered from perfect icosahedral symmetry by distortions
of the icosahedra and/or connections of lower symmetry between the icosahedra. This can be
seen from the structure of elemental crystalline boron, where the most stable tetragonal and
rhombohedral allotropic forms contain units of nearly (but not exactly) regular icosahedra,
with various types of connections between these distorted icosahedra [53]. Electron
diffraction experiments on vacuum-deposited thin films of amorphous boron produced by
evaporation show that icosahedra are also the predominant structural units in a-B [54]. The
major difference from the crystalline phases is that these icosahedral units form a
three-dimensional continuous random network through quite random arrangements of the
icosahedra, with a random (disordered) distribution of the possible types of connections
between the icosahedral building blocks [54]. (This is also another example of an amorphous
material with intermediate range order, on the scale of the well-defined icosahedral units!)

The Frank-Kasper phases [55] of transition metal alloys are another example of broken
icosahedral symmetry. In these intermetallic crystals, the smaller transition metal element
at the center becomes surrounded by twelve larger atoms arranged like the corners of an
icosahedron. Distortions and different orientations of several icosahedra in a unit cell
then reduce the symmetry of the crystal to a point group and a space group consistent with
the existence of three-dimensional translational periodicity.
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Finally, it was pointed out a long time ago [56] that an icosahedral clustering of twelve
atoms about a central sphere is energetically preferable to crystalline packings for a
standard Lennard-Jones pair potential. This suggested that the short range order in simple
undercooled liquids and metallic glasses is predominantly icosahedral.

Orientational order without translational periodicity

It is possible for an arrangement of atoms to lack translational periodicity, but still have
orientational order, with long range correlations in the orientations of "bonds" connecting
nearest-neighboring atoms (bond-orientational order) or of molecular units
(molecule-orientational order).

Liquid crystals [57-60] are a well-known class of systems where very complicated types of
orientational order are important. These materials consist of long, rod-like organic
molecules which align themselves in complex patterns. They have proved useful as displays
in devices such as calculators and watches. They also hold promise for use in conjunction
with thin-film semiconductors in large-area flat panel displays. In addition, liquid
crystal phases are commonly encountered in biologically active systems, and are therefore
important in biophysics.

Fig. 13. Portion of a two-dimensional Penrose tiling
[61,62], illustrating a non-periodic system with perfect
bond-orientational order.

Systems with icosahedral order, which can not have translational periodicity, can
nevertheless have bond-orientational ordering. A simple example of how this might happen is
presented in Fig. 13 [61] for the two-dimensional Penrose tiling [62]. There are two
different "unit cells" in these tilings, namely the two different kinds of rhombuses, whose
packing generates the pattern depicted in Fig. 13. These tilings have manifest pentagonal
symmetry. Although the tile edges all lie along the axes of a regular decagon and the
tiling therefore has perfect decagonal bond-orientational order, it is not periodic. A
similar tiling in three dimensions by two polyhedral tiles that fill space in a way that
yields long range bond-orientational order without translational periodicity could form a
model for quasi-periodic structures with icosahedral order [61].

Icosahedral quasi-crystals

The possibility of an icosahedral phase with long range orientational order was first
inferred from computer simulations using the Molecular Dynamics technique [63,64]. A
first-order liquid-to-icosahedral phase transition was predicted from mean field theory
calculations [64,65]. These papers were excellent examples of major theoretical predictions
preceding experimental observation and leading the way in breaking new ground in materials
research, rather than following and trying to explain the experimental observations.

A very significant breakthrough occurred with the electron diffraction experiments of
Shechtman et al. [66], which indicated the existence of a metallic solid which diffracts
electrons with a very sharp pattern of diffraction spots like a single crystal, but has an
icosahedral point group symmetry inconsistent with the lattice translations of
three-dimensional periodicity. Grains of up to 2um in size with this structure form in
rapidly cooled alloys of Al with 10-14% Mn, Fe, or Cr [66] and entire grains appear to have
long range orientational order. The icosahedral phase forms during rapid cooling of the
melt by a nucleation and growth mechanism characteristic of a first-order phase transition,
and it is a truly metastable phase which is remarkably resistant to crystallization.

These quasi-periodic systems have been named "quasi-crystals" by Levine and Steinhardt
[61,67]. They are currently the subject of intense theoretical research aimed at
understanding their structures, properties and phase transitions, and their place in the
general context of classes of materials [61,67-71]. For example, it was shown [69], using a
theory of first-order phase transitions based on Jahn-Teller distortions [72], and the
results of SCF-X«-SW molecular orbital calculations on clusters representative of the local
crystalline environments of aluminum and Al-Mn alloys, that Jahn-Teller-like distortions can
account for both melting and glass formation. The simple chemical arguments on which this
theory is based can also be used to explain the observed stability of icosahedral structures
in Al-Mn alloys [69]. These calculations are especially worthy of study by theoretical
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chemists, since they illustrate how the standard computational techniques of molecular
orbital theory can be utilized to gain insights into novel structures.

The ideal composition and structure of the icosahedral quasi-crystal phase have been
inferred from the known phase diagrams of aluminum-transition metal alloys, and tilings in
three dimensions by rhombohedral tiles to produce the phases of interest have been discussed
[70].

The mean field theory and density functional theory treatments of quasi-crystals have been
considered in the context of the ordering in condensed phases produced by orientational
freezing in three dimensions [71]. The mean field theory treatment enables connections to
be made with theories of biaxial ordering in liquid crystals. The density functional theory
treatment has the advantage of not having any adjustable or unknown parameters. The
stability of the orientationally ordered phase, its density, and the entropy change upon its
formation, are all seen [71] to be determined, to first order in thermodynamic perturbation
theory, by the structure factor of the corresponding liquid phase. These approaches
represent the state-of-the-art and are also very valuable in learning more about icosahedral
order; however, they do not constitute easy and obvious entry points into the field for
theoretical chemists more accustomed to the traditional techniques of computational
chemistry.

It has recently been shown [73] that the electron diffraction data [66] can also be
explained in terms of a metastable cubic crystal with a large edge (~26.7R&) and a unit cell
containing approximately 1,120 atoms. This alternative explanation, which is firmly
grounded in traditional crystallography, does not require the postulation of the existence
of "quasi-crystals" as a new kind of matter. More accurate x-ray diffraction experiments
might help in deciding between these two explanations, one of which has a beautiful
conceptual framework, and the other one has the accumulated wisdom of traditional
crystallography, in its favor.

The curved space approach

A unified formal approach to understanding the structures of many classes of materials with
different types and amounts of order can be provided by viewing them as arising from
projections of regular polyhedra (polytopes) in a curved space onto the wusual flat
three-dimensional Euclidean space [68,74].

An example of a very simple projection from a two-dimensional space (a square lattice) to a
one-dimensional sub-space (a line of incommensurate slope which passes through the origin
but through no other lattice point), subject to a well-defined projection rule, is
illustrated in Fig. 14 [4]. All lattice points within a fixed distance of the line are
projected on it, defining the atom-center positions on it. Although the number of possible
ways one can project between spaces is much larger in higher dimensional spaces (whether
flat or curved), and the projection rules are far more complicated, Fig. 14 illustrates the
general idea.

Fig. 14. Projection from a two-dimensional
square lattice onto a one-dimensional
subspace (a line). The solid dots are
projected images of those square lattice
sites which lie between the dashed lines.
Since the line has an incommensurate slope
and passes through the origin but through
no other lattice point of the square
lattice, the site distribution obtained on
the 1line 1is only quasi-periodic, and
corresponds to a one-dimensional
quasi-crystal [4].

The curved space approach [74] examines hidden order in non-crystalline structures in the
light of topological and geometrical limitations, arising from the requirements of space
filling, imposed on the optimal short range order which would completely determine the
structure if the local interactions between atoms were the only important factors.

The failure of certain simple structural patterns, which would normally be preferred and
provide a dense and highly favored packing, to regularly fill (or "tile") the space, is
referred to as "frustration" [68,74]. A very important example of frustration (see Fig. 15)
is given by the fact that regular tetrahedra do not tile three-dimensional Euclidean space.

The cause of this frustratlon is that the dihedral angle of a tetrahedron (70. 50) is not a

sub-multiple of 2r (as 72° is), causing a misfit when one tries to propagate the tetrahedral
local configuration by completely surrounding a given bond with five tetrahedra, or form an
icosahedron by packing tetrahedra.
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a

Fig. 15. Regular tetrahedra do not tile three-dimensional Euclidean
space, resulting in "frustration" ([74]: (a) A regular tetrahedron. (b)
The failure of five regular tetrahedra to completely surround a given
bond. (c) The resulting failure of the packing of tetrahedra to form a
perfect icosahedron. One gets pseudo-icosahedral (dense packing or
polytetrahedral) models out of such a packing.

On the other hand, what is known as "polytope 120" [4,74] or "polytope {3,3,51", is a
regular polyhedron ("Platonic solid") in four dimensions. Its two-dimensional projection is
shown in Fig. 16. It has 120 vertices, all lying on the surface of a four-dimensional
sphere, which defines a curved non-Euclidean three-dimensional space, just as the surface of

Fig. 16. Two-dimensional projection of polytope
{3,3,5} [68].

a regular sphere defines a curved non-Euclidean two-dimensional space. Within this curved
three-dimensional space, the 120-vertex polytope forms a configuration in which five
tetrahedra fit perfectly around each bond, so that 600 tetrahedra completely tile this
curved space. Local dense packing is thus maintained everywhere. Topological frustration
is removed, at the expense of the introduction of curvature [4].

The mapping which is then carried out on the structure in curved space to generate a
projection to Euclidean space, is called "flattening", and can be likened to peeling an
orange by spreading out its crust on a plate. The localized distortions (i.e., defects)
caused by the mapping from a curved to a flat space, are called "disclinations" [74]. A
complete set of disclination lines, which forms a network, can cancel the curvature and
completely define the structure in Euclidean space. Many seemingly unrelated types of
structures can be generated by applying different types of disclination networks to the
{3,3,5} polytope or to other polytopes. This is performed by cutting the structure of the
polytope and adding or removing a wedge of material between the two lips of the cut [74].

The following types of structures are among those that have been treated thus far within
this unified framework:

1. The Frank-Kasper phases [55], including the Laves phase alloys such as Manz,
MgCu2 and MgNiz, are among the types of crystalline solids which can be generated
[68,74].
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2. The cubic Al5 (or B-tungsten) structure, which is a type of Frank-Kasper phase
represented by alloys such as w30, W}Si, Alv3, AuTi3, Cr03, etc. [75] can also be

generated [68,74]. These Al5 structures are especially important because the
superconductors with the highest critical temperatures (such as Nb3Ge and NbBSn)

are metastable Al5 phases [76].

3. Amorphous metallic alloys can be generated by using non-periodic networks of
disclination lines [74].

4. Covalently bonded amorphous semiconductor alloys (such as a-Si:H) can also be
modeled [77], although the existence of inhomogeneities in such systems presents a
problem.

5. Icosahedral quasi-crystals can be described in terms of the iterative flattening
of polytopes via hierarchical disclination networks [78].

6. Finally, the defects that introduce octahedral local configurations into RCP
models of amorphous metals, which can be predominantly regarded as random packings
of tetrahedra, are related to disclinations, and are referred to as "screw" axes or
"dispiration" [79].

The curved space approach is a promising technique for the analysis of amorphous structures
of simple stoichiometric compounds, although it would not be expected to give much insight
into complex multicomponent alloys. It also remains to be decided whether the approach has
real physical content, or whether it should be viewed more as a mathematical technique
unifying the treatment of these diverse structures in a mainly formalistic sense.

IV. MODEL SYSTEMS OF LOW DIMENSIONALITY

Real materials, of course, have a fully three-dimensional structure, although
quasi-two-dimensional arrays, e.g., graphite, and quasi-one-dimensional arrays, e.g.,
TTF-TCNQ, do exist. 1In any event, simple model systems with reduced dimensionality can be
studied with more accuracy than three-dimensional networks, and thus can provide useful
information about real materials provided that the right questions are asked [59]. For
example, under rather general conditions, concerning the range of the interparticle forces,
it can be shown that spontaneous crystalline order should not exist in one or two
dimensions. This very important theorem serves as a reminder that the real materials, such
as graphite and TTF-TCNQ, are indeed three - dimensional, even though it might be both a
convenient and a reasonable approximate model, at least for solving certain types of
physical problems, to view them as consisting of two-dimensional or one-dimensional arrays
respectively, embedded in the three-dimensional space. The application of similar
considerations to spin correlation functions shows that, in the absence of a finite magnetic
field or magnetic anisotropy, spontaneous ferromagnetic or anti-ferromagnetic order should
be thermally unstable, and therefore should not appear, in one or two dimensions [59].
Several model systems that have shed some light on specific unsolved problems have been
investigated recently, and are discussed in the remainder of this section.

Oone of the major unanswered questions is whether the non-crystalline atomic arrangement in a
glass is indeed a metastable equilibrium configuration that minimizes the interaction
potential. This has been shown to be the case for models with a small number of particles
(28], but has not been demonstrated for large systems. Schilling and Reichert [80] recently
considered an anharmonic one-dimensional chain with next-nearest-neighbor interactions that
introduce structural frustration. By introducing spatial chaos into the interactions via a
random variable in the potential energy, they were able to demonstrate that: (1) no
long-range order exists; (2) the structure factor contains extra peaks at special values of
the wave number, k, characteristic of short-range order; and (3) the density of states is
time-varying, leading to a power-law behavior of the specific heat that has been observed in
some real glasses [81].

A second unsolved problem is that of the dc conductivity of a material with static disorder
[82]. For one-dimensional solids, the exponential localization resulting from elastic
scattering leads to conductivity fluctuations even in nominally identical samples. Mello
and Kumar [83] applied the techniques of information theory to this problem, maximizing the
entropy subject to flux conservation, time-reversal invariance, and a particular scaling
law, and were able to calculate the movements of the resistivity in the limit in which the
length of the wire is long compared to the localization length. More work is necessary to
extend their solution to smaller wire lengths.



118 J. BICERANO AND D. ADLER

Another problem concerns the calculations of the configurational entropy of a CRN, a
difficult analysis to carry out in general. Some recent progress has been made by Klenin
and Promislow [84], who considered a two-dimensional case in which the four-particle
correlation function was constrained to take on only discrete values. The structure
analyzed was a two-fold and four-fold coordinated array of rectangular blocks with a 60°
bond angle at the four-fold-coordinated sites. They found sharp maxima in the entropy per

block at two-fold-coordinated sites with bond angles of 120° and 155°. For the former case,
the blocks form a hexagonal grid, while for the latter, a specific ring structure appears.
In both cases, the entropy maxima signify a relative lack of interference within the
conditions of dense packing. Such models clearly give some insight into the general nature
of random networks. It is interesting to speculate that the possibility of doping amorphous
semiconductors arises from the tendency of CRN's to choose the bonding configurations that
avoid interference between atoms.

V. CHEMICAL BONDING CONSIDERATIONS

The importance of chemical bonding considerations

We have already made use of chemical bonding considerations in our discussions of the
structural models used in describing non-crystalline solids (Section II) and of the nature
and extent of order in disordered structures (Section III). The short range order in an
amorphous solid is primarily determined by the local chemical bonding requirements of its
constituent atoms. The extension of these local configurations into three-dimensional
solids generates structures which can be described by ‘\a variety of models such as CRN,
molecular cluster network and RCP models. The intermediate range order observed in some
materials, as manifested in the large structural groupings in a-8203 [20], the tricapped

trigonal prismatic building blocks in transition metal/metalloid glasses such as Ni,B [30],

the sequence of dihedral angles in a-Se [38], the microcrystalline-like order in a-Si:H:F
alloys doped with moderate to large amounts of phosphorus [43], and the icosahedral
structural units in a-B [54], is also primarily due to the special stability of such
structural configurations where the chemical bonding requirements of the constituent atoms
are well-satisfied. On the other hand, it was seen to be impossible to completely fill
space by packing some simple structural units, such as tetrahedra, which are often the
favored types of short range order for a given set of constituent atoms. This "topological
frustration", which often prevents the optimum local environment from being fully propagated
in three dimensions, was seen to possibly form the basis for a whole new and unified
framework for understanding many types of materials.

The purpose of the present section is to focus in more detail on the chemical bonding
considerations of importance in understanding non-crystalline solids. There is clearly a
lot that chemists can contribute to the understanding of non-crystalline solids, along the
lines of the work described in this section.

It is possible to synthesize amorphous materials that have no crystalline analogues, but
possess interesting and even unique physical properties [21]. This extra degree of
compositional freedom, which introduces a whole new dimension to the science and technology
of non-crystalline solids, is due to the types of chemical bond distributions possible in a
structure in which long range order is absent. These considerations have been presented
[85] in the form of seven "basic rules of amorphicity", which summarize the basic
"anti-crystalline"” chemical bonding configurations and their structural and physical
implications. The most important conclusion of this work [85] is that deviations from local
order, as reflected by the deviant electronic configurations and the total interactive
environments, control the fundamental physical properties (such as transport properties) of
non-crystalline materials just as perturbations of periodicity control those of crystalline
materials.

Glassy alloys

Threshold switching alloys such as SimGe7As35Teao, and memory switching alloys such as
GelSTeBlSDZSZ and GeZATe72$b252’ have a special place among amorphous solids with
nocrystalline analogues. The discovery of reversible switching phenomena in such alloys
[86], in which the motivating potential can either be electrical (application of a large
voltage, resulting in an increase of electrical conductivity by several orders of
magnitude), or optical (application of laser or xenon flash lamp pulses, resulting in a
sharp change in reflectivity), induced a rapid increase in both basic and applied research
on amorphous solids.

The most important short range order parameters in the description of structure and bonding
in glassy alloys, such as in the three compositions mentioned above, are the coordination
numbers C of the elements entering the alloy and the bond energies D between the elements.
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Fig. 17. The glass transition temperature T_ as a function of the optical
gap energy an for alloy compositions with fixed values of the average
coordination number T [87].

An elegant experimental demonstration of the importance of these parameters has been
provided by deNeufville and Rockstad [87] in their empirical "Tg-Eg-C Correlation":

o
ngTg

illustrated in Fig. 17. Here, Tg is the glass transition temperature of the alloy;

T8z340120°; C is the average coordination number; an is the energy at which the optical

absorption coefficient is lOacm']‘ and is a measure of the optical gap Eg and of the

energies of the_weakest bonds in the alloy; and B is a linear proportionality constant for
each value of C. Clearly, T_ increases (i.e., the glass becomes more stable) both as C
(cross-linking) increas_es, and as E 4 (an index of the strengths of the weakest bonds)
increases. The "T_-E_-C Correlation" is discussed further in Section VIII, as an example of
the importance of network rigidity in alloy glasses.

+ B(C—Z)an

A semi-quantitative approach which uses these coordination number and bond energy parameters
and some simple rules for obtaining optimal chemical bond distributions in a glassy alloy,
has been discussed by Bicerano and Ovshinsky [88]. The only assumptions used in this simple
model involve: (1) the preferred coordination numbers of the elements; (2) the maximum
amount of chemical ordering possible, to determine gross overall structural features; and
(3) the formation of bonds in the sequence of decreasing bond energy. This simple approach
provides useful information concerning T_, cohesive energies, the numbers and compositions
of phases expected to be present, bond dglstributions, and electrical properties such as the
conductivity and switching phenomena.

Phillips [89] has presented calculations of the experimental heats of formation of
crystalline A52X3(X=S,Se,Te) and GeSe2 based on chemical bonding considerations related to

the competition between charge transfer and lone pair resonance screening. Similar
considerations can also be useful for the amorphous analogues of these and other similar
types of alloys, especially since "metastable" amorphous local minima on a potential surface
are usually only slightly higher in Gibbs free energy than the corresponding crystalline
minima for the same material.

Materials with predominantly tetrahedral coordination

Elemental tetrahedrally bonded non-crystalline solids such as a-Si and a-Ge have extremely
high concentrations of point defects (e.g., dangling bonds), making them unsuitable for
semiconductor device applications, including thin film transistors and solar cells. To
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overcome this problem, these elements are alloyed, usually with H [90], or with both H and F
[42]. These alloying elements, which have low coordination numbers, decrease the strain
energy of the tetrahedral network by reducing its average coordination number, and also act
as dangling bond terminators [21,85]. As a result, semiconducting materials of much lower
intrinsic defect density and higher quality are obtained.

Grigorovici and Gartner [91] have used non-equivalent s-p-d hybrid bonds to quantitatively
describe the local angular and radial distortions of elemental metastable crystals and
random network models of the non-crystalline phase in tetrahedrally bonded elemental solids
such as Si and Ge. This approach is similar to the point of view used in crystal chemistry,
where the bonds are supposed to adapt themselves to the new geometry in order to eliminate
strain. It is shown [91] to be preferable to the alternative model of an elastically
strained structure with invariable chemical bonding. The sizes of the small d orbital
contributions seem to primarily determine the amount of energy stored in a-Si and a-Ge, so
that in this model, elastic strain is replaced by electronic excitation, namely, by the
promotion of valence electrons to d orbitals in different quantities.

Manaila et al. [92] have used EXAFS phase shift experiments to examine the differences in
chemical bonding between crystalline and amorphous Ge. They observe that the total phase
shifts for Ge-Ge pairs in c-Ge and in a-Ge are different, so that these phase shifts are
sensitive to whether the structure is crystalline or amorphous. Their work is another
example of the growing use of the EXAFS technique [35,36] for studying structure and bonding
in the non-crystalline state.

Popescu [93] has attempted to explain the major deviations from linearity observed in
physical properties when two monovalent alloying elements such as H and F, or H and Cl, are
simultaneously included in thin films of a-Si, as compared with the cases when they are
included separately. He uses a random network model in which the bound alloying elements
involve different sites of the network. In this model, only H can penetrate in small voids,
while F or Cl usually satisfy surface dangling bonds or eliminate strained bonds in bigger
voids. The conclusion drawn from this work is that chemical bonding considerations (in this
case, the sizes of the halogen atoms and the strengths of the silicon-halogen bonds), are
the key factors governing the behavior of these materials.

Metallic systems

An interesting example of the use of chemical bonding considerations in non-periodic
metallic systems has recently been provided by McAdon and Goddard [94], who examined
numerous Li atom clusters (up to 13 atoms) with the generalized valence bond (GVB) method
[95,96]. They concluded [94] that the optimum metallic bonding involves singly occupied
orbitals localized interstitially, i.e., in bond midpoints, triangular hollows, and

tetrahedra. For Lit , the low energy isomers have local five-fold symmetry axes (as in an

icosahedron), but lead to low overall symmetry. The guiding principle is that the
structures optimize the number of tetrahedral hollows while keeping the sharing of vertices
below a given threshold. The optimum structures are significantly more stable than the
high-symmetry icosahedral, hcp-like and fcc-like clusters. McAdon and Goddard [94] suggest
that these results will form a useful starting point in developing valence bond ideas for
predicting geometries, electronic structures, and properties of metallic clusters, and for
describing localized phenomena in solids, such as the nature of defects or interfaces, as
well as providing useful conceptual ideas for predicting the chemistry and catalytic
properties of such systems and for predicting the factors controlling stabilization of
amorphous systems.

Recent research on the universal features of bonding in metals, including the demonstration
of a simple two-parameter scaling under which binding energy-distance relations for metallic
systems exhibit a universal behavior, suggest a commonality of metallic bonding as well as a
close relationship between molecular and metallic bonding [97]. Similar scaling
considerations might also be useful for understanding amorphous metallic systems.

Another very significant recent contribution to understanding chemical bonding in metallic
systems is the work of Gelatt et al. [98] on the theory of the chemical bond in crystalline
transition metal/metalloid alloys. These authors show that rather different types of
bonding result when the atomic s and p levels of the non-transition element lie above,
below, or near the transition metal d level. They also show that the heats of formation of
these alloys result from the competition between two simple physical effects: (1) the
weakening of the transition metal bonds by the lattice dilation required for the
accommodation of the larger non-transition element, and (2) the increased bonding which
results from the occupation of the bonding members of the hybrid states formed from the
interaction between the transition metal d states and the s and p states on the
non-transition element. Although this work was carried out within a crystalline framework,
the resulting chemical insights are clearly also useful for understanding analogous
non-crystalline alloys.
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VI. THERMODYNAMIC AND KINETIC CONSIDERATIONS

It is a basic tenet of modern science that any collection of atoms arrange themselves so as
to attain the state of lowest Gibbs Free Energy, G, at the ambient temperature and pressure;
however, this turns out to be somewhat naive when applied to the solid state. 1In fact, it
is not clear that any non-crystalline solid attains the state of absolutely lowest G at any
temperature and pressure. By definition, a solid is a material whose shear viscosity

exceeds the order of 10 N—s/m2. Such a viscosity implies that a shear stress of 1IN applied
to a lcm cube of material would take about a year to produce a displacement of 30um, a
barely measurable deformation. Although this definition is completely arbitrary, few would
deny that a system with an atomic relaxation time of the order of a year is indeed solid.

In contrast, typical liquids have viscosities less than 1N-s/m“, so there is ordinarily no
difficulty in differentiating between the two phases; however, it is precisely the lack of
atomic mobility in solids that enables the formation of metastable phases, for which G is a
local but not a global minimum. Upon rapid cooling, thermal energy is extracted from the
system and metastable structures are "frozen in". A typical situation is sketched in Fig.
18 [2]. As the temperature of a liquid is reduced, one of two things can happen, depending
on the cooling rate: it can solidify discontinucusly via a first-order phase transition to a
crystal (curve a in the sketch), or continuously via a higher-order phase transition to a
glass (curve b). In the latter case, appropriate to rapid cooling, there is a region in
which the liquid is supercooled, but at the glass-transition temperature, T_, the viscosity
increases by many orders of magnitude to form a solid, identi%iable by the
characteristically low thermal-expansion coefficient (as well as by the large relaxation
times, often exceeding the age of the universe). Even crystals can be metastable: a diamond
may be forever, but if the universe lasts sufficiently long, it will eventually convert to
graphite. In popular usage, a non-crystalline solid capable of being quenched from the
liquid phase is called a glass. All glasses have a T_, although its value may vary somewhat
with the cooling rate. Some non-crystalline solids (ge.g., Si) can be formed only by direct
condensation from the gas phase; they are usually referred to as amorphous solids. Such
systems are not ordinarily describable in terms of thermodynamic equilibria; instead, growth
mechanisms and relaxation effects must be handled on a kinetic basis.

The details of the glass transition have remained elusive right up through the present, and
remain a fertile subject of research. Gibbs and DiMarzioc [99] provided a start by
considering a one-dimensional polymer and identifying T_ with the temperature at which the

configurational entropy vanishes. An alternative approach is the free-volume theory of
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Fig. 18. The two cooling paths yielding solids:

(a) slow cooling, producing a crystal;
(b) rapid cooling, resulting in a glass [2].
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Cohen and Turnbull [100], which focuses on the volume available for the atoms (treated as
hard spheres) to move within their environment in the liquid phase. The glass transition is
then identified as the point at which the unoccupied space (the free volume) drops below a
critical fraction of the total volume. A further discussion of the glass transition appears
in Section XII.

Clearly, thermodynamic and kinetic considerations are central to an understanding of the
formation and structure of non-crystalline solids. One of the prime movers in this field
has been Turnbull [101], who has drawn attention to the necessity for suppressing
crystallization. This requires a kinetic resistance either to nucleation or to growth.
Recent work [102] has focused on the resistance to nucleation of some structures in the
supercooled-liquid regime between the melting point, Tm, and T_. Turnbull points out that

many glasses exhibit a high resistance to nucleation, 1indicative of a necessary
reconstruction of the short-range order in this process (and also strong evidence against
microcrystallite models for the structure of glasses). In many covalently bonded glasses,
the activation energy for growth is approximately equal to the primary bond energy. One
glass, 8203, may be anomalous because of the unusual chemistry of boron. A modern view of

resistance to nucleation in many systems would involve reconstructions from icosahedral
short-range order to crystalline close-packed structures. Actually, this was first
suggested over 30 years ago [56]! See Section III for a more detailed discussion of
progress in this area.

The free-volume model has been refined recently. Cohen and Grest [103] applied percolation
theory to calculate the communal entropy, the entropy difference between a freely flowing
and a confined system of atoms. With this, they were able to analyze the thermodynamics of
the glass transition. One weakness of their result is the prediction of a first-order
transition, in disagreement with experiment. Chow [104] was able to derive equations of
state, non-equilibrium equations, and relaxation functions by analyzing the situation in
which a distribution of free volumes with different creation energies collapses. In
contrast, Ibar [105] has pioneered a kinetic approach based on the assumption that a
non-equilibrium state can be achieved under non-isothermal conditions if the free energy
remains at its equilibrium value at the corresponding temperature. He finds it necessary to
add a term to the free energy that has no obvious physical interpretation, but he can then
correlate a great deal of data on polymeric systems.

Vil. DYNAMIC SIMULATIONS

Dynamic phenomena

In the previous Section, we discussed the continuous nature of the glass transition, and
pointed out that a glass can be regarded as a liquid of extremely high viscosity, in which
crystallization has been bypassed via rapid cooling, preventing the thermodynamically most
stable crystalline configurations from being attained. The resulting glassy structures form
thermodynamically metastable states, i.e., local free-energy minima stabilized by the large
potential barriers separating them from the lower-lying crystalline absolute minimum and
possible crystalline local minima for the same composition. A very informative and readable
description of the physical phenomena involved, has been provided by Stillinger and Weber
[106].These authors show how the classification of potential minima (i.e., of mechanically
stable molecular packings), offers a unifying principle for understanding properties in the
solid state. They show that this approach permits identification of an inherent structure
in liquids that is normally obscured by thermal motions. Melting and freezing are shown to
occur through characteristic sequences of molecular packings, with a defect-softening
phenomenon underlying the fact that they are thermodynamically first order phase
transitions. Glass transitions and associated relaxation behavior are then explained by the
topological distribution of feasible transitions between contiguous potential minima.

Types of dynamic simulations

Computer simulations of such dynamic phenomena, are extremely valuable for understanding
what sequences of events take place, as well as for checking the validity of microscopic
models, of theoretical assumptions and of empirical approximations. The two major types of
dynamic simulations are the "Molecular Dynamics" and the "Monte Carlo" methods. 1In the
present subsection, we will briefly summarize these two methods, combining the descriptions
given by Zzallen [2] and by Ziman [59]. The reader interested in more details should refer
to these two excellent books. Ziman [59] also provides the historical background, and gives
references to the pioneering contributions of workers such as Alder, Wainwright, Rahman,
Verlet, Stillinger and Metropolis.

Consider, first, a collection of "hard-sphere molecules", described by perfectly rigid,
non-interpenetrating balls of uniform size. The physical system which most closely
approaches this description is an ensemble of closed-shell inert gas atoms such as He, Ne,
Ar, Kr and Xe. In this idealization, the intermolecular (or pair) potential energy function
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is:
V(r)
v(r)

In these equations, D is the hard-sphere diameter, r is the separation between the centers
of mass of the two "molecules", and the infinite term provides for the infinitely steep
hard-sphere repulsive potential at short distances.

0 for r>D, and
o for r<D.

o

This hard-sphere pair potential function is obviously a gross approximation to the correct
general form of V(r), which is illustrated in Fig. 19. The ideal situation would be to have
the exact form of V(r) available from an accurate quantum mechanical calculation; however,
it usually is not available. Mathematically convenient and reasonably realistic approximate
general forms must therefore be sought. One such widely used form is the "Lennard-Jones
6-12 Potential":

V(D) = 4el(-2)12 - (2%,

which was previously cited in Section III in the context of Frank's work [56] on
icosahedral order. In this equation, the first term provides a steep repulsive interaction
at short distances. The second term provides a long range van der Waals attraction falling

off as 1/r°. The characteristic length and energy scales for the V(r) describing a
particular system, are selected by setting the dimensional quantities o and e,
respectively, to appropriate values.

The Molecular Dynamics method consists of solving the classical equations of motion and
thus following the individual trajectories of several hundred molecules interacting via the
chosen form of V(r), given a set of initial positions and velocities, and making full
allowance for the mutual interactions and collisions of these molecules. It has the
advantage of simulating the motion of individual molecules, and therefore yielding useful
detailed information about diffusion, correlations of velocities, correlations of the
motion of neighboring molecules, etc.

In Monte Carlo simulations, a sequence of configurations is constructed by successive
random displacements deriving from a random number generator. The name "Monte Carlo" is
related to the similarity between this procedure and the roulette wheel used in the world's
gambling capital. The simulation of the actual physical system of interest is assured by
the use of the canonical ensemble, in which each configuration {fi} appearing in the

sequence, appears with a probability proportional to the Boltzmann factor,
>
exp [-V{rj}/kT],

where V{?i} is the total potential energy of the configuration, obtained as a sum of the
pairwise interactions {V(r)} between the molecules.

v(r)

Fig. 19. General form for the interaction
energy of a pair of molecules [2].

ENERGY V(r)

INTERMOLECULAR SEPARATION r

Unlike the Molecular Dynamics method, the particle trajectories obtained via Monte Carlo
calculations do not necessarily obey the equations of motion along the path; therefore,
time-evolved trajectories cannot be obtained. The advantages of the Monte Carlo method are
that, for a given amount of computer time, one can deal with more particles, and perform a
larger number of "moves".

Both methods can be used for the calculation of reasonable values for equilibrium
thermodynamic properties, by averaging over the -configurations obtained. Molecular
Dynamics calculations correspond to constructing an ergodic path through a microcanonical
ensemble in the phase space of the model assembly, while Monte Carlo calculations
correspond to computing averages over the canonical configurational ensemble.
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Some recent applications

A detailed discussion of the vast amount of literature on the applications of dynamic
simulations to physical systems is outside the scope of this review. We will instead
briefly review some of the most interesting recent results, in order to give the flavor of
this field, which is likely to gain even more importance with the advent of more powerful
computers, as discussed in Section I.

Soules [107] has provided an extensive review of recent Molecular Dynamics and Monte Carlo
calculations of glass structure and of diffusion in glasses. He has pointed out that, in
general, the structures obtained closely resemble continuous random networks [5]. For
example: (1) Silica glass has a cage-like structure resembling a randomly distorted
high-cristobalite. (2) 1In simulated sodium silicate glasses, Na ions create non-bridging
oxygen atoms and occupy interstitial sites with no well-defined coordination but a most
probable coordination number of five. (3) Vitreous 8203 contains planar regular

triangles linked at apices to form a random network of ribbons and sheets. The Molecular
Dynamics structure of a—8203 does not contain boroxyl rings. (4) In sodium borosilicate

glasses, the trigonal-to-tetrahedral conversion of B with the addition of Na, agrees with
the NMR results of Yun and Bray [108]. (5) In sodium aluminosilicate glass simulations,
aluminum atoms always prefer four-fold coordination, regardless of the concentration of
Na,0.

2

Soules [107] noted that all of the simulated glasses undergo a kinetic glass transition as
they are cooled. Glass formation occurs when the system reaches a temperature at which the
network-forming cations and anions cease to diffuse on the time scale of the Molecular
Dynamics runs. "Computer experiments" can be meaningfully performed on the thermodynamic
and kinetic properties of these dynamically simulated network glasses and liquids,
especially at very high temperatures where the atoms are freely diffusing on the time scale
of the "experiment", and at low temperatures where the system is frozen in the atomic
configuration of a glass. Reasonable agreement is obtained with experimentally determined
values of the properties.

Another interesting recent application of Molecular Dynamics simulations has been to the
investigation of the normal modes of an amorphous solid, to study the onset of localization
of modes in a Lennard-Jones-type frozen fluid, which is a true interacting many-body system
[109]. This work has then been extended to the calculation of longitudinal and transverse
excitations in a monoatomic, close-packed glass formed by particles interacting via a
Lennard-Jones pair potential [110]. The dispersion relations obtained for the longitudinal
modes look very similar to the results for polycrystalline materials, with the longitudinal
dispersion curve showing a remarkably deep minimum at the wave vector where the structure
factor has a peak.

Grabow and Andersen [111] have used the Molecular Dynamics method to generate model
structures of amorphous metal alloys such as Fe80P20, N180P20, Cu332r67 and Cu57Zra3. They

have compared their results with the results obtained by two other methods, namely, the
energy minimization of dense random clusters of atoms and the energy minimization of dense
random periodic structures. They indicate that the energy minimization of dense random
clusters can give structures very different from those of the other two methods even when
exactly the same interatomic potentials are used in the calculations, and that it should
not be trusted to generate structures to be compared with experiment. They show that
Molecular Dynamics is the only one of the three methods that provides a valid technique for
studying both the structure of amorphous metals and structural relaxation in these
materials.

Barnett et al. [112] have studied the glass transition, structure, and dynamics of a
Ca67Mg33 metallic glass via a new Molecular Dynamics approach incorporating the density

dependence of the potentials. They obtain results which are in agreement with neutron
scattering data. They find that the accessible configurational energy of the glass
possesses several nearly degenerate potential minima, in agreement with the general
physical picture presented by Stillinger and Weber [106].

Laakkonen and Nieminen [113] have used Molecular Dynamics to simulate the rapid quenching
of a liquid sample to obtain an amorphous state. The two sample systems they considered
were a collection of 1372 Ne atoms interacting with a Lennard-Jones pair potential, and an
Fe85B15 mixture of 1204 atoms interacting with a Morse-type potential. They obtain

reasonable radial distribution functions and distributions of bond angle cosines at a
temperature of 4.2K.

These examples should serve to illustrate the wide range of physical systems and important
problems which can be addressed via dynamic computer simulations, and the increasingly
significant role such simulations are certain to continue to play in the future. Further
discussion of the application of dynamic simulations will be provided in Sections XI and
XII.
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VII. ELASTIC AND VIBRATIONAL PROPERTIES

Relation to local structure

In Section II, we mentioned some of the IR and Raman spectroscopic experiments [4,24,38]
used to probe the structures of non-crystalline solids. The relationship between the
vibrational properties of an amorphous solid and its local atomic structure has been
reviewed by Lucovsky [24] in the contexts of oxide and chalcogenide glasses (such as a-Ger,

a—A5203, a-A5253 and a—GeSeZ), and of amorphous silicon-based alloys. The two major classes

of approaches to the theory of the vibrational properties of amorphous solids are: (1)
calculations based on finite clusters either containing a small number of atoms (generally
less than 10), or a large number of atoms (generally more than a few hundred), in either
case equivalent to calculating the vibrations of a large molecule; and (2) calculations
based on an infinite aperiodic structure with the same coordination number at each site and
with no closed loops, the Bethe Lattice, which is an artificial but useful model.

Calculations on the small clusters can be carried out with a variety of techniques,
including the familiar techniques of ab initio and semi-empirical quantum chemistry. On the
other hand, much simpler computational approaches, which make use of the fact that the
vibrational properties are largely determined by local structural features, are needed for
the large clusters containing hundreds of atoms. A common example of the use of such a
large cluster is in the calculation of the vibrational properties of a CRN model large
enough to adequately represent the bulk amorphous solid. The simpler computational
approaches then utilized usually make use of rotationally invariant interatomic potentials
with contributions from bond stretching and bond bending. Their physical meaning is
therefore very similar, in the context of modeling solids, to the physical meaning of the
Molecular Mechanics technique which also uses a "classical" central force model and is very
familiar to chemists who compute the structures and properties of large (but finite) organic
molecules and biological macromolecules.

The Bethe Lattice can easily be defined axiomatically, and used to facilitate the
theoretical solution of many important physical problems, even though it cannot be realized
as a physical system in a space of finite dimensionality since the prohibition against
closed loops causes an endlessly increasing density as the structure is extended. An
illustration of Bethe Lattices of coordination number 3 [2] and 4 [59] is provided in Fig.
20. In order to overcome the divergence problems encountered in the values calculated for
physical observables with the full infinite Bethe Lattice which "overfills" space with an
infinite density, "Cluster Bethe Lattice" calculations are often performed by arbitrarily
truncating the full Bethe Lattice into a cluster with a finite number of atoms, often 20 to
25. Once the Bethe Lattice has been truncated into a finite cluster, the rest of the
calculation is clearly no different from a calculation on a finite cluster whose atomic
positions have been determined or assigned by any other method.

For the oxide and chalcogenide glasses, the Bethe Lattice method can be used to calculate
local vibrational densities of states, the IR dielectric constant, and the polarized and
depolarized Raman response functions [24, 114]. The glasses of interest fall into two
classes: (1) those displaying strong, sharp polarized features in their Raman spectra,
indicative of intermediate range order, usually due to small rings of bonded atoms (examples
of this class include a—AsZO.),, a-GeS2 and a-GeSez); and (2) those that display only broad

features in their Raman spectra, indicative of the absence of small ring configurations in
the intermediate range order (for example, a-GeOz, a-SiOz, a-AsZS3 and a-As Se.),).

(a) (b)

Fig. 20. Bethe Lattice, or "Cayley Tree", of (a) coordination number 3
[2., and (b) coordination number 4 [59]. 1In this type of lattice, note
that the coordination number around each atom is held constant, but no
closed rings are allowed.
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For the amorphous silicon-based alloys, most of the vibrational modes that have been
identified via IR and/or Raman spectroscopy can again be understood in terms of the local
bonding of the various atomic species present in the alloy. It is this strong dependence on
local bonding geometry, or on rings of atoms as in several of the oxide and chalcogenide
glasses, that forms the basis and the justification for the theoretical techniques that have
been used as a framework for examining the vibrational properties of these materials.

Knowledge of the vibrational properties can also provide useful information about bonding in
other types of materials, such as the transition metal/metalloid alloys. For example,
Lustig et al. [115] reported inelastic pulsed neutron scattering experiments on amorphous
Fe-P and Ni-B alloys. Their phonon density of states spectra provide information about the
interatomic interactions in these alloys. The results indicate a somewhat stronger Ni-Ni
than Fe-Fe metallic interaction, as well as a stronger covalent interaction between Fe and P
than between Ni and B, due to increased p-d hybridization in the Fe-P pairs.

Relation to crystalline spectra

It has been pointed out [116] that, despite the loss of long range periodicity, the
properties of the elementary excitations in a glass, as described both by the vibrational
density of states and by the dispersion relations for the propagation of excitations, are
remarkably similar to the properties of the same excitations in the crystal of the same
composition. This leads to an explanation for the origin of the low-energy vibrational
modes in amorphous metallic alloys. As will be shown later, these low-energy vibrational
modes are very important in understanding the structures of many types of amorphous
materials.

St. Peters et al. [117] performed calculations of the vibrational properties for a model of
a substitutionally disordered crystal and used the results to estimate the phonon density of
states. In this model, a large cell ("supercell") of 16 or 54 atoms representing the mixed
crystal K29Rb71 is repeated on a simple cubic lattice using periodic boundary conditions.

Nearest and next nearest neighbor interactions are included. It was suggested that one
could model a glass by this method as a periodically reproduced amorphous cell.

Such calculations, using periodic boundary conditions and large repeating "unit cells" of
atoms, are common in the computation of the vibrational and electronic properties of
non-crystalline solids. While it has often been objected that they merely describe the
properties of a crystalline structure with a large number of atoms in its unit cell, they
have proved to be quite useful when their results are interpreted properly. Very often, the
choice is between such methods utilizing periodic boundary conditions, and alternative
methods where the interpretation of the results is marred by the artifacts introduced in
overcoming surface effects.

Network rigidity

Network rigidity is a very important concept in understanding the elastic and vibrational
properties of non-crystalline solids, as well as in understanding their behavior under
diverse stimuli such as the application of heat, light, or an electric field.

We have already encountered two examples of the role of network rigidity in Section v, in
the subsection on glassy alloys. One of these is the difference between threshold switching
and memory switching alloys [86], the current-voltage (I-V) characteristics of which are
both shown in Fig. 21. 1In the threshold switch, a minimum holding voltage (VH) must be

applied to sustain the highly conductive ON state. On the other hand, in the memory switch,
the excitation causing the OFF-ON transition results in an amorphous-crystalline phase

(a) I (b) |

“._ LOAD LINE +
W
N N,
ON \v\ \\s\
AN "\,
_VT —VH \.\ OFF \\ v ‘s\s\ V
— N ! ’
\\ OFF Vi v Vr
"
\_ ON
LOADLINE

Fig. 21. Current-Voltage (I-V) characteristics for: (a) a typical
threshold switch; (b) a typical memory switch.
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transition or some other more subtle structural change, often preceded by a phase
separation, so that the material remains in the nonvolatile ON state even after the
motivating potential is turned off. To return to the OFF state, a current pulse with a
sharp trailing edge must be applied, in order to dissolve the crystallites and rapidly
quench the melt in the environment which acts as a heat sink.

The average connectivity of an alloy turns out to be a crucial factor in determining whether
it exhibits threshold or memory switching [86]. The differences between threshold and
memory alloys have been explained in terms of the relative rigidities of the networks formed
by different percentages of divalent, trivalent and tetravalent alloying elements
[118-120]. To summarize, memory switches have lower energy barriers retarding
amorphous-crystalline phase transitions due to weaker bonds and a more flexible network
containing large concentrations of divalent elements, thus allowing the setting and
resetting of the ON and OFF states. On the other hand, the more strongly bonded and
three-dimensionally rigid threshold switches can only undergo electronic transitions which
are automatically reversed when the applied voltage inducing the transition is turned off.

The other example of the importance of network rigidity, discussed in Section Vv, is the
"T -Eg-ﬁ Correlation" of deNeufville and Rockstad [87]. A chain structure would have C=2,
an% various chains would be held together in the solid by van der Waals interactions and by
intertwining. These chains can glide past each other like snakes when the system is heated,
melting the solid by overcoming the relatively weak van der Waals forces without the
necessity of breaking covalent bonds. This explains the (C-2) factor in the expression for
T_, which is then essentially independent of bond energies for C=2. On the other hand, for

C>2, T_ depends linearly both on (C-2), which indicates the number of cross-links that have
to be gbroken to obtain the freely gliding chains, and on EUA’ which is an index of the
energy that must be supplied to break these weakest bonds. Thus, the final form

0 -
Tg = Tg + 5(‘3‘2)504

can be understood in a simple way.

The topological method

A quantitative criterion for predicting which types of materials are likely to be good glass
formers has been proposed by Phillips [22, 121], who used a topological viewpoint in which
connectivity is measured by the average coordination number T. He evaluated the number of
constraints per atom that need to be introduced in order to have fixed bond lengths and
fixed bond angles in a covalently bonded alloy, and showed that these can all be satisfied
simultaneously in three dimensions only if C<2.4. One implication of this result is that

alloys such as a-As,Se,, which have C=2.4, have the ideal network rigidity to optimize both

the bond lengths and the bond angles. They should thus be excellent glass formers, i.e.,
yield amorphous structures after quenching from the melt at a relatively modest rate. 1In
contrast, a material such as a-Se, with C=2, will be "under-constrained", with a significant
amount of freedom remaining after fixing all the bond lengths and bond angles. It is
therefore possible to achieve some amount of dihedral angle ordering. This is the origin of
the intermediate range order observed in a-Se [38, 122].

At the other extreme from the "under-constrained" a-Se, are the "over - constrained"
materials such as a-Si and a-GaAs, both of which have T=4. Such materials possess a great

deal of local strains. 1In a-Si, much of this strain is relieved by the +10° spread of bond

angles from the optimum 109.5° value for the tetrahedral angle. Nevertheless, because of
the extent of the over-constrained nature of the network, some defect centers such as
stretched bonds and under-coordinated atoms are also inevitably introduced into a-Si films
during preparation, resulting in a material with large defect concentrations. The major
reason why a-Si:H [90] and a-Si:H:F [42] alloys are much better semiconductors than pure
a-Si is that the monovalent alloying elements H and F reduce the value of C, relieving a
considerable amount of strain and greatly reducing the defect concentration.

Percolation

Percolation theory has been rapidly gaining popularity as a technique for the analysis of
disordered systems. Percolation refers to the propagation of random interconnections
through a network. When the available fraction of sites, or of bonds connecting these
sites, exceeds a critical "percolation threshold", it becomes possible to find a continuous
pathway going through the network by only traveling through the available sites or available
bonds. Although the results of percolation theory ordinarily refer to the mathematical
limit of an infinitely extended network, they are applicable to solids since even a tiny



128 J. BICERANO AND D. ADLER

micromolar sample of a pure element contains an enormous number (~6x1017) of atoms. It
should, however, be kept in mind that the physical atoms and bonds which make up a solid
have very complex interactions, and are not usually "available" or "unavailable" to the same
degree of absoluteness as in a mathematical percolation model. The percolation thresholds
to be derived from such models should therefore be viewed as approximate centers of a range
of possible cutoff values, rather than as absolutely fixed and precise cutoff values, for
the behavior of the physical system that they are expected to model.

A detailed discussion of percolation theory is outside the scope of this review, but the
interested reader can refer to the books by Zallen [2] and by Ziman [59]. Here, we will
merely summarize some of the recent work related to the application of the ideas of
percolation theory to the elastic properties of covalent glasses.

Bicerano and Ovshinsky [88, 123] proposed that a percolation threshold value EP might exist
for the average coordination number C, below which a switching material [86] is soft enough
to undergo the structural phase transition that occurs in memory switching, and above which
it is not. They suggested that 2.50<EP<2.85, i.e., only slightly above the C~2.4 value
derived by Phillips [22] for an ideal glass former which is nearly strain-free.

Thorpe [124] examined in detail some current ideas concerning the differences between
covalent continuous random networks with high and low average coordination number. He
showed how these ideas could be made rigorous by considering the number of continuous
deformations (i.e., zero frequency modes) allowed within the network. In the transition
from one kind of network to another, rigidity percolates through the system. This leads to
a picture in which: (1) CRN's with low C, such as polymeric glasses, have large floppy or
spongy regions with a few rigid inclusions; (2) in CRN's with high C, the rigid regions have
percolated to form a rigid solid with a few floppy or spongy inclusions. He found that a
mean field theory treatment of rigidity percolation gives T =2.4. Covalently bonded
amorphous solids with C<2.4 can therefore be regarded as polymeric glasses, while an
amorphous solid is obtained for C>2.4. These ideas are illustrated in Fig. 22 [124].

I. Polymeric Glass II. Amorphous Solid
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Fig. 22. Rigid (R) and Floppy (F) regions in networks of Type I
(polymeric glass) and Type II (amorphous solid) [124].

The crucial quantity in Thorpe's analysis is the fraction of zero frequency vibrational
modes. The calculation of low frequency vibrations, and the understanding of their
relationships to structural features and to overall elastic properties are obviously related
problems of interest [1l6, 125, 126]. For example, Day et al. [125] used both the Coherent
Potential Approximation and numerical simulations to compute the low frequency spectrum of
vibrations for the central force model, and find that the results of both calculations agree
surprisingly well. Rivier and Gilchrist [126] examined a tetravalent CRN whose elasticity
is described by a Keating potential, and showed the possibility of a pair of doubly
degenerate ground state configurations between which the system can tunnel. (A Keating
potential is a rotationally invariant form of the potential energy with contributions from
bond stretching and bond bending). More work along these lines would be very valuable in
improving the models which apply the ideas of network rigidity and percolation theory to
non-crystalline solids.

More on computational methods

The understanding of local structure, the prediction of IR and Raman spectra, and the
examination of overall elastic properties by using the techniques of percolation theory
would all be greatly aided by improvements in techniques for calculating vibrational
properties. A detailed description of these techniques is beyond the scope of this review;
however, we will present some more of the basic physical ideas. For the reader interested
in learning more about specific methods, the description given in Section 4.3 of the book by
Elliott [126] is a good starting point. This reference briefly discusses issues such as the
use of finite clusters with attendant surface effects as opposed to the introduction of
periodic boundary conditions, and describes and compares several popular computational
techniques.
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We have already seen that the computational techniques most commonly used for the
calculation of the vibrational properties of amorphous solids are finite cluster
calculations and Cluster Bethe Lattice calculations [24, 11l4]. Since these methods are
equally useful in the calculation of electronic structure and properties, they will be
discussed further in Section IX.

Another versatile technique is the Recursion Method, which was originally developed for
calculations of the electronic structure of disordered materials [128], and later extended
to calculations of their vibrational properties [129]. In this very general, but
algebraically quite complex approach, the required density of states (whether electronic or
vibrational) is obtained without recourse to the direct calculation of the eigenvectors or
eigenvalues of the appropriate dynamical matrix. In other words, matrix diagonalization is
not needed. The technique can therefore be used for very large calculations, with less
expenditure of computer time than even the familiar Extended Hiickel approach which requires
a matrix diagonalization step. 1In the Recursion Method, the basis set of states {|s>} is
generated from some starting state |[i> by successive applications of the appropriate
dynamical matrix, via an algorithm that ensures the mutual orthogonality of all the states
in the set {|s>}. The method is best applied in a local site representation, where the
initial function |i> is a site orbital selected by judicious consideration of the short
range order, and new neighbors are introduced at each successive stage of the calculation.
The technique gets its name from the recursion relations which arise from its application.

Another technique which enables the calculation of smooth spectral functions without
requiring the diagonalization of a large matrix, is the Equation-of-Motion Method [130],
which produces results quite similar to those produced by the Recursion Method, in spite of
the seemingly quite different algorithm used. In the Equation-of-Motion Method, the
equation of motion describing the lattice vibrations is integrated forward in time (t), from
t =0 tot =T, adopting reasonable values for the initial displacements and assuming that
the velocities vanish at t = 0.

A third technique which enables the calculation of the density of vibrational states without
diagonalizing a large matrix, is the Negative Eigenvalue Method [131, 132]. This method
uses a theorem which allows the efficient computation of the distribution of eigenvalues of
a real symmetric matrix. The frequency spectra are obtained directly, while further work is
required if information on a specific eigenvalue or eigenvector is needed.

Theoretical chemists can clearly make significant contributions to the development and
application of computational methods for the vibrational properties of non-crystalline
solids. The most popular of the computational techniques mentioned in this section, namely
the finite cluster and Cluster Bethe Lattice calculations, are natural extensions to solids
of methods routinely used to treat finite molecules. The Recursion Method, which appears to
be less directly related to the familiar techniques of theoretical chemistry, in reality

requires just as careful a consideration of the short range order in the solid (i.e., the
use of chemical considerations) as the Hiickel-type methods require of the bonding
environment of the atoms in a molecule.

IX. ELECTRONIC STRUCTURE AND PROPERTIES OF NONMETALLIC MATERIALS

The subject of the electronic structure of non-crystalline solids has been replete with
misunderstanding, confusion, and even erroneous conclusions. This evolved from the fact
that the band theory of solids developed by Bloch [133] in 1928 was really only the band
theory of crystalline solids. By making use of the mathematical simplifications arising
from long-range periodicity, Bloch was able to derive some general properties of the
electronic states in crystals, from which Wilson [134] developed a theory of electronic
transport. Bloch's work followed the discovery of the periodicity of crystals by less than
20 years and the development of quantum theory by only three years. His demonstration that
all the electronic states of a crystal were extended throughout the solid cleared up the
"mystery of the unscattered electrons". The first theory of electronic transport proposed
that the negatively charged electrons would necessarily be scattered by the positive ion
cores, resulting in a mean free path of the order of an interatomic spacing; however, in
many materials, the actual electronic mean free path is hundreds of interatomic spacings.
After the development of Bloch-Wilson theory, it became clear that only deviations from
periodicity scatter electrons in extended states, and the mystery was solved.

To this day, the standard treatments of solid-state theory are based on crystalline
periodicity. To avoid handling the problem of non-crystalline solids, many texts define a
solid as a periodic array of atoms, relegating non-crystalline materials to the realm of
supercooled liquids. 0f course, all this is nonsense. Liquids ordinarily exhibit
electronic mean free paths of the order of the corresponding solids [135], so that
periodicity is clearly not the answer to the mystery of the unscattered electrons. As a
corollary, the Bloch-Wilson theory should be abandoned as the general approach to the
electronic structure of solids.
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The modern theory of solids is actually based on chemistry rather than crystallography
[16]. We can begin with a gedanken theory. In principle, a reasonable starting point is a
cluster that contains at least the nearest and next-nearest neighbors of the atoms whose
outer electrons are near the Fermi energy of the solid. If periodic boundary conditions are
applied, the band structure can usually be calculated. The deviations from periodicity can
then be handled by perturbation theory. The sharp band edges of a periodic system then
disappear, and band tails result. Experimentally, these band tails presently appear to
decay exponentially as the energy changes. The most important question to answer, however,
is the order of magnitude of the mean free path of electrons in these bands. Very few
rigorous results exist in this regard. Mott and Twose [136] showed that all electronic
states in disordered one-dimensional systems are localized rather than extended, but
one-dimensional systems have special properties that do not generalize (e.g., the
percolation threshold is 100%). Recent numerical calculations [137] indicate that some
states in a disordered two-dimensional system are, in fact, extended. Mott [138] suggested
that the bands in a real non-crystalline solid contain both localized and extended states,
separated by a sharp mobility edge. Simple models based on either classical percolation
[139] or quantum-mechanical tunneling [140] tend to confirm that the electronic mobility
sharply increases from very small values to much larger values over a relatively narrow
range of energy in the band tails of disordered systems. If these results hold up to
increased rigor, the mystery of the unscattered electrons will once again appear to be
resolved.

Cohen et al. [141] pointed out that the extent of the band tails should be a measure of the
disorder in the system, and noted that highly disordered solids such as multicomponent
glasses should always have a finite density of states at the Fermi energy, g(EF).

Nevertheless, if EF falls in a region of localized states, the material would be

nonmetallic. They proposed the density of states sketched in Fig. 23 for highly disordered
amorphous semiconductors. Except for the band tails, this density of states is essentially
featureless, in sharp contrast to that of a crystalline solid. The structure in the gap of
a crystalline semiconductor arises from the presence of so-called defects, e.g., vacancies,
interstitials, and impurities forced into the wrong chemical environment by the constraints
of the periodic lattice. Cohen et al. [141] proposed that such defects are not present in
glasses, since in the liquid state from which they are quenched, there is no reason why a
mobile atom should not be in its chemical ground state.

Energy
m ™
SALEI
1
L
Lo
|
A |
|
"\ 1
[}
|
I
I
|
[
[
[
[
[
|
|
i
I
|
I
|
I
|
1

lola 'OIQ Iozo lozl Iozz
Density of states (cm™3eV™')

Fig. 23. CFO model for the density of states of a highly disordered
amorphous semiconductor. Ev and Ec are the respective valence and

conduction band mobility edges, Eg is the mobility gap, and EF is the
Fermi energy [16].

Now, many years later, the last assumption is known to be quite naive. If it were the case,
substitutional doping of amorphous semiconductors would have proved impossible and the
electronic properties of glasses would have been totally incomprehensible. Well-defined
chemical defects can appear in glasses either to minimize the free energy at the glass
transition temperature or because of internal strains upon solidification [142]. Since
these defects can give rise to electronic states located near EF, they can, in fact, control

the electronic properties of amorphous semiconductors, just as in crystalline semiconductors.
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In recent years, the beginnings of a quantitative theory of amorphous solids have arisen,
based on chemical considerations. The first step in this direction was the model
Hamiltonian of Weaire and Thorpe [50],
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for tetrahedrally coordinated structures, where the atoms are denoted by the subscript i and
the bonds by j, the states | &..> are localized sp” hybrid orbitals, and the matrix elements
Vl and V., represent the intra-atomic and interatomic interactions, respectively. This

Hamiltonian makes it easy to separate the effects of quantitative disorder (i.e., bond angle
variations), reflected in a spread of values of Vl and V2’ from topological disorder (i.e.,

variations in ring size). Weaire and Thorpe were able to rigorously show that for constant
V. and V,, ranges of Vl/v exist for which a non-zero energy gap exists in the density of

states, the first demonstration that short-range order alone can produce a semiconductor.

Given the importance of short-range order and electronic correlations in localized states,
simple models based on tight-binding 1limits have proved to be useful starting points.
Pioneered by Kastner et al. [17] and Adler [143], the creation energies, one-electron
energies, and effective correlation energies of defect configurations are estimated from
atomic energy levels and bond energies, under the assumption that complete local atomic
relaxations are possible in the amorphous network. This approach represents a rapid means
of identifying the low-energy defects and estimating their effects on the electronic
structure, but any quantitative conclusions must, of course, be used with extreme caution.

In order to be more precise, realistic calculations must be performed. One of the more
popular recent approaches has been the empirical tight-binding technique [131], in which the
matrix elements and overlap integrals are treated as adjustable parameters to be fitted to
known experimental results. This method has been applied to study defect configurations in
amorphous Se [144] and Si:H [145, 146].

Ab initio tight-binding calculations have also been carried out recently, often using
effective Hamiltonians for simplicity [147]. Another variation, called the orthogonalized
Tinear combination of atomic orbitals (OLCAO) method, makes use of expansions of the atomic
orbitals in terms of Gaussians, with the potential constructed from a superposition of all
the atoms in a small cluster, with the Slater local exchange approximation [148]. This
method has been applied to study dopant defect states in a-Si:H [149].

Pseudopotential techniques [150], in which the real potential is replaced by a much smoother
effective potential that yields high-accuracy results for the outer electronic states but
not the core, have proved to be very useful in non-crystalline solids [151]. Since these
can easily be made self-consistent, they often provide more accurate results than
non-self-consistent tight-binding methods. A fairly recent application of the
pseudopotential technique by Hafner [152] showed the quantitative basis for stability of
metallic glasses.

Perhaps the most useful method thus far has made use of modern quantum chemistry. These
include the GVB technique [94-96], discussed in Section v, the
self-consistent-field-Xa-scattered wave (SCF-Xa-SW) approach [153], and the unrestricted
Hartree-Fock (UHF) approximation [154], all of which have already proved valuable in the
analysis of non-crystalline solids.

In addition to the particular technique, the structural model used can be critical. These
can involve finite clusters, making use of the (hopefully) known short-range order, infinite
clusters such as the Bethe Lattice discussed in Section VIII, supercell models, which make
use of large unit cells and periodic boundary conditions [15], and effective crystal models,
including the virtual crystal approximation [155] and the coherent potential approximation
[156].

Messmer [157] recently discussed some of the more sophisticated calculation methods in
detail and identified the major need for improving on mean-field theories, especially when
localized states are important. He suggested that the GVB technique, together with the
perfect-pairing approximation [158], in which all bonds are saturated, is a good starting
point for the consideration of electronic-correlation effects. This approach has been
applied to defects in Si with great success. Zygmunt et al. [159] used the SCF-Xa-SW
technique to study defects in a-Si:H and found that aromatic-type structures are capable of
stabilizing positively and negatively charged defect centers in Si-H alloys. The presence
of such centers would explain puzzling photostructural effects in these alloys in a natural
way. Bernholc [160] applied the self-consistent Green's function technique [161] to a
defect cluster consisting of a crystalline Si vacancy with the potential dangling bonds on
three of the four surrounding atoms saturated with hydrogen atoms. He obtained a positive
effective correlation energy for the Si dangling bond, in conflict with similar calculations
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recently carried out by Bar-Yam and Joannopoulos [162]. The sign of this energy is still
one of the major unresolved problems in the study of a-Si:H [163].

Hayes and Beeby [164] suggested a new multiple-scattering approach to estimate the density
of states of disordered solids. Although few calculations have actually been carried out
within their scheme, the technique has the advantage of a great degree of flexibility. In a
virtually orthogonal approach, Blaisdell et al. [165] have developed a computer program for
the ab initio self-consistent calculations of molecular orbitals in polymeric and molecular
crystals and have applied it to a linear chain of nine H2 molecules.

As an example of the current state-of-the-art, we consider the technologically important
material, a-Si:H. Experimentally, pure a-Si is a poor semiconductor, with EF pinned by a

large density of localized states in the gap. As hydrogen is introduced during the growth
process, the energy gap increases and the density of states in the gap decreases. The
starting point in an understanding of the electronic structure of a-Si:H is the realization
that. a CRN with an average coordination number of 4 1is very overconstrained (recall the
discussion 1in Section 1II). Consequently, a-Si is always characterized by a large
concentration of strain-induced defects, especially dangling bonds. The incorporation of
hydrogen lowers the average coordination number and relieves a large part of the overall
strain. In addition, the Si-H bond strength is about 40% greater than the strength of the
Si-Si single-bond. Since H is more electronegative than Si, tight-binding calculations
indicate that the Si-H bonding states are deep in the a-Si:H valence band, while the Si-H
anti-bonding orbitals are not too far from the conduction-band mobility edge. Sketches of
the tight-binding estimates [166] for the configurations Sis, S1'4H, and the dangling bond

Si, are shown in Fig. 24. Note that even in these crude estimates, it appears that the band

gap of a-Si:H should increase with hydrogen concentration, by shifting states from near the
top of the valence band to considerably Tower energy.
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The results of more accurate SCF-Xo-SW calculations [153] are shown in Fig. 25. These
results confirm the increase in band gap via recession of the valence band edge as its
hydrogen concentration increases, and shows several hydrogen-induced peaks in the density of
states (A-D). Cluster Bethe Lattice calculations [145] are presented in Fig. 26 for
hydrogenated surfaces of c-Si and a-Si and a model for a-Si:H and compares the results to
experimental photoemission data [167]. It 1is clear that such calculations allow an
understanding of the origin of the hydrogen-related structure in the data (C,D,E). OLCAO
results [168] are shown in Fig. 27. Although the details of the band structure differ from
the other calculations, the gap and the hydrogen-induced structure are consistent.
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Fig. 25. SCF-Xa~SW molecular-orbital calculations for several atomic clusters
expected to be important in a-Si:H. The density-of-states curves are broadened
according to a program appropriate for comparison with photoemission
experiments [153].
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Finally, the CPA results [156] of Fig. 28 show clearly how the defect states are snowplowed
out of the gap by hydrogenation, as expected.

In summary, we have come a long way since people questioned whether amorphous semiconductors
were theoretically possible [169] or whether disordered materials even have a band
structure. Some realistic calculations have been carried out and many new and promising
techniques have been developed. Nevertheless, there are a multitude of unsolved problems
that cry out for more accurate theoretical calculations to resolve [163]. The electronic
structure of non-crystalline solids is certain to be an active area of research for many
years to come.

X. AMORPHOUS METALS AND ALLOYS

Metallic glasses are technologically exciting because of their remarkable mechanical and
magnetic properties. Many of them are both extremely strong and ductile, as well as being
virtually non-corrosive. In addition, they can be magnetically soft (i.e., easily
magnetized) while mechanically hard, so they have found applications as transformer cores
and magnetic disks, among many others. The mechanical strength arises from the lack of
mobile dislocations, the origin of fracture in crystalline metals and alloys. We note this
is one more example of an advantage of the amorphous compared to the crystalline state.
Another 1is the integrity of surface bonding relative to that of cleaved crystals, believed
to be the origin of the Tow corrosion rates in amorphous solids.

There are many classes of amorphous metals. We have already mentioned the transition
metal/metalloid (T-M) glasses in Section II, typically consisting of 80% from one or more
late transition metal (e.g., Pd, Ni, Fe) and 20% from one of the metalloids (e.g., P, Si, B,
Sb). Another class (T-R glasses) is composed of alloys of late transition metals (e.g.,
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Ni, Co, Fe) with rare-earth atoms (e.g., Gd, La). There are also alloys of early (e.g., Nb,

IZn) and late transition metals (T-T glasses) and the alkaline-earth alloys, (AE glasses)
which contain Ca, Mg, Zn, or Cd combined with one or more of a large variety of other metals.

In the absence of directional covalent bonds, the question of glass-forming ability is more
subtle in metallic glasses than in amorphous semiconductors, for which the continuous random
network model is appropriate. In order to achieve the dense random packing structure
believed applicable to a glass, other criteria have been suggested. Clearly, a deep
eutectic composition helps glass forming by allowing for less-rapid cooling rates in order
to reach T_ from Tm without crystallization, and this is borne out by experiment. Nagel and

Tauc [170] suggested that glass forming 1is further aided by tailoring the composition so
that E_ lies near a minimum in the electronic density of states, so that small relaxations

can lead to Tlocal stabilization of somewhat distorted structures; however, experimental
[171] and theoretical [172] confirmation of this idea are thus far dubious at best, and much
remains to be done before this area can be considered to be basically understood.

Recent work on glassy metals has tended to concentrate on deviations from dense random
packing. We have already mentioned Gaskell's analysis [30] of the short and intermediate
range order in T-M glasses, in which a 9-atom polyhedron centered on the metalloid is a
major structural unit. The philosophy behind the dense packing of moderate-sized low-energy
clusters is that the existence of more than one (but not too many) can act as a suppressant
to crystallization. Some support for the general idea of dense random packing of structural
units 4.5-6R& in size comes from a recent understanding of the first sharp diffraction peak
in the structure factor of a large number of diverse glasses [173]. Other work has involved
computer simulations of DRP models with two different atomic radii and the introduction of
atomic relaxations via Lennard-Jones or Keating potentials. Saw and Faber [174] have
investigated the DRP model of a binary alloy in which either the atomic size ratio or the
composition can vary. They found only small effects arising from short-range order after
allowing for atomic relaxations with a Keating potential. Saw and Schwartz [175] applied
the DRP model to a T-T glass, NiasZrGS, and found essentially no short-range order unless

different strengths for the Ni-Ni, Zr-Zr, and Ni-Zr bonds were explicitly introduced. Using
a computer simulation, Suzuki and Egami [176] were able to show that DRP structures are
unstable against shear deformations, at least for T=0, consistent with some experimental
data.

Electronic density-of-states calculations for glassy metals have not been performed with any
degree of frequency. Kelly and Bullett [172] investigated a T-M glass, PdBOSiZO’ using

clusters of about 200 atoms and a Green's function approach. Frota-Pessoa [177] and Jaswal
[178] have both investigated Ni-Zr glasses, the former using an empirical method, and the
latter a self-consistent cluster approach with periodic boundary conditions and the
recursion technique (see Section VIII). For metallic systems, the calculated density of
states can thus far be tested only by the results of photoemission experiments, which are
not ordinarily sufficiently sensitive to make firm conclusions about the accuracy of the
theoretical approach. In any event, more work in this area is essential.

XI. SILICA GLASSES AND RELATED ALLOYS

Historically, fused silica (a—SiOz) and its related alloys have received a great deal of

attention for thousands of years, since window glass 1is one member of the class. The
increasing technological importance of ceramics, composites, and optical fibers is certain
to ensure continued interest in these materials. It is now generally (but not universally)
believed that a-SiO2 forms a classic CRN (an example of which is the model of Bell and Dean

[10]), with each Si atom surrounded by four 0 atoms with tetrahedral bond angles (109.50),

and each 0 atom surrounded by two Si atoms with a spread in bond angles (15001150). When
the CRN is modified to allow for atomic relaxations, agreement between theory and experiment
becomes quite good [179]. Even Molecular Dynamics approaches have given good results for
the structure of silica glasses [107,180] with the tetrahedral structure being predicted
despite use of a purely ijonic potential [180]. There has also been a great deal of effort
expended on the study of defects in a—S‘iO2 [181], and microscopic models have been studied

theoretically by tight-binding approaches [182] as well as by more sophisticated methods
[183,184]. In Section VIII, we also discussed some of the work on the vibrational
properties of these glasses [24,114].

Studies of vibrational densities of states from CRN models have recently been reported.
When only short range interactions with atomic relaxations are included [185] in a modified
Keating potential, the resulting structure factor shows very good agreement with elastic
neutron scattering experiments, while the vibrational density of states also shows fairly
good agreement with the experiments. The fact that the double maximum observed at high
frequencies of the spectrum is also found in the simulation using only short range forces
[185] 1is encouraging. Alternatively, calculations have also been reported where, for the
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first time, long range Coulomb effects were included [186] in a network with periodic
boundary conditions. These calculations show that optical excitations with wavelengths much
longer than the nearest neighbor separation can propagate in amorphous media, and that a
longitudinal-transverse optical mode splitting is observed as in crystalline materials.

An analytical model has been built for the distribution of dihedral angles in AX2-type

tetrahedral glasses, and its predictions compared with available experimental data [187].
The comparison is favorable for a—SiOz, but becomes less impressive for glasses such as

GeSez, which have much smaller intertetrahedral angles and more regular rings than a-Si0,.

Considering the basic simplicity of the model, whose only assumptions are a local order with
tetravalent A and divalent X, and a simple type of non-bonded steric hindrance which does
not include any information concerning the existence or effect of completed rings of bonds,
these results are quite encouraging. Since predicting and understanding the distribution of
dihedral angles in a covalently bonded non-crystalline solid can provide valuable insights
on the intermediate range order (see, for example, Sections II and III, and the discussion
on amorphous selenium [38]), further work along these lines can be very useful.

Another example of promising work on intermediate range order in a—SiO2 is the examination,

by Tadros et al. [188], of ring statistics in very large computer-generated models with up
to 30,000 atoms, including constraints imposed by chemical bonding on the dihedral angle
distribution. These authors find that ring formation is dictated primarily by the bond
angle centered at the twofold coordinated atomic site, thus explaining the absence of strong
spectroscopic features [24] in the oxides of Si and Ge. The calculations also suggest (not
too surprisingly in our view!) that small ring formation is more probable at smaller bond
angles.

The Molecular Dynamics simulation of Ochoa and Simmons [189] examining the response of
a—SiO2 to longitudinal strain, is an example of the use of dynamic simulations to predict

the bulk properties of a solid. For example, the effect of various atomic motions on the
brittle strength, and the effect of internal cracks on fracture, are among properties which
can be studied.

High resolution solid state 2951 NMR studies of the local environment of Si in an SiOz-M?O3

glass ceramic [190] wusing magic angle spinning, is an example of state-of-the-art
experimental work of the type that could be very useful in studying short and long range
order in these complex materials. A valuable theoretical contribution to this field would
be to attempt to systematize the understanding of solid state NMR results, so that the local

environment of a Si atom can be inferred reliably from a properly taken solid state NMR
spectrum, just as the local environment of a hydrogen atom in an organic molecule can be
inferred from the proton NMR spectrum of that molecule.

Finally, it is interesting to note that according to IR, X-ray photoelectron spectroscopy,
and Auger electron spectroscopy experiments, suboxides of silicon (a—SiOX, x<2) produced by

plasma enhanced chemical vapor deposition are also describable by a CRN model involving
tetrahedral building blocks [191]. since there are not enough oxygen atoms to obtain a
fully chemically ordered CRN (see Sections II and III), each central Si atom in a
tetrahedral building block contains four near neighbors, one or more of which might be other
Si atoms.

XIl. LIQUIDS

Relations between liquids and glasses

We have already encountered many of the fundamental structural, thermodynamic and kinetic
considerations which relate liquids and glasses. For example, in Section VI, we discussed
the continuous nature of the glass transition, and pointed out that a glass can be regarded
as a liquid of extremely high viscosity, in which crystallization has been bypassed via
rapid cooling, thus preventing the thermodynamically most stable crystalline configurations
from being attained. The resulting glassy structures were seen to be thermodynamically
metastable states, i.e., Tocal free-energy minima, stabilized by the large kinetic barriers
separating them from the Tlower-lying crystalline absolute minimum and possible other
crystalline local minima for the same composition. 1In Section VII, we discussed the dynamic
simulation methods which can be used to model these rapid quenching phenomena, and gave
several examples of recent applications of these techniques. In Section III, we discussed
liquid-to-icosahedral phase transitions, pointed out how the possibility of an icosahedral
condensed phase with long range orientational order was computationally predicted on this
basis, and went on to mention the relationship between the structure factor of the 1liquid
phase and the properties of the orientationally ordered phase.

In the present section, we carry the discussion of the relationship between liquids and
non-crystalline solids a 1ittle further, and then describe some of the most exciting work
going on at the frontiers of this field.
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Mechanisms of phase separations

Most of the standard structural models treat non-crystalline solids as homogeneous
materials. This type of approach, in addition to 1its dimportant 1limitations at the
microscopic atomic scale as discussed in Section II, also neglects the presence of
structural inhomogeneities on a larger scale. One common type of structural inhomogeneity
in glassy alloys is compositional phase separation caused by the immiscibility of components
of the melt which is rapidly cooled to form the glass. This type of phase separation occurs
when the Gibbs free energy of the phase-separated mixture in the liquid is lower than that
of the single homogeneous phase. A simple example of this situation is a binary system AB,
which can exist in the 1liquid either as a single phase or as a phase-separated mixture,
depending on which alternative minimizes the Gibbs free energy. A nice description of the
phenomena involved appears in Section 3.6 of the book by Elliott [126]. To summarize, there
are two distinct mechanisms which can lead to phase separation. These differ in the
dependence of free energy on composition. If the compositional fluctuations must be greater
than a certain size to be stable and lead to phase separation, the phase separation is said
to occur by "nucleation and growth". Conversely, the single phase might be unstable to all
fluctuations, of any size. In this case, phase separation does not require a nucleation
step, but rather is diffusion-Timited. A theory for the initial stages of this so-called
"spinodal decomposition" process has been provided by Cahn [192], and by Cahn and Charles
[193]. A specific physical process that can be described by the spinodal decomposition

mechanism is the initial stages of the heat treatment at 450°C of a 3203—Pb0-A1203 glass
quenched from 1150°C [194].

Recent work

The study of 1liquids and their relation to glasses is a vast field of research, and we will
only attempt to provide the fundamental underlying physical ideas without going into the
details. Several recent papers [195-199], examine some of the problems at the frontiers of
the study of 1liquids. The most promising techniques used include dynamic simulations,
density functional calculations, hydrodynamic techniques in conjunction with consideration
of phenomena which occur on a molecular length scale, and electronic structure calculations.

Kirkpatrick [195] attempted to explain the results of computer experiments using Molecular
Dynamics, and considered anomalous mode coupling effects in dense classical liquids. He was
able to explain the discrepancies between the results of conventional mode coupling theory
and computer "experiments" in terms of a generalized mode coupling theory. This generalized
mode coupling theory takes into account phenomena which occur on a molecular length scale
where 1liquid structure is dimportant, 1in addition to the phenomena usually treated with
hydrodynamic mode coupling theories.

Wolynes [196] considered application of techniques from 1iquid state theory, such as free
energy functionals for inhomogeneous systems, along with self-consistent phonon theories, in
order to relate the stability of glasses to their underlying structure and to the
intermolecular forces. He also reviewed recent work along these lines for the hard sphere
glass. He recommends the use of more flexible trial densities, the development of more
sophisticated density functionals, and the dinclusion of nonequilibrium effects and
fluctuations.

Chen et al. [197] discussed transverse atomic correlations in supercooled liquids described
in terms of the orientational ordering of the 1local shear stresses. They used Molecular
Dynamics studies of 1liquid iron to show that the onset of the correlation as a function of
temperature is rather sharp, and is accompanied by changes in diffusivity, viscosity, and
the phonon density of states. They also suggested that the glass transition may be defined
by this transition in a dynamical sense, by the elastic percolation of the correlated
regions.

Alder et al. [198] have discussed the use of Quantum Monte Carlo calculations to simulate
1liquids. The Quantum Monte Carlo simulations are, in principle, quite similar to the
classical simulations, although there are several additional serious technical difficulties
caused by the use of quantum mechanical wave functions and probability densities instead of
classical particles, and the corresponding replacement of the classical equations of motion
by the Schrdodinger equation. They have applied the Quantum Monte Carlo simulations to the
calculation of the properties of the electron gas (the simplest model system for the
condensed phase), of hydrogen, and of 1iquid helium. The study of the bulk properties of
increasingly complex systems by Quantum Monte Carlo simulations is a promising research area
which will progress as algorithms are improved and faster computers become available;
however, it will probably take many years for these techniques to reach the level of
maturity of the classical simulations and become as easily usable for the same types of very
complex systems.

Finally, St. Peters and Roth [199] have presented an analysis of a muffin-tin model
calculation of the electronic density of states of 1liquid copper. An idonic pair
distribution function was used in this work to account for the fact that due to the short
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range 1liquid order, the donic potential of a 1liquid is neither periodic nor random.
Multiple scattering theory was used to handle the strong interactions between the localized
d states and delocalized s states. The results of these calculations were seen to compare
well with optical density of states measurements on molten Cu.

In general, the electronic structure of 1liquids has been understood in terms of a nearly
free electron approach [59], which appears to work because the temperature is large compared
to the Debye temperature of the corresponding solid. Unfortunately, this is not the case in
amorphous solids, so that a more complex analysis 1is required. The work reported by St.
Peters and Roth [199] is an example, in the context of a liquid system, of how the metallic
model can be modified to take some of the more complex effects into account.

An alternative to the metallic model is the so-called "distorted crystal" model [200], where
the crystalline phase of a semiconductor is used as a starting point for the treatment of
the electronic structure of the corresponding 1liquid semiconductor. This provides a
zeroth-order approximation where a band structure with a band gap is already present. Two
types of disorder can then be applied to this initial band structure. One of these is the
topological disorder arising from the loss of long range order while some kind of short
range order persists. The second type of disorder is due to fluctuations in atomic density
and potential. There is clearly some vagueness and arbitrariness involved in the nature of
the disorder to be applied.

Another very chemically oriented alternative to the metallic model 1is the so-called
"molecular bond" model [200], where the idealized starting point consists of discrete
molecules which are far enough that their electronic levels are discrete. When these
discrete molecules are brought closer together, the discrete electronic energies broaden
into bands which may be described by tight binding theory. The approximation that the
electronic states of different bonds and non-bonding electrons are independent for the
discrete molecules, is an additional simplification that can be used in the context of this
model. This model has the advantages of being in accord with chemical intuition; of being
equally applicable whether the bonding leads to network structures as in A525e3, or to small

molecules as in T12Te; and of being easy to apply, since the semi-empirical methods of

structural chemistry can be used for making estimates of the energy and electronic character
of the bond orbitals, and these estimates can then be used to infer the electronic bands via
tight binding calculations [200].

Research on the structure, dynamics and properties of 1liquids is certain to continue to
contribute to a better understanding of glasses as well as to making new types of glassy
materials for technological applications. Another (somewhat wunrelated but equally
important) reason for chemists to become more interested in liquids is the fact that a great
deal of interesting chemistry, especially in biological systems, takes place in complex
liquid media. The book by Cutler [200] is highly recommended to the reader interested in
learning more about liquids.

XIl. SUPERLATTICES

There has been a great deal of recent interest in artificial structures, in which complex
multilayered geometries employing two or more different materials are fabricated. A simple
example 1is an inversion layer [201], which consists of a narrow (~30R) region near the
surface of a doped semiconductor in which minority carriers move freely. For example, if
sufficient negative charge 1is induced across the dinsulator of a metal/insulator/p-type
semiconductor (MIS) structure by applying a positive potential to the metal, conduction-band
states begin to become filled. Since the electric field acts 1ike a potential well for the
conduction-band electrons, quantum effects can be important. According to the Heisenberg
Uncertainty Principle, confining electrons to a region of width L introduces an additional
kinetic energy of the order of:

£ = pZ/2mon?/2m?

Confining an electron (m~10_30kg) to a distance L=30R yields E~0.leV. This means that in
order to fill the lowest quantum level in the well, an applied field sufficient to populate
levels about 0.1eV above the conduction-band edge is required. Note that the quantization
occurs in only one dimension, the direction of the applied field; the electrons move freely
in the plane of the layer. When a current is passed within the layer and a magnetic field
is applied, normal to the layer, the Lorentz force causes the electrons to move within the
layer, perpendicular to the current. When they reach the surface, they induce a transverse
electric field called the Hall field. Because of the quantum-well structure, however, the
Hall voltage is also quantized. The discovery of this so-called quantum Hall effect led to
the 1985 Nobel Prize in Physics [202].

The most novel artificial structures to date have involved periodic alternating thin layers
of different materials, e.g., ABABAB... When the materials are crystalline semiconductors,
the structures are called superlattices [203]. If the two materials in the ABAB...
structure are semiconductors with different energy gaps, the different potentials in the two
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regions act like periodic potential wells for both electrons and holes in the direction
perpendicular to the layers. This type of problem, a one-dimensional periodic potential,
was first investigated over 50 years ago [204], and is called the Kronig-Penney model. The
model suggests that in superlattices, quantum effects occur for both electrons and holes,
the level separations becoming larger as the thickness of each layer decreases. Since the
optical gap is the minimum energy necessary to excite an electron from a filled to an empty
state, the gap in superlattices should increase with decreasing layer thickness.

One problem with superlattices is the mismatch in lattice constants when a crystalline layer
is deposited on a different one, resulting in large concentrations of interface states which
become important when many layers are present, often to the extent that they mask the bulk
properties. This problem can be overcome by using alternating amorphous semiconductors
[205]. In addition to the elimination of Tlattice mismatches, amorphous multilayer
structures have the flexibility of an essentially infinite number of possible alloys for any
of the layers as well as the possibility of controlled compositional gradients within the
layers. Furthermore, there is the interesting theoretical problem of analyzing a
fundamentally disordered system containing a periodic structure on the 10-100& scale.

Two of the most investigated amorphous multilayered structures are a—Si:H/a-Si]_xNx:H and

a-Si:H:P/a-Si:H:B arrays. In both cases, the potential energy creates quantum wells for
both electrons and holes; the band structure of the former is sketched in Fig. 29. As
suggested by the Kronig-Penney model, the quantum wells should yield an fdncreasing
semiconductor band gap as the thickness of the layers decreases. This is borne out by the
experimental data [205], shown in Fig. 30. An interesting conclusion from these results is
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the observation of quantum size effects in a-Si:H layers as thick as 40R, implying a
wave-function coherence length greater than about 20 interatomic spacings. Tsu [206] has
calculated that such a value is consistent with an electronic mean free path of about 5A.
In alternating layers of a-Si:H doped n-type and p-type, a persistent photoconductivity has
been observed, lasting for many hours after removal of the incident light [207]. Although
this could result from the reduced recombination attendant with electrons and holes being
trapped in different regions of space (i.e., in the p-type and n-type layers, respectively),
the effect now appears to be due to deep trapping in the interface regions [208].
Structural studies [209] have indicated that the difference between the length of the Si-Si
and Si-N bonds leads to interface distortions in a—Si:H/a—Si1_xNX:H multilayer structures.

XIV. CONCLUSIONS

Any study of a condensed collection of atoms must begin with an understanding of the
structure. For a solid, which retains its shape under at least moderate shear stresses, we
are aided by the conclusion that each atom is located near a local potential minimum. The
empirical investigations of the structure of non-crystalline solids reviewed in this paper
have, above all, focused attention on the importance of the chemical nature of the
constituent atoms in the formation of such materials. Great strides have been made both
experimentally and theoretically over the past few years, and the results finally appear to
be converging, even if slowly [210]. Theoretical approaches have progressed far beyond the
ball-and-stick models of 15 years ago, and now not only computer simulations with atomic
relaxations but Monte Carlo and Molecular Dynamics techniques have produced results that
portend a useful future for such calculations.

Given the structure of the material, it becomes possible to analyze both the vibrational
properties (i.e., phonon modes) and the electronic behavior (i.e., electronic density of
states). The former often controls the thermal properties of the solid, such as specific
heat, thermal expansion, and thermal conductivity. But the electronic structure determines
the response of the material to applied electric fields, visible and ultraviolet light, and
a host of coupled effects such as thermoelectric, magnetoelectric, and optoelectronic
behavior. The modern theory of crystalline solids has achieved its major successes from the
detailed quantitative understanding of such behavior as functions of temperature and even
time (under transient conditions). This is an area in which a great deal of work is still
necessary in the case of non-crystalline solids.

The recent insights afforded by curved space approaches and three-dimensional projections of
higher-dimensional structures has opened up new avenues for theoretical investigation. In
addition, the recognition of the importance of well-defined defects in non-crystalline
solids has suggested additional uses for such points of view. The fact that an infinite
number of dimensions are available for modeling suggests that this area will remain fruitful
for quite some time to come.

Since all solids are formed at finite temperatures and pressures, thermodynamic and kinetic
considerations are vital. Difficulties in calculating such quantities as entropy and Gibbs
free energy for systems with no long-range order have retarded progress, but makes these
quantities no less important. Just because we are not yet smart enough to evaluate the
states of local free-energy minima does not retard the atom's ability to find them rather
quickly upon solidification.

A classic problem in the study of solids has been the rapid progress in experimental
techniques, which often has led to the feeling that theoretical understanding will never
catch up. Recent work in picosecond spectroscopy, superlattice structures, and ultra-rapid
solidification, among many other developments, has intensified such feelings. But sooner or
later, the theoretical insight must come or experimental progress will decelerate. The
present gaps between theory and experiment stand as an exciting challenge and opportunity.
The fact that closing this gap necessarily requires the cooperation between chemists,
physicists, and materials scientists should only add to the appeal of working in this field.

Acknowledgements

This review article was stimulated by the International Conference on the Theory of the
Structures of Non-Crystalline Solids, held at the Institute for Amorphous Studies,
Bloomfield Hills, Michigan, U.S.A. We would therefore like to especially thank Stanford R.
Ovshinsky, President of Energy Conversion Devices, Inc., whose support and encouragement
made this Conference possible; Martin C. Steele and Brian B. Schwartz, respectively the
former and present Directors of the Institute; and Ghazaleh Koefod, Executive Administrator
of the Institute. We are also indebted to the International Union for Pure and Applied
Chemistry for their invitation to prepare this review. In addition, we owe a great
intellectual debt to our many colleagues who have helped us to understand various aspects of
this vast field of research, and especially to those who participated in the Conference and
its active discussion periods. Finally, we wish to thank Ella M. Norman, who patiently
typed the entire manuscript.



w N
.« .

(S0
D

14.

15.
16.
17.
18.
19.

20.

23.

24.
25.

26.
27.
28.
29.
30.
31.
32.
33.
34.

35.
36.
37.
38.
39.
40.

41.

44,
46.
47.

48.
49.

22.

43.

Theory of the structures of non-crystalline solids 141

REFERENCES

Proceedings of the International Conference on the Theory of the Structures of
Non-Crystalline Solids, edited by D. Adler and J. Bicerano, J. Non-Cryst. Solids,
Volume 75 (North-Holland Physics Publishing, Amsterdam, 1985).
R. Zallen, The Physics of Amorphous Solids (John Wiley and Sons, New York, 1983).
Physical Properties of Amorphous Materials, edited by D. Adler, B.B. Schwartz and
M.C. Steele, Institute for Amorphous Studies Series, Volume 1 (Plenum Press, New
York, 1985).
R. Zallen, Ref. 1, p. 3.
W.H. Zacharaisen, J. Am. Chem. Soc., 54, 3841 (1932). For extensions of the
Zacharaisen schematics, see B.E. Warren, J. Am. Ceram. Soc., 24, 256 (1941) and
J.F. Shackelford, J. Non-Cryst. Solids, 49, 19 (1982). An excellent review of
Zacharaisen's contribution, in a historical context, is provided by A.R. Cooper,
Jr., J. Non-Cryst. Solids, 49, 1 (1982).
D.E. Polk, J. Non-Cryst. Solids, 5, 365 (1971).
Polk and D.S. Boudreaux, Phys. Rev. Lett., 31, 92 (1973).
Temkin, W. Paul and G.A.N. Connell, Adv. Phys., 22, 581 (1973).
. Steinhardt, R. Alben and D. Weaire, J. Non-Cryst. Solids, 15, 199 (1974).
. Bell and P. Dean, Phil. Mag., 25, 1381 (1972).
M Popescu Ref. 1, p. 477.
M. Popescu, Ref. 1, p. 483.
F. Wooten and D. Weaire, J. Non-Cryst. Solids, 64, 325 (1984); F. Wooten, K. Winer
and D. Weaire, Phys. Rev. Lett., 54, 1392 (1985); F. Wooten, G.A. Fuller, K. Winer
and D. Weaire, Ref. 1, p. 45; and K. Winer and F. Wooten, J. Molecular Graphics, 3,
76 (1985).
A. Lapiccirella, N. Tomassini, K.W. Lodge and S.L. Altmann, J. Non-Cryst. Solids,
63, 301 (1984).
L. Guttman and C.Y. Fong, Phys. Rev. B, 26, 6756 (1982).
D. Adler, Ref. 3, p. 5.
M. Kastner, D. Adler and H. Fritzsche, Phys. Rev. Lett., 37, 1504 (1976).
D. Adler, Solar Cells, 2, 199 (1980).
A.A. Lebedev, Trans. State Optical Inst.,
Theor. et Inst., 5, 4 (1926).
P.J. Bray, Ref. 1, p. 29.
S.R. Ovshinsky, Ref. 3, p. 105.
J.C. Phillips, J. Non-Cryst. Solids, 34 (1979) 153 and J. Non-Cryst. Solids, 43, 37
(1981).
P. Boolchand, Ref. 3, p. 221; J. Grothaus and P. Boolchand, J. Non-Cryst. Solids,
72, 1 (1985).
G. Lucovsky, Ref. 3, p. 277.
J.D. Bernal, in Liquids: Structure, Properties, Solid Interactions, edited by T.J.
Hughel (Elsevier, Amsterdam, 1965) p. 29.
. Scott and D.M. Kilgour, J. Phys. D, 2, 263 (1969).
. Finney, Proc. Royal Soc. (London) A, 319, 479 (1970).
. Barker, M.R. Hoare and J.L. Finney, Nature, 257, 120 (1975).
. Bennett, J. Appl. Phys., 43, 2727 (1972).
. Gaskell, Ref. 1, p. 329.
. Flory, Science, 188, 1268 (1975).
. Wright, Ref. 1, p. 15.
. Messmer and J. Wong, J. Non-Cryst. Solids, 45, 1 (198l).

Wright, G. Etherington, J.A.E. Desa, R.N. Slnclalr, G.A.N. Connell and J.C.
Mlkkelsen Jr., J. Non-Cryst. Solids, 49, 63 (1982).
A. Blenenstock Ref. 3, p. 171.
E.A. Stern, Ref. 3, p. 201.
L. Cervinka, J. Komrska and J. Mikes, Ref. 1, p. 69.
G. Lucovsky and C.K. Wong, Ref. 1, p. 51.
Webster's New World Dictionary, edited by David B. Guralnik (Simon and Schuster,
New York, 1982) p. 46.
R.T. Morrison and R.N. Boyd, Organic Chemistry, Second Edition (Allyn and Bacon,
Inc., Boston, 1971) p. 403.
D.E. Sands, Introduction to Crystallography (W.A. Benjamin, Inc., New York, 1969).
S.R. Ovshinsky and A. Madan, Nature, 276, 482 (1978).
R. Tsu, S.S. Chao, M. Izu, S.R. Ovshinsky, G.J. Jan and F.H. Pollak, J. de
Physique, Colloque C4, Suppl. to No. 10, 42, C4-269 (1981).
S.R. Ovshinsky, Revue Roumaine de Physique, 26, 893 (198l1).
S.R. Ovshinsky, in Proceedings of the 7th International Conference on Amorphous and
Liquid Semiconductors, (Edinburgh, Scotland, 1977),p. 519.
S.R. Ovshinsky and D. Adler, Contemp. Phys., 19, 109 (1978).
C. Kittel, Introduction to Solid State Physics, 5th Edition (John Wiley and Sons,
New York, 1976).
R. Haydock, Ref. 1, p. 121.
C.G. Montgomery, Ref. 1, p. 265.

;U'U;UU
LILILIFFI

2, No. 10, (1921) and Rev. d'Optique

D;UD'U'UOQL:D
D'UOQIIPI_O




142

50.

51.
52.
53.

54.
55.

69.

70.
mn.
12.
13.

14.
15.

76.
11.
78.
19.
80.
81.
82.
83.
84,
85.
86.
87.

88.

89.
90.
91.
92.
93.
94.
95.

96.
97.
98.
99.

100.
101.
102.
103.
104.
105.
106.
107.

J. BICERANO AND D. ADLER

M.F. Thorpe and D. Weaire, Phys. Rev. B, 4,
Thorpe, Phys. Rev. B, 4, 2508 (1971).
W.N. Lipscomb, Science, 196, 1047 (1977)and J. Less-Common Metals, 82, 1 (198l).
J. Bicerano, D.S. Marynick and W.N. Lipscomb, Inorg. Chem., 17, 3443 (1978).
J. Donohue, The Structures of the Elements, (Robert E. Krieger Publishing Company,
Malabar, Florida, 1982), Chapter 5.
K. Katada, Japan. Jour. Appl. Phys., 5, 582 (1966).
F.C. Frank and J.S. Kasper, Acta Crystallogr., 11, 184 (1958) and Acta
Crystallogr., 12, 483 (1959).
F.C. Frank, Proc. Roy. Soc. London Ser., 215, 43 (1952).
Physics Today, Vol. 35, No. 5 (May, 1982) is a special issue on liquid crystals.
See especially J.D. Litster and R.J. Birgeneau, p. 26.
G. Graff, High Technology, 4, 54 (1984).
J.M. Ziman, Models of Disorder (Cambridge University Press, Cambridge, 1979).
R. Pindak, D.E. Moncton, S.C. Davey and J.W. Goodby, Phys. Rev. Lett., 46, 1135
(1981).
D. Levine and P.J. Steinhardt, Ref. 85
R. Penrose, Bull. Inst. Maths and Its App] 10 (1974) 266 and M. Gardner, Sci.
Am., 236, 110 (1977).
P.J. Steinhardt, D.R. Nelson and M. Rouchetti, Phys. Rev. Lett., 47, 1297 (1981).
P.J. Steinhardt, D.R. Nelson and M. Rouchetti, Phys. Rev. B, 28, 784 (1983).
A.D.J. Haymet, Phys. Rev. B, 27, 1725 (1983).
D. Shechtman, I.Blech, D. Gratias and J. W. Cahn, Phys. Rev. Lett., 53, 1951 (1984).
D. Levine and P.J. Steinhardt, Phys. Rev. Lett., 53, 2477 (1984).
D.R. Nelson and S. Sachdev, Acta Met., to be published, is an excellent review
article. For a more detailed treatment of order, frustration, and defects in
liquids and glasses, see D.R. Nelson, Phys. Rev. B, 28, 5515 (1983).
M.E. Eberhart, K.H. Johnson, D. Adler, R.C. O'Handley and M.E. McHenry, Ref. 1, p.
97.
C.L. Henley, Ref. 1, p. 91.
A.D.J. Haymet, Ref. 1, p. 79.
H.A. Jahn and E. Teller, Proc. Roy. Soc. London A, 161, 220 (1937).
L. Pauling, Nature, 317, 512 (1985). Also see the editorial by J. Maddox on p.
471, in the same issue of Nature.
J.-F. Sadoc, Ref. 1, p. 103.
Metals Handbook, Eighth Edition, Volume 8, Metallography, Structures and Phase
Diagrams, (American Society For Metals, 1973).
B.W. Roberts, J. Phys. Chem. Ref. Data, 5, 581 (1976).

-F. Sadoc and R. Mosseri, Phil. Mag. B, 45, 467 (1982).
. Mosseri and J.-F. Sadoc, Ref. 1, p. 115.
. Ninomiya, Ref. 1, p. 489.

Schilling and P Reichert, Ref. 1, p. 129.

C. Lesjaunias and A. Ravex, J. Phys F 13, L1071 (1983).
. Erdds and R.C. Herndon, Adv. Phys. 31, 63 (1982).
A. Mello and N. Kumar, Ref. 1, p. 135.
A. Klenin and K. Promisliow, Ref. 1, p. 141.
R. Ovshinsky, Ref. 1, p. 161.
R.
P.
u

3518 (1971) and D. Weaire and M.F.

Ovshinsky, Phys. Rev. Lett., 21, 1450 (1968).

deNeufville and H.K. Rockstad, in Amorphous and Liquid Semiconductors, J.
tuke and W. Brenig, eds., Taylor and Francis, London, (1974) 419.
Bicerano and S.R. 0vsh1nsky, Ref. 1, p. 169. A much more detailed review is
provided by J. Bicerano and S.R. Ovshinsky, in Proc. Nobel Laureates Symposium on
Applied Quantum Chemistry, D. Reidel Publishing Company, in press.

J.
R
T
R.
J.
[
P.
M.
S.
S.
J.
St
J.

J.C. Phillips, Phys. Rev. B, 28, 7038 (1983).

W.E. Spear and P.G. LeComber, Solid State Commun., 17, 1193 (1975).

R. Grigorovici and P. Gartner, Ref. 1, p. 177.

R. Manaila, D. Macovei, R. Grigorovici and P. Pausescu, Ref. 1, p. 183.

M. Popescu, Ref. 1, p. 189.

M.H. McAdon and W.A. Goddard III, Ref. 1, p. 149.

W.A. Goddard III, T.H. Dunning, Jr., W.J. Hunt, and P.J. Hay, Acc. Chem. Res., 6,
368 (1973).

W.A. Goddard III and L.B. Harding, Ann. Rev. Phys. Chem., 29, 363 (1978).

J.H. Rose, J.R. Smith and J. Ferrante, Phys. Rev. B, 28, 1835 (1983).

C.D. Ge]att, Jr., A.R. Williams, and V.L. Moruzzi, Phys. Rev. B, 27, 2005 (1983).
J.H. Gibbs and E.A. D1Marz1o J. Chem. Phys., 28, 373 (1958).

M.H. Cohen and D. Turnbull, J. Chem. Phys., 31, 1164 (1959).

D. Turnbull, Contemp Phys., 19. 473 (1969).

D. Turnbull, Ref. p. 197.

M.H. Cohen and G S Grest Phys. Rev. B, 20, 1077 (1979) and 24, 4091 (1981).
T.S. Chow, Ref. 1, p. 209.

J.P. Ibar, Ref. 1, p. 215.

F.H. Stillinger and T.A. Weber, Science, 225, 983 (1984).

T.F. Soules, J. Non-Cryst. Solids, 49, 29 (1982).



108.
109.
1o.
1M1.
2.
13.
114.

115.
116.
117.
118.

119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.

138.
139.
140.
141.
142.
143.

144.
145.

146.
147.
148.
149.
150.
151.
152.

183.

154.
155.
156.
157.
158.

159.
160.
161.
162.
163.

164.
165.

Theory of the structures of non-crystalline solids 143

Yun and P.J. Bray, J. Non-Cryst. Solids, 27, 363 (1978).
Nagel, A. Rahman and G.S. Crest, Phys. Rev. Lett., 47, 1665 (1981).
Grest, S.R. Nagel and A. Rahman, Phys. Rev. Lett., 49, 1271 (1982).
Grabow and H.C. Andersen, Ref. 1, p. 225.
Barnett, C.L. Cleveland and U. Landman Phys. Rev. Lett., 55, 2035 (1985).
Laakkonen and R.M. Nieminen, Ref. 1, p. 237
R.B. Laughlin and J.D. Joannopou]os, Phys. Rev. B, 16, 947 and 2942 (1976); J.D.
Joannopoulos, J. Non-Cryst. Solids, 32, 241 (1979); and G. Lucovsky, C.K. Wong and
W.B. Pollard, J. Non-Cryst. Solids, 59 & 60, 839 (1983).
N. Lustig, J.S. Lannin, D.L. Price and R. Hasegawa, Ref. 1, p. 277.
J. Hafner, Ref. 1, p. 253.
M.A. St. Peters, J.R.D. Copley and D.W. Taylor, Ref. 1, p. 271.
S.R. Ovshinsky and K. Sapru, in Amorphous and Liquid Semiconductors, edited by J.
Stuke and W. Brenig, (Taylor and Francis, London, 1974)
p. 447.
S.R. Ovshinsky, Phys. Rev. Lett., 36, 1469 (1976).
S.R. Ovshinsky, AIP Conf. Proc., 31, 31 (1976).
.C. Phillips, J. Non-Cryst. Solids, 35 & 36, 1157 (1980).
. Takahashi, K. Ohno and Y. Harada, Phys. Rev. B, 21, 3399 (1980).
. Bicerano and S.R. Ovshinsky, J. Non-Cryst. Solids, 74, 75 (1985).
.F. Thorpe, J. Non-Cryst. Solids, 57, 355 (1983).
.R. Day, R. Tremblay and A.-M.S. Tremblay, Ref. 1, p. 245.
Rivier and H. Gilchrist, Ref. 1, p. 259.
.R. Elliott, Physics of Amorphous Materials, (Longman, New York, 1984).
ee the review by V. Heine, Solid State Phys., 35, 1 (1980).
E. Meek, Phil. Mag., 33, 897 (1976).

Beeman and R. Alben, Adv. Phys., 26, 339 (1977).

Dean, Rev. Mod. Phys., 44, 127 (1972).
J. Bell, Rep. Progr. Phys., 35, 1315 (1972).

Bloch, Z. Physik, 52, 555 (1928).
.H. w1lson Theory of | Meta]s, (Cambridge University Press, New York, 1936).

Adler, Amorphous Semiconductors (CRC Press, Cleveland, 1971).
.F. Mott and W.D. Twose, Adv. Phys., 10, 107 (1961).
.M. Scher and D. Adler, in Localization and Metal-Insulator Transitions, edited by
Fritzsche and D. Adler (Plenum Press, New York, 1985) 441.
.F. Mott, Adv. Phys., 16, 49 (1967).
.H. Cohen, J. Non-Cryst. Solids, 4, 391 (1970).
Adler, Solar Energy Mat., 8, 53 (1982).
.H. Cohen, H. Fritzsche, and S.R. Ovshinsky, Phys. Rev. Lett., 22, 1065 (1969).
Adler, J. Solid-State Chem., 45, 40 (1982).

Adler, Phys. Rev. Lett., 41, 1755 (1978) and J. Non-Cryst. Solids, 36, 819
(1980).
D. Vanderbilt and J.D. Joannopoulos, Phys. Rev. B, 22, 2927 (1980).
D.C. Allan, J.D. Joannopoulos, and W.B. Pollard, Phys. Rev. B, 25, 1065 (1982) and
26, 3475 (1982).
J. Robertson, Phys. Rev. B, 28, 4647, 4658, and 4666 (1983).
. Bullett, Solid State Phys., 35, 129 (1980).
. Ching and C.C. Lin, Phys. Rev. B, 12, 5536 (1975).
. Ching and C.C. Lin, A.I.P. Conf. Proc., 73, 151 (1981).
. Cohen and V. Heine, Solid State Phys., 24, 38 (1970).
. Kelly, Solid State Phys., 35, 296 (1980).

Hafner, 1in Glassy Metals, edited by H.J. Guntherodt and H. Beck
(Spr1nger—Ver1ag, New York, 1981).
K.H. Johnson, H.J. Kolari, J.P. de Neufville, and D.L. Morel, Phys. Rev. B, 21, 643
(1980).
A.C. Kenton and M.W. Ribarsky, Phys. Rev. B, 23, 2897 (1981).
K. Tanaka and R. Tsu, Phys. Rev. B, 24, 2038 (1981).
E.N. Economou and D.A. Papaconstantopoulos, Phys. Rev. B, 23, 2042 (1981).
R.P. Messmer, Ref. 1, p. 285.
F.W. Bobrowicz and W.A. Goddard, in Modern Theoretical Chemistry: Methods of
Electronic Structure Theory, Vol. 3, edited by H.F. Schaefer (Plenum Press, New
York, 1977) p. 179.
.A. Zygmunt, M.E. Eberhart, K.H. Johnson, and D. Adler, Ref. 1, p. 297.

Bernholc, Ref. 1, p. 305.

Bernholc, N.0. Lipari, and S.T. Pantelides, Phys. Rev. B, 21, 3545 (1980).

Bar-Yam and J.D. Joannopoulos, J. Non-Cryst. Solids, 77 & 78 99 (1985).

. Adler, in Physics of Disordered Materials, edited by D. Ad1er, H. Fritzsche, and
R Ovshinsky (Plenum Press, New York, 1985)p. 287.
.M. Hayes and J.L. Beeby, Ref. 1, p. 311. For the detailed implementation of this
pproach, see J.L. Beeby and T.M. Hayes, Phys. Rev. B, 32, 6464 (1985).
J. Blaisdell, W.A. Sokalski, P.C. Hariharan, and J.J. Kaufman, Ref. 1, p. 319.

LCOTZI OV
z::mx::

OOZO:ZIGZO>"1%'UG'UMU)Z>:Q—IL:

uzziic
Lnl-<-<z

(y-T) —CU’D-<LILIU1



144

166.

167.
168.
169.
170.
171.
172.
173.

174.
175.
176.
177.
178.
179.
180.

181.
182.
183.
184.
185.

187.
188.
189.
190.
191.

192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.

206.
207.
208.
209.
210.

J. BICERANO AND D. ADLER

Adler, in Semiconductors and Semimetals, Vol. 21A, edited by J.I. Pankove
Academic Press, New York, 1984) p. 291.
.J. Chadi, J. Vac. Sci. Technol., 16, 1290 (1979).
.Y. Ching, D.J. Lam, and C.C. Lin, Phys. Rev. B, 21, 2378 (1980).
.M. Ziman, J. Non-Cryst. Solids, 4, 426 (1970).
.R. Nagel and J. Tauc, Phys. Rev. Lett., 35, 380 (1975).
Oelhafen, E. Hansen, and H.J. Guntherodt, Solid State Commun., 35, 1017 (1980).
.J. Kelly and D.W. Bullett, J. Phys. C, 12, 2531 (1979).
.C. Moss and D.L. Price, in Physics of Disordered Materials, edited by D. Adler,
Fritzsche, and S.R. Ovshinsky (Plenum Press, New York, 1985)p. 77.
.K. Saw and J. Faber, Ref. 1, p. 347.
.K. Saw and R.B. Schwartz, Ref. 1, p. 355.
Suzuki and T. Egami, Ref. 1, p. 361.
Frota-Pessoa, J. Phys. F, 15, 287 (1985).
.S. Jaswal, Ref. 1, p. 373.
.H. Gaskell and I.D. Tarrant, Phil. Mag. B, 42, 265 (1980).
.A. Angell, P.A. Cheeseman, J.H.R. Clarke, and L.V. Woodcock, in The Structure of
on-Crystalline Materials, edited by P.H. Gaskell (Taylor and Francis, London,
977) p. 191.

Wong and C.A. Angell, Glass: Structure by Spectroscopy (Dekker, New York, 1976).
Lucovsky, Phil. Mag. B, 41, 457 (1980).

Robertson, Phys. Chem. Glasses, 23, 1 (1982).

0'Keefe and G.V. Gibbs, J. Chem Phys., 81, 876 (1984).

Guttman and S. Rahman, Ref. 1, p. 419.
w De Leeuw and M.F. Thorpe, Ref 1, p. 393.

.L. Galeener, Ref. 1, p. 399.

Tadros, M.A. Klenin and G. Lucovsky, Ref. 1, p. 407.

Ochoa and J.H. Simmons, Ref. 1, p. 413.
.C. Gerstein and A.T. Nicol, Ref. 1, p. 423.

Lucovsky, S.Y. Lin, P.D. Richard, S.S. Chao, Y. Takagi, P. Pai, J.E. Keem, and
.E. Tyler, Ref. 1, p. 429.
.W. Cahn, J. Chem. Phys., 42, 93 (1965).

W. Cahn and R.H. Charles, Phys. Chem. Glasses, 6, 181 (1965).

Zarzycki and F. Naudin, J. Non-Cryst. Solids, 1, 215 (1969).
.R. Kirkpatrick, Ref. 1, p. 437.
.G. Wolynes, Ref. 1, p. 443,
.-P. Chen, T. Egami and V. Vitek, Ref. 1, p. 449.
.J. Alder, D.M. Ceperley and E.L. Pollock, Acc. Chem. Res., 18, 268 (1985).
.A. St. Peters and L.M. Roth, Ref. 1, p. 455.

Cutler, Liquid Semiconductors (Academic Press, New York, 1977).

Ando, A.B. Fowler, and F. Stern, Rev. Mod. Phys., 54, 437 (1982).

von Klitzing, Festkorperprobleme, 21, 1 (1981).

Esaki and R. Tsu, IBM J. Res. Dev., 14, 61 (1970).

deL. Kronig and W.G. Penney, Proc. Roy. Soc. (London), A130 (1931) 499.

Abeles and T. Tiedje, in Semiconductors and Semimetals, Vol. 21C, edited by J.I.
Pankove (Academic Press, New York, 1984) p. 407.
R. Tsu, Ref. 1, p. 463.
J. Kakalios and H. Fritzsche, Phys. Rev. Lett., 53, 1602 (1984).
S.C. Agarwal and S. Guha, Phys. Rev. B, 31, 5547 (1985).
N. Maley and J.S. Lannin, Ref. 1, p. 469.

D. Weaire, Ref. 1, p. 497.

TUVUET o~O
. .

wzr-x—q:czmw-u—auumumwz;b-nuu—zc_-mc_a—'zn-om nNn=<ooxTunvw=






