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Abstract

The nucleophilic activation for nucleophilic displacements at
silicon 1is extensively used in organic synthesis. This process
involves pentacoordinated intermediates. The reactivity of penta-
coordinated organosilanes, silicates and siliconantes (neutral or
anionic) is studied. All the examples reported here illustrate the
great reactivity of hypervalent species. These species react
faster than the corresponding tetracoordinated silanes.

The nucleophilic activation for nucleophilic displacements is a
process extensively used at silicon mainly in the uses of orga-
nosilanes in synthesis : c¢leavage'and activation of Si-0 bonds
(ref.1l), activation of Si-H (ref.2), 8i-C (ref.3), Si-N (ref.4)
bonds, all processes performed using F- or HMPA or more generally
using nucleophiles having a high affinity towards silicon, as
catalysts. The same process was also observed at Phosphorus
(ref.5). Since such a process is not known in carbon chemistry, we
have proposed a mechanism involving the formation, in a preequili-
brium, of a pentacoordinated intermediate formed with the nucleo-
philic catalyst. This step is followed by the nucleophilic attack
of the incoming nucleopile in the rate determining step (Scheme 1).
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Some examples of this mechanism will be given in the following
reduction reactions. The activation of Si-H bond by F- is a very
efficient and very selective way for the reduction of carbonyl
groups. It is possible to reduce a >C=0 group without reduction of
NOz , >C=C<, -C=C-, halo, CN, and -CONH: groups. There is also a
very selective reduction of 2-Enones in 1~2 position, even with the
chalcone (ref.6) (Scheme 2).
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The mechanism involves a nucleophilic activation of Si-H bond at
the surface of F- in heterogeneous conditions, or by coordination
of F- in homogeneous conditions, and the attack of carbonyl group
with hydride transfer in the rate determining step.

In order to support this mechanism we have studied <the reactivity
of pentacoordinated hydrogenosilanes we have prepared. The Si-H
bond is a very interesting one for comparison since we have
obtained a very good evidence for the formation of pentacoor-
dinated structures in solid state (XR) (ref.7) and in solution
(siz® NMR) (ref.8).The Si-H bond has a good ability to form
pentacoordinated structures and the hydrogen was always in equato-
rial position (Scheme 3).
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It is well known that the tetravalent dihydrogenosilanes do not
react with alcohols or carboxylic acids, or carbonyl groups. On
the other hand the same reagents are able to substitute the Si-H
bond when the silicon is in a pentacoordinated state. We have even
found the possible hydrosilylation of carbonyl groups (ref.9)
(Scheme 4).

Scheme 4 {H)
Me MeH H Me b £ ,0-CHy-Ar
SWARY4 S Y
N-»Si—0 0 N—=Si—~0CHy —Ar

I
Q0 == QO
R.T. 12H MONO
R.T. 6 DAYS Bl

X ? H  OH
N(S(_H " —_— 100%
ool o
X—@—'k —_— 100% x—@—CHon
H

The reactivity of pentacoordinated hydrogenosilanes support very
well the mechanism we have proposed for the hydrosilylation of
alcohol and carbonyl groups. More generally it was interesting to
consider the reactivity of hypervalent species of silicon towards
nucleophiles. Since recently Damrauer (ref.l0) reported a very
good method for the preparation of hypervalent fluorosilanes, it
was possible to perform a direct study. We have observed a very
high reactivity for the trifluorosilicates (Scheme 5) and a faster
reactivity of the pentacoordinated towards the tetracoordinated
ones {(Scheme 6).

The same increase of reactivity was also observed in the case of
neutral pentacoordinated species. The case of (IV) is particularly
illustrative since the tri, bi, and monofluorosilanes are penta-
coordinated. The tri-substitution takes place much faster than in
the case of trifluoronaphthylsilane (Scheme 7).

We have extended successfully the Damrauer procedures to the
preparation of hypervalent methoxysilanes. These compounds are
very reactive. For instance the pentamethoxysiliconate is hydro-
lysed very quickly giving a gel (Scheme 8).
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We have observed once again a higher reactivity for the pentaco-
ordinated silicon (Scheme 9).
The comparison was also performed in the «case of neutral species
and the reactivity was found always in favour of pentacoordinated
silicon (Scheme 10).
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The very high

reactivity of
bonds confirms the possible formation of
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hypervalent species

containing Si-0
pentacoordinated silicon

in the course of the nucleophilic activation of 8i-0 bond (activa=-

tion of enoxysilanes) (ref.la)

The formation of hypervalent species was also demonstrated
polymerisation
(ref.7).
the Si-0 bond and
through an hexacocordinate intermediate (ref.11)

case of the
transfer polymerisation
cleophile activates
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in the
of the acrylate through the group
In this case the activating nu-

the transfer takes place
(Scheme 13).
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The activation of Si-C bond by F- was reported in the case of the
transfer of the allyl group (ref.12). The mechanism can be either
an heterolytic cleavage of Si-0 bond or a nucleophilic activation
through hyper-coordinated silicon intermediate (Scheme 14).
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In order to «check the possible reaction with pentacoordinate
silicon, the reactivity of the allyl siliconates having an anionic
pentacoordinated structure has been studied. These species react
with carbonyl groups. It is ©possible to perform the reaction in
different conditions (ref.13) : without any activation, with elec-
trophilic activation wusing Zn X2, and also with nucleophilic
activation (Scheme 15~16).

All these results are in good agreement with the activation of Si-
C bond taking place through a nucleophilic activation instead of
an heterolytic cleavage of Si-C bond.
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The higher reactivity of pentacoordinated Si-Cl bond was also

observed in the reaction of the organolithium (V) towards
Mez SiClz . This reaction gives the exclusive formation of disub-
stituted product (VII) whatever 1is the ratio between V and
Mez SiCl: (even with a fixedtime excess of Me2S5iClz). The conclu-

sion is that the mono-substituted pentacoordinated chlorosilanes
VI reacts faster with (V) than Mez28iClz. This high reactivity of
VI was checked by separated preparation and reaction (Scheme 17).

All these experiments illustrate very well the great rezactivity
of hypervalent species. They confirm the possibility of pentacoor-
dinated intermediate in the nucleophilic activation, of nucleo-
philic substitution at silicon. This possibility cannot be ruled
out only on the basis of the argumentation of a more <c¢rowded and
less electrophilic species than tetracoordinated silicon. Further-
more after these results, it becomes interesting to understand why
these hypercoordinated species react faster than the tetracoor-
dinated ones. The two possible explanations are one part the
increase of the 1length of Si-X bonds which corresponds to an
higher 1lability and other part the increase of the electrophi-
licity of the central Si atom (14). The illustration of that is
the reactivity observed between dihydrogénosilanes (III}) and CS:
which gives a rearrangement never ,reported in silicon chemistry.
Interestingly the process started with a double hydrosilylation of
CSz (Scheme 18).
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In order to explain the reaction of (III) with CS: we have treated
it with molecular S§ and we have obtained a product (VIII} identi-
fied as a silathione stabilized by intramolecular coordination

with the NMe: group. This product is highly oxydable ; it is
stable in anaerobic conditions and reacts instantaneously with
air, with formation of the trisiloxane (IX) (Scheme 19}.

Besides the microanalysis, the spectroscopic arguments supporting
the structure of the silathione are

1) the mass spectrum obtained at two different electronic impacts

2) the H! NMR showing a c¢lean diastereotopism of -CHz- and NMe:
groups due to the strong coordination of the nitrogen atom to

silicon
3) the Si?? chemical shift which is just between the 1low-valent
and hypervalent species chemical shifts (Scheme 20).

The reaction of COz is a very interesting one, we have observed
the elimination of HzC=0 and formation of trisiloxane when the
reaction is performed in wvacuum 1line, using dry and degased
solvents; the mechanism of this reaction 1is illustrated below
(Scheme 21).
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The silyl ester of formic acid was obtained by an independant
route and its pyreolysis at 120° gives elimination of H2C=0 and
silanone which <can be trapped by (Mez2S5iO)s giving the compound
(%) . We have extented this reactivity to the case of carboxylic
acids. The hydrogenosilanes react very well with formation of
aldehydes and trisiloxane (ref.l15) (Scheme 22). Schemes 23-24-25
report the results obtained and the selectivity of the reaction.
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reaction of pentacoordinated hydrogenosilanes
is the very clean hydrogen-halogen exchange ;
place in very mild conditions (ref. 15)

this reaction for obtaining a very sinmple

this exchange takes

(Scheme 26). We

have used

and useful synthesis of

obtained and the selectivity of the reaction.
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