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Abstract - Recent results on high-resolution nonlinear rotation-
vibrational Raman spectra of gases are described.

INTRODUCTION

In the last 10 years the resolution in rotation-vibrational Raman spectroscopy of gases has
been increased by about two orders of magnitude through the application of the nonlinear
techniques which are based on the excitation with two lasers, one of which is tunable
(ref. 1). Whereas Q-branches of rotation-vibrational Raman bands of polyatomic molecules
could generally not be resolved by linear Raman techniques (ref. 2), it has now become
possible to study their rotational structure in some detail. Early examples are the
Coherent Anti-Stokes Raman Scattering (CARS) spectra of the Q-branches of the V1 and V2
bands of acetylene C2H2 which have first been resolved by Nitsch and Kiefer (ref. 3) and
Fabelinsky et al. (ref. 4). The rotational structure of the 0- and S-branches of these
bands had previously been studied by Kostyk and Welsh (ref. 5) and Wang and Weber (ref. 6)
by photographic recording of the linear Raman spectrum.

Other nonlinear Raman techniques that have been used to resolve rotation-vibrational bands
are Stimulated Raman Gain Spectroscopy (SRGS) (ref. 7), Inverse Raman Spectroscopy (IRS)
(ref. 8,9), Raman Induced Kerr Effect (RIKE) (ref. 10), Photo-Acoustic Raman Spectroscopy
(PARS) (ref. ii) and more recently Ionization-Detected Stimulated Raman Spectroscopy
(IDSRS) (ref. 12-14) and Fourier Transform Raman Spectroscopy (FTRS) (ref. 15,16). Here we
report on some of the results obtained in our laboratories in Munich (ref. 17) and Dijon
(ref. 18-20). A more detailed account of our work is published elsewhere (ref. 21).

COHERENT ANTI-STOKES RAMAN SPECTROSCOPY (CARS)

Because the instrumental resolution depends on the convoluted linewidth of the two lasers
and the narrowest linewidths can be obtained with stabilized single mode continuous lasers,
we have constructed a CARS spectrometer for c.w. intracavity excitation in Munich
(ref. 22). It consists of an argon ion ring laser with an etalon, a prism, and a gas cell
containing two spherical mirrors in the cavity and a dye ring laser, the beam of which is
coupled into the gas cell at the prism for collinear excitation.

The CARS spectrum of the Q-branch of the rotation-vibrational band of nitrogen N2 has been
recorded at pressures of 2 kPa and 14.5 kPa (ref. 22, 23) and the difference of the
rotational constants in the ground and first vibrational states has been determined as AR
= -(0.17385 ± 0.0000035) cm—1, in close agreement with the values obtained by Bendtsen
(ref. 24) from the linear Raman spectrum and by Reuter et al. (ref. 25) from the infrared

quadrupole absorption spectrum.

The structure of the V3 Raman band of methane CH4 has been studied by many authors, from
Stoicheff et al. (ref. 26) to Berger et al. (ref. 27). Now it has also been possible to
resolve the Q-branch of this band by Coherent Stokes Raman Scattering (CSRS) (ref.÷28) and
CARS (ref. 29) techniques. Figure 1 shows the CARS spectrum in the region of the Q branch
recorded at a pressure of 13.6 kPa. Starting from the energy levels derived from an
analysis of the infrared spectrum in the region of the CH - vibrations (ref. 30) the CARS
spectrum has been calculated and found to be in good agreement with the experimental one,
as shown in Fig. 2, where the contributions of the real and imaginary parts of the
nonlinear susceptibility are plotted separately.
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On the other hand, the analysis of the intensity profile of the CARS spectrum of the V1
band of methane recorded at a pressure of 1.4 kPa (ref. 23,31) on the basis of available
assignments (ref. 7,30,32) led at first to discrepancies which could be removed by an
empirical reassignment of transitions with J 7 to J = 10 (ref. 31). Later Lolck
(ref. 33) has shown that the empirically found line positions (ref. 31) can also be derived
from theoretical calculations.

The pressure dependence of the CARS spectrum of the V1 band has also been investigated
(ref. 29) between 1.4 kPa and 40 kPa and is shown in Fig. 3. The lowest pressure in our
static cell at which a satisfactory signal/noise ratio has been obtained for a single scan
was 0.3 kPa (ref. 34).

The analysis of the CARS spectrum of the V1 band of hydrogen sulfide H2S recorded at a
pressure of 1.3 kPa led to excellent agreement with a spectrum calculated from energy
levels and wave functions derived from a study of the infrared spectrum (ref. 35).

Fig. 3. Experimental CARS spectrum of the V1
band of methane at pressures of 1.36 kPa,
2.73 kPa, 5.37 kPa, 13.6 kPa and 40 kPa.
CARS signal in arbitrary units.
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Fig. 2. Calculated CARS spectrum of the Q-branch
of the V3 band of methane. Upper trace: total
spectrum. Middle trace: contribution of real
part of the nonlinear susceptibility. Lower
trace: contribution of imaginary part of the
nonlinear susceptibility.
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Fig. 1. Experimental CARS spectrum of the

Q -branch of the V3 band of methane at
a pressure of 13.6 kPa.
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Fig. 4. Experimental CARS spectrum of the
Q-branch of the V1 band of benzene at a
pressure of 1.7 kPa.
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The CARS spectrum of the Q-branch of the V1 band of benzene C6H6 recorded at a pressure of
1.7 kPa is shown in Fig. 4. Although the rotational structure could not be resolved, the
positions of the hot band V1 + V20 — V20 and of the V1 band of the isotopomer '2C513CH6
have been determined (ref. 29).

The structure of the CARS spectrum of the V1 band of allene C3114 has been found to be

rather complicated (ref. 34).

In the case of the CARS spectrum of the Q-branch of the V1 band of ammonia NH3 at a
pressure of 1.5 kPa (ref. 36) the recorded and calculated spectra could only be brought
into agreement by the introduction of a pressure broadened linewidth (FWIIII) depending on
the quantum numbers 3 and K of the symmetric top molecule. The empirical formula

= 0.004 cm-1 + (0.012 cm-1) [K2/J(J + i)}, (1)

led to a satisfactory fit. The line broadening effect has also been observed in the
infrared spectrum of the Q-branch of the V1 band recorded with the technique of difference

frequency laser spectroscopy by Pine (ref. 37) and is being investigated theoretically by
Buffa (ref. 38) on the basis of a theory that has been successfully applied to the V2 and
2v2 bands of ammonia (ref. 39,40).

In Dijon a CARS spectrometer with flashlamp pumped dye laser amplifiers (ref. 41) injection
locked to the frequency of stabilized single mode c.w. krypton or dye lasers has been
constructed by Boquillon et al. (ref. 20). The amplifiers deliver pulses of about 400 ns
with peak powers up to 10 kW and a repetition rate of 10 Hz, leading to an instrumental
resolution of about 10 Mllz. With this spectrometer CARS spectra of the Q-branch of the
rotation-vibrational band of oxygen 02 at pressures between 1.3 kPa and 130 kPa have been
recorded and collisional line broadening parameters have been determined for the lines with
N = 1 to N = 17.

INVERSE RAMAN SPECTROSCOPY

Also in Dijon an Inverse Raman Spectrometer (ref. 42) has been developed which uses a c.w.
argon ion probe laser and a high power pulsed pump laser (Fig. 5). The pump laser is
obtained by amplifying a tunable single mode dye laser in a four stage amplifier pumped by
a Nd-YAG laser. In our recent investigations, the probe laser was actively stabilized with
a Fabry-Prot interferometer and its frequency was locked to a Doppler-free saturated
absorption line of '2 This laser is used as the reference source for the travelling
corner cube wavemeter which measures the dye laser frequency at the beginning and at the
end of each 1 cm—1 scan. The induced absorption signal is detected on the probe laser, is
amplified and then averaged and stored in a data acquisition system.

The Raman spectrum of 13CD4 has been investigated for the first time and recorded in the

region corresponding to the pentad (v1, u, 2v2, 2 + V4, 2v4) (ref. 19). The observed
spectrum covers a 50 cm—1 spectral range and the frequencies of about 300 Raman transitions

Fig. 5. Inverse Raman Spectrometer, Universit de Dijon.
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Fig. 6. Observed and calculated inverse Raman spectra of the 2v2 (pressure 20
kPa) and 2v4 (pressure 4 kPa) bands of '3CD4.

have been measured. Fig. 6 shows high resolution spectra of the harmonic bands 2v2 and
2v4. The observed Raman frequencies have been combined with the infrared data recorded by
Henry and Valentin in Paris (ref. 43,44) in a simultaneous analysis of the pentad.
Moreover, the collisional linewidth of Q(4) lines of the V1 band has been extracted by
fitting a Raman profile to the experimental spectra.

The symmetric top molecule C3116 has been also investigated to get high resolution Raman
spectra of the C-H stretching region (3000 to 3040 cm—'). Many lines appear in this region
and lead to a complicated structure not yet fully assigned. Nevertheless, the 2v2 Q-branch
exhibits a band head which allows us to estimate some molecular constants.

In addition to molecular structure investigations, we have studied collisional effects on
the lineshape of the Q-branch of nitrogen. Two phenomena occur as the density increases:
at low density, the Doppler contribution is reduced through the Dicke narrowing (ref. 45),
and for high density, the spectrum is narrowed by vanishing of the rotational inelastic
contribution (ref. 46). The Dicke narrowing has been demonstrated in a backward
scattering configuration on the Q(18) line of N2 (ref. 47) by using a Galatry profile in
the fit (ref. 48). An error of 10% is made in the broadening coefficient if the phenomenon
is neglected in this configuration.

With a view to apply IRS data to laser Raman diagnostic techniques such as CARS, we have
studied the temperature dependence of the collisional linewidths in the Q-branch of N2,
from room temperature up to 1310 K (ref. 49). This study is an extension of previous
investigations in this domain (ref. 50,51). The collisional linewidths have been extracted
by least squares fitting procedures using Voigt or Rosenkranz profiles. The latter was
useful when the lines overlapped. Indeed, the Rosenkranz profile well describes the
non-additivity of the lines resulting from line mixing in the case of small overlap
(ref. 52). The measured broadening coefficients are plotted in Fig. 7 against J for
different temperatures. The solid lines correspond to semi-classical calculations
performed by Robert and Bonamy (ref. 53). These calculations, which are very consistent
with the measured coefficients, have been extended to higher J values and to higher
temperatures (up to 2500 K).

This set of measurements and the recent investigations of Rahn and Palmer (ref. 54) are in
very good concordance.

2183 2184 2185
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Fig. 7. Experimental (points) and calculated (—) line broadening coefficients
for the Q-branch of nitrogen as function of the rotational quantum number J for
various temperatures. 1 MK/ATM = lO- cm-1 bar-1 = l0_8 cm-1/Pa.

Fig. 8. Profile of the Q-branch of nitrogen at a pressure of 35 bar = 3.5 NPa.
Comparison of experimental points with calculated curve according to the EGL
model.
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The description of the collisional narrowing, which begins at moderate pressures (100 [cPa
at room temperature) in the N2 Q-branch, involves the knowledge of all the elements of the
relaxation matrix W. Simple models use energy based fitting laws (ref. 55) for predicting
off-diagonal elements from measured or calculated linewidths. Among them, we have
adopted the model of Greenhalgh and coworkers (ref. 56) which assumed a polynomial inverse

energy gap law for W, The parameters of the model have been adjusted by fit to the two
sets of broadening coetficients of ref. 49 and 54. Then it was possible to predict high
temperature linewidths, as well as collisionally narrowed spectra of N2 for high pressures.
A comparison with experimental spectra has led to good agreement (ref. 57).

Another model for the W-matrix has been developed by Sala and coworkers (ref. 57). This
model uses the strong collisions approximation and satisfies both detailed balance and
unitarity of the S-matrix, in contrast with previous approaches (ref. 58,59). The

agreement with the experiment is good.

To improve the test of W-models, we have measured the pressure induced frequency shift of
some Q(J) lines and found a mean value of 150 MHz amagat—' (ref. 60). By taking this shift
into account, we have found that the EGL model proposed by Koszykowski and coworkers
(ref. 61) describes the collisional narrowing in N2 very well (ref. 62), as shown in
Fig. 8.
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