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Abstract - A theoretical approach is presented and applied to
transport properties of electrolyte solutions undergoing chemical
reactions such as ion-pair formation, micelle destruction and
recombination, and ligand exchange reactions. The observable
transport coefficients differ from those of chemically inert
systems and exhibit kinetic patterns depending on the relative
time scales of the superimposed effects. The quantitative
description of the phenomena requires to take into account the
rates of chemical reactions in the solutions and the deviations
from ideality occuring on the same level of approximation.

INTRODUCTION

The common point of view in chemical kinetics is to consider
the limitation of rate processes by the transport of either
reactants to or products from the zone where the reaction takes
place. The reaction step generally is considered to be the
non-trivial part of the process, the transport of species is
considered inasmuch as it yields conditions for an upper limit of
the rate processes (cf. ref. 1).

In the present work, the transport coefficients are
considered as the observable quantities, and the problem is
studied how they are modified by chemical reactions of the moving
particles. This point of view is a novel aspect of transport
theory, never adopted before in a systematic way. The
transport properties studied in the present contribution are the
ion mobilities and the diffusion coefficients of the particles
involved in the chemical reactions yielding the equilibria of
electrolyte and polyelectrolyte solutions. Examples of application
will be the diffusional transport in electrolyte solutions of
associated electrolytes, electrophoresis experiments coupled with
metal ion-ligand exchange reactions, and diffusion of micelles
observed by dynamic 1light scattering. The process of micelle
formation from the separated ions is a fast reaction with respect
to the considered transport process.

The crucial point in the study of coupled transport processes
and chemical reactions is the consideration of the ratio of
characteristic times related to these phenomena.

If the characteristic time of the <chemical reaction is
shorter than that of the transport process, the transport
coefficient depends only on relative rate constants. However this
dependence cannot be simply analyzed in terms of mass action law.
Diffusional transport under fast exchange conditions is an example
of this class of coupled phenomena (ref. 2).
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In contrast, if the rate process takes place at a velocity
comparable to that of the transport phenomenon, the absolute value
of the rate constants can be deduced by deconvolution of the
concentration profiles of the moving particles, involving both
the propagation of the particles and the sources of particles due
to chemical reaction. This situation (slow exchange) can be
encountered in electrophoretic migration.

THEORY

Transport phenomena in electrolyte solutions are presented in
terms of phenomenological Onsager coefficients, especially in
electrolyte mixtures. However the occurence of chemical reactions
complicates the analysis of the phenomena in a way that Onsager
coefficients hardly can be used to describe the peculiar features
of such systems (ref. 3).

We have developed a method, related to that used in the
interpretation of dynamic light scattering experiments (ref. 4),
apt to give a description of simultaneous transport processes and
chemical reactions.

The basic equation of this method is the hydrodynamic
continuity equation

dc& 3 4
p + V.Jt = o Vo= 1,2,.... % (1)
t
showing for each particle i the "source" term o due to
chemical reactions producing or consuming particles , and the
+ 4
"flow" term v.J caused by inhomogeneities of concentration,

1
temperature etc., producing transport in the solution. In Eq. (1)

c, is the concentration of particle ¢ ; the source term o, is the
algebraic sum of the rates of chemical reactions in which the
particle ¢ is involved, o, = (dci/dt)chem.reqct. ; the flow 3&
contains the contributions from both transport processes

(diffusion, migration) and excess thermodynamic forces (gradients
of activity coefficients) as well as hydrodynamic interactions.
Summing up the continuity equations for all particles (i=1,2,...)
yields a set of partial derivative equations which generally are
non-linear equations and then can only be solved by numerical
methods (finite differences) for arbitrary values of the
concentration gradients.

Small fluctuations or concentration inhomogeneities permit the
linearization of concentrations, flows,and sources in states near
to steady and equilibrium states

c, = ¢ +8c ; I =J0 +8J ; o =0} +380 (2 a,b,c)

4
An electric field E contributing to J, via the electric force

+ + 4
Ft' FL = eztE , is splited in two parts

+ 1, +

E = E° + 8E (24d)

where E° corresponds to the applied external field and 6% is the
fluctuating part producing the macroscopic electroneutrality of
the solution.

Keeping only the first order terms in the heterogeneities and
fluctuations yields a set of linear partial derivative equations.
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This system can be transformed to an eigen-value problem with the
help of integral transformations. A convenient way is to wuse
Fourier transformation for the space and Laplace transformation
for the time variables:

Eb(q) = f dr eldr c‘(r) Fourier transform (3)

€ (q,8) = [ dt e St ¢, (q,t) Laplace transform (4)

o

The system of hydrodynamic equations is then reduced to a system
of linear equations and can be written in the matrix form:

M C(q,s) = €(q,t=0) (5)

The normal modes (relaxation frequencies) of the system are given
by the n roots in s of the secular equation:

det(M) = 0

They can be developed according to their dependence in the
reciprocal space variable (-iq) to yield relations:

s, (@) = s + (-iq) s +( -iq)? s} (8)
and may be classified according to the first non zero terms in
these developments.

The first non-zero term in Eq. (6) characterizes the nature of the
corresponding mode:

- sf # 0, characterizes a relaxation mode (either chemical or
electrical).

- s; # 0 and sf =0, characterizes a migration mode.

1
v
- s: # 0 and s, =0 and s: = 0, characterizes a diffusion mode.

The last two cases characterize propagative modes which <can be
affected by the chemical reactions.

ION PAIR FORMATION AND DIFFUSION

We consider the superposition of diffusion and an association

kinetic process according to the following reaction

L
- * emm— . _ - + 10
Y, + Y, —_— Y, ; Y, = [Y] ¥;1 (7 a,b)

For such a system, the set of continuity equations is given by the
relations

dc, P
7t + V.Ji = - klzclcz + kec9 (8a)
dc, + 4
7t + V.J2 = - k“clc2 + kccs (8b)
dc, PR
P + V.Jo = - kyc, + kxzcxc’ (8c)

The flows involve diffusional and migrational parts

E (9a)
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+ ; D,
J = - D,Vc + c,z,e E (9b)
H 2 T2 2“2 KT
+ +
J, = - D, Vco (uncharged species) (9¢c)

In these equations, e is the charge of the proton, k the Boltzmann
constant and D, are the diffusion coefficients. Ionic mobilities

are expressed in terms of diffusion coefficients, with the help of

the Einstein relation, Dt =W k T.

To evaluate the electrical field ; in Eqs. (9), we remember that
in microscopic and macroscopic pure diffusion processes
without external driving force the electric field originates only
from charge inhomogeneities. Taking into account electroneutrality
at equilibrium, the diffusion potential is given by the Poisson
equation:

+ 3 XA e )(A e
V.E = z c, z, = _ I z, 8¢, (10)
e, 8 =i, g, & i=1,12

Only the first order terms in the perturbations Sci are retained

and the electroneutrality condition
L ¢lz, = 0 (11)
vet, 2
is used, where c: is the equilibrium concentration of species i .

The linearized hydrodynamic transport egquations show three
eigen modes:

two relaxation modes

s, = - (q‘sz + q,’Dz) Debye relaxation (12a)
- - ° ° .
s, = (kzzcz + k“c2 + ks) chemical relaxation (12b)
one diffusional mode
s, = - @09 . (12¢)

where q is the reciprocal space variable and 2 the diffusion

coefficient:
D, D

N E ]
2 = + —— (13)
1+ axpc, 1+ 1
2.’Kpcf
In Eq. (13), Dyg is the chemical diffusion coefficient of the
dissociated part of the electrolyte and Ds is the diffusion
coefficient of the ion pair. DNx is related to the individual ion

diffusion coefficients by the Nernst-Hartley equation
D, D, (q,' + q,)

Dyg = (14a)

where

g = ezt ¥, ) / (e 8 KT) (i=1,2) (14b)
KP is the equilibrium constant of ion-pair formation, Xp=k12/k3 ,

and Cs is the average concentration of the free ions, c, = cf = c?

This result (ref. 5) is different from that obtained in
self-diffusion processes involving the simultaneous diffusion of
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free and paired ions and yielding the relationship:

D = D (1 -B) + @D, (15)
where f = c: / (cp + c:) is the degree of association to ion
pairs.

In contrast, the asymptotic behaviour of 2 , according to Eq.
(13), at low pair concentration is given by the relation
? = Dun(l - 2B) + zﬁDS (16)

which is smaller than the diffusion coefficient given by Eq.(16) if
Do < DN!

Figure 1 illustrates results for Dg = Du!/z as a function of
Log (x,c,) . The upper curve corresponds to Eq. (15) and the lower

curve to Eqs.(16) and (13).

Fig. 1 : Diffusion coefficients

setting Do=°‘5DNs
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INFLUENCE OF MONOMER-MICELLE EXCHANGE ON MICELLE
DIFFUSION

The formation-dissolution process for micelles can be written

as follows

Nm —— M (17)

if m is the monomer and M the micelle.
For micelles with a large c.m.c. (critical micellar concentration)
like sodium hexyl sulfate or sodium octanoate the reactions are

very fast. In dynamic 1light scattering one observes (ref. 6)
micellar diffusion over distances comparable to the wavelength of
light, during a time Ty =(2pq®*)"! where D is the diffusion
coefficient of the micelle . For the two systems investigated =<

D
is of about 5 ps, the residence time, %33 of a monomer in the

micelle being about 20 ns. The c.m.c. is high (about 0.5 M), and
for concentrations just above the c.m.c. (c-c.m.c. = 0.05M) there
are 200 times more monomers than micelles. The brownian motion
measured by light scattering may be modified by monomer-micelle
exchange reactions.

The presence of an excess of uncondensed monomers and counterions
ensures a large ionic strength which is able to screen out the
coulomb forces and the system can therefore be described by
diffusion-reaction equations for uncharged systems. However, the
system is far from ideality, owing to the large size of the
micellar objects, whose excluded volume corresponds to a volume

according to Eq. (15) and Egqs.
and (16) as a function of Log(xpcf).

Both curves were calculated
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fraction ¢ reaching usually a value of about 0.5. At such volume
fractions, one has to take into account both thermodynamic excess
properties and hydrodynamic interactions. That can be done by
considering that the micellar diffusion <coefficient should be
multiplied by a factor (ref. 4)

1 + K¢ (18)

in the expression for the apparent diffusion coefficient as
measured by dynamic light scattering. K is a constant very close
to 2, and ¢ is the volume fraction of the micellar object.

The diffusion-reaction equations then are written

6c1 + 4 v

;: + v.J1 = kxc3 - k,c, for the micelle (19a)
dcz + 3 v

;: + V.J‘ = N ( -k“cz + kmc1 ) for the monomer (19b)

N is the number of monomers in each micelle and v is the partial
order for the formation of the micelle from the monomers.
The equilibrium condition is given by the relation

k"c:v - kyc) =0 (20)
Linearization of the concentrations near equilibrium yields

the system of equations for the fluctuating concentrations in the
Fourier-Laplace space:

Q
°s
L]

(s+q’D‘+km) SE‘(q,s) - kv ; 652(q,s) = Sét(q,t=0) (21a)
2
cO
- k,N 6%, (a,s)+ (s+q’D,+Nk, v =) 8%, (a,s) = ¢, (q,t=0) (21b)
c
2
which has the diffusive mode
cy
D‘N v -;a + D’
9 = 2 - (22)
c,
1 + NV -
-]
€2

Taking into account the effect of departure from ideality
introduces the factor D:(1+K¢) in place of Da’ Moreover, we can

take, as a first approximation, c:

system . In the lack of other information we set v equal to N. We

notice that cf =¢ / v, where viis the volume of the micelle

which can be estimated from its hydrodynamic radius via Stokes
formula or any other model yielding the size of the micellar
object.

The apparent diffusion coefficient then is given by the relation

equal to the <c.m.c. of the

2 = [D{N'¢ (1 + K¢)/(v,c.m.c.) + DJ1/[1 + N'¢ /(v,c.m.c.)] (23)

Eq. (23) is in good agreement with the experimental values of the
diffusion coefficients of sodium octanoate and sodium hexyl
sulfate, determined by dynamic light scattering (ref. 6).

A graphical presentation of the corresponding results is
given in figures 2 and 3.
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Fig 2 Diffusion coefficient of sodium hexylsulfate as a function
of the volume fraction ¢. Triangles: experimental values,
continuous line calculated by Eq. 23.

Fig. 3 Diffusion coefficient of sodium octanoate as a function of
the volume fraction ¢. Triangles: experimental values, continuous
line calculated by Eq. (23),

ELECTROPHORETIC TRANSPORT AND ION AGGREGATION

Exchange reaction of the type:

K
12
z z z, *+ 2
v' o+ L ¥ c-——k'_" v,t ¥ (24)

taking place between the complexes Yt of charge ez and Y, of

1
charge e z,= e (z‘+z£) in a solution containing an excess of

z
the ligand L € are independent of the metal concentration. This
simple kinetic situation, exemplified by the reaction

12

RuNO(NO.)®* + NO; .——s RuNO(NO;); (25)

k!l

in aqueous solution of HNOO, is chosen for applying our theory to
electrophoresis.
The sources and flows for the electrophoretic transport in an

external electrical field which is accompanied by the chemical
reaction, are given by the expressions:

o, = —k“cl + k“c2 (26a)
g, = k“cl - k“cz (26b)
+ + c,z e ¥ +
J, =D, L Ve, + e E] + c, dv, (27a)
+ 4 c,z,e 4 4
J, =D, L -ch + ——;;— E ] + c’sz (27b)

4
At the 1level of the approximations in this paper Avt

contributes only to ionic migration (peak position). This effect
can be represented as an increment in the mobility of ions and
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does not change the structure of the equations. The effect of
+
°tAvi will be taken into account afterwards by an appropriate

correction. The excess of the supporting electrolyte, HNOO,

permits to neglect the fluctuations of the electrical field, <.e.
+ 3

E=E° in Eq. (2b). The system of equations (5), for the two
migrating compounds involved in the chemical reaction is given
under this presupposition by the relationship

s"')"z ’ -kii Aél (qu) Aél (qvt=0)
-k ey T, ( ol ! t=0 (28a)
12: 2 2 st) c! (ql = )
where : = ol _ °
%‘ q° D, izluie Eq + kzz (28b)
_ oot s 0
xt = q Dz iz,w, e E°q + kzt (28c)
The two eigenvalues, s, and s, » of the matrix are given by the
relationships:
_ 1 _ H 172
s 0= g [0 ey =2y )t kK 0] (29a)
1 H 172
s, = 3 [-(xz+x,)—((xi-xt) +4k12k21} 1 (29b)
determining the observable quantity of this experiment which is
the sum of the two time and space depending concentrations c, and
c,:
» w » 1 w stt szt
c(gq,s) = c, +¢ = W [ c(q,t=0) {s2 e - s, e }
~ w 5,4 s, ¢
Ly tky )8, (q,t=0) + (A, +k, )8 (q,t=0)} {e ' - e ' } ] (30)

The pattern of the observable quantity is obtained by inverse
Fourier transform or by Fourier series expansion, the initial
pattern is given by the functions at t = 0.

+ +
The effect of Avt on ionic velocity v, is taken into account by

a correction of ionic mobility v,

+ + + eps ?
v, = wE + <Avt> = E (31)
where
+ 0 * + .
<Avt> = § cj { (gtJ - 1) F‘j 4n r°dr (32)
‘ is the Oseen tensor and g j is the radial two particles

distribution function.
The velocity of particle i is the result of two effects:
+ +
- on the one hand the response “LFL , to the applied force FL'
- on the other hand the dragging of particle i by the local drift

at the location of i

+ +
The Oseen tensor relates Avt to the velocity,vj, of the particle j

4
at distance T

+ * + 1
Av, = vy — (33)
@i

Using he Oseen expression (ref. 7) for * and the expression of
the chemical model (ref. 8) for gtj(r) at low concentrations
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vields the relationship:

+ D, exp ( - R ) +
wren by - oo 1F (s4)

R is the center-to-center distance of the Ruthenium ion and the
counterion N0; , dincluding the dimension of the ligand
shell, »~* is the Debye length.

From Eq. (34) follows

D, exp ( -» R )
eff i
u = e z - - — (35)
v v t kT 6 ™My % 1

The effect of Avt can be formally interpreted either as a change
of the diffusion coefficient or of the charge ez, . We choose the
latter possibility by writing:

kT exp ( -% R )

VAR | 1 - — ] (36
- -1
¢ v Dl 6mTTn % )

Figs.4 a,b,c show the patterns at various temperatures for the
paper electrophoresis of a mixture of RuNO(N0;)2° and RuNO(Nog);

after migration under the experimental conditions of refs. 9 and
10 initial concentration of NOO' in the supporting electrolyte

(aqueous solution of HNOG) about 2 mol dn'§ ruthenium as a tracer.

Both ruthenium complexes have the same diffusion coefficient D.
The separation in two peaks, Fig. 4a (T=267K) occurs only for slow
exchange reactions, i.e. at 1low temperatures. Fast exchange
reactions do not permit the separation, except at much higher
electrical fields which, however, cannot be applied to the highly
conducting solutions used in this experiment. The separation of
peaks occurs either at high fields or at low temperatures. At
higher temperatures we observe one peak more or 1less broadened
(Fig. 4b (T=279K) and 4c.(T=285K) ). Under this condition the
roots are

s,=-q D+ iwe6Eqz-Kk (37a)

L H 21
L2 (37b)

s’=—q’D+iweE°qzt-k
they indicate the diminution of the peaks by the relaxation

50 50 50

T = 267 K T = 279 K T = 285 K
40r 40 40
30 30[— 30 |-
20 20 20}
10} 10 10+
1 1 1 1
0 1 0 1 0 0.2 0.4 0.6 0.8 1

(a) (b)

Fig.4 Influence of temperature on the electrophoretic patterns of
ruthenium nitrate in HNOs (2 nol.dl's): (a) low temperature

(267K), two peaks, separation of the two complexes; (b) & (c) high
temperatures (b:279K, c:285K), one peak, no separation. X axis:
broadness of the ruthenium zone after migration (relative time
scale); Y axis: ruthenium distribution after migration (relative
concentration scale).
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-ktzt -kgtt
factors e and e , respectively, t being the migration

time. The term -q’D shows the diffusion broading of the peaks, the
term iw e E°q z, characterizes the migrational separation of the
two peaks according to the relative values of z, and z, . The
high field approximation doesn't exhibit the contribution due

to the production of compounds by the exchange reaction to the
electrophoretic pattern. This effect can be illustrated by the
fast exchange approximation which yields the roots

z kg, + z Ky

s, = —q’D + iw e E%q x5 (38a)
12 21
2 °
sz=—qD+iweEq—k——+—-k——(k“+ k“) (38b)

eff

L , for the correct

Data analysis requires the wuse of z

reproduction of the peak positions, cf. ref. 9.
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