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Abstract - The intention of this paper is to set forth for a potential 
user of approximate molecular orbital methods some of the precautions to 
be considered in their application and in the interpretation of the 
results. 

INTRODUCTION 

It has been interesting to observe that over the last twenty years the utilization of 
molecular orbital theory for the study of transition metal complexes has undergone several 
transformations. At the rigorous ab initio level, the advent of large scale computers has 
enabled theoreticians to carry out calculations within the Hartree-Fock-Roothaan (HFR) 
formalism (ref. 1) and even beyond to include configuration interaction (CI) (ref. 2 ) .  
At what night be termed an intermediate level of rigor the advent of Xu-calculations, by 
either the Discrete Variational (Xu-DV) (ref. 3) or the Scattered Wave (Xu-SW) (ref. 4 )  
Methods, have permitted studies of special properties, such as absorption spectra, that 
would be difficult by any other technique. 
that the broadened availability of mini- and micro- computers has had a substantial impact 
on the use of semi-empirical or approximate methods such as INDO (ref. 5 ) ,  Extended Huckel 
Theory (EHT) (ref. 6) and the procedure developed in our laboratories known as the 
Fenske-Hall (FH) (ref. 7) method. I referparticularlyto the use of such computational 
programs by research groups whose primary emphasis lies in the realm of experimental 
chemistry. At this point the theoretical calculations have become another tool in the 
hands of a synthetic chemist, or spectroscopist, or crystallographer. A tool to be used 
to aid in the correlation of experimental data, to assist in the rationalization of a 
structure or a reaction process, and to some degree, to propose additional reaction 
chemistry or physical properties. This closer tie between the experimentalist and the 
theoretician is to be applauded and encouraged. Nevertheless, it is appropriate that a 
few words of caution be expressed, not to discourage the use of theoretical methods, but 
rather that they be used with a proper understanding of both their advantages and 
limitations. 

It is important to realize that, with the possible exception of Extended Huckel Theory, the 
semi-empirical methods are attempts to approximate Hartree-Fock-Roothaan calculations. 
Therefore, even if these approximations were extremely accurate, the results obtained would 
be subject to the same limitations of HFR results themselves. For example, it has been 
shown in several instances that the HFR method has severe shortcomings in the determination 
of the correct electronic structures of certain transition metal complexes unless 
configuration interaction is carried out as well (ref. 8 , 9 ) .  This adds a further level of 
computational sophistication to the problem. 

In addition HFR with or without CI enjoys a privilege that is not extendable to approximate 
methods, even though many users of approximate methods invoke this privilege. I am 
referring to that aspect of the Variation Principle (ref. 10) which states that of two 
calculations (e.g. two different basis sets or two slightly different geometr.ies) on a 
system, the one which yields a more negative total energy is the more accurate description 
of the true state of the system. It cannot be stressed strongly enough that the incorpor- 
ation of approximations and parameters no longer guarantees the validity of such a 
conclusion. Nevertheless, the scientific literature is filled with claims of structural 
preferences based upon theoretical calculations which utilize approximate or semi-empirical 
methods to compute total energies. The conclusions be correct but are not proven by 
the energy calculation. At this point I hasten to add that the employment of total energy 
expressions in conjunction with approximate calculationscan be useful. However, such 
results are not definitive, per se. 

However, what has been especially intriguing is 
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It is also worthwhile to examine the complete expression for total energy. 
formalism for closed shell systems it is given as 

In the HFR 

i 

or a1 terna t ively 

n 

i 
E - c q  

In equation 1, the first term is twice the sum of the energies of the n occupied molecular 
orbitals. The second term subtracts the coulomb and exchange terms summed over the occupied 
molecular orbitals. These first two terms constitute the total electronic energy. The 
third term is the effect due to nuclear-nuclear repulsion, summed over all the nuclei with 
their charges, ZA and ZB, at their distances, IAB. Frequently this last term is not stressed 
since for nuclei at fixed distances it remains a constant. Equation 2 is an alternative form 
for the total energy. Note that in this equation the sum of orbital energies is not 
multiplied by 2 and that the second expression is the sum over filled orbitals of one 
electron kinetic energy and nuclearattraction terms. That is, 

The final term in equation 2 is again the nuclear-nuclear repulsion energy. 

It has been somewhat surprising that in spite of the substantial magnitude of nuclear-nuclear 
repulsion terms several applications of semi-empirical methods have related the energetics of 
a system simply to the changes in orbital energies, the ei in equations 1 or 2. Indeed, 
applications of Extended Huckel Theory (ref. 11) have commonly relied upon the relationship 

Some justification for the simultaneous neglect of the second and third terms in equation 1 
has been presented by Ruedenberg (ref. 12) based upon earlier considerations by Politser 
(ref. 13). These authors suggest that for molecules at their equilibrium configurations 
the sum of the second and third terms approxim- equal one-third the total molecular 
energy. That is, 

Thus as indicated by Albright, Burdett, and Whangbo (ref. 14): "This relationship, though 
approximate, justifies in part the use of orbital energy changes alone in discussing 
molecular structure and reactivity problems." 

The simplicity of dealing with sums of orbital energies is undeniable. Furthermore, the 
insights gained by careful examination of orbital energetics have proven themselves as 
illustrated by Walsh diagrams (ref. 15). What I wish to caution against is blind acceptance 
of the reliability of such approximations. For example, it is trivial to show that, within 
the framework of EHT and the simplified total energy criterion of equation 4 ,  calculation 
of the bond distance in H2 would reach a maximum when the separation of the two atoms was 
zero, which of course is nonsense. 

FACTORS AFFECTING THE EIGENVALUES AND EIGENVECTORS 

It has been my experience that in dealing with the results of molecular orbital computations 
it is worthwhile to first consider a simple two-atom two-wavefunction problem as follows: 

Let JI = C 1 $ 1  + C 2 $ 1  where $1 is an atomic function on center A 
and $2 is an atomic function on center B. 

Regardless of whether one is working in the framework of EHT or an approximate HFR method 
the application of the variation principle to minimize the energy with respect to the 
coefficients leads to the relations: 

( 6 )  
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and the secular determinant 

where S12 = 1$1 $pdr = overlap integral between $1 and $2. 
discussion that the coordinate systems for the atoms have been chosen so that 512 is 
positive and therefore all Hi 
Furthermore we will require t2at J, be normalized, that is 

We will assume for simplicity of 

terms are negative. It will also be true that Hi2 = H21. 

For future reference it is useful to note here that a common approach to partition the 
charge of an electron in a molecular orbital between the various atoms in the molecule is 
the ?Mulliken electron population analysis" (ref. 16). 
and $2 on atom B y  the distribution becomes: 

In our simple example of $1 on atom A 

Since the wavefunctions are normalized to unity the values in equations lla and llb when 
multiplied by 100 are frequently designated as the "percent character'' of an atomic orbital 
in the molecular orbital. I shall discuss some problems associated with the Mulliken 
analysis later in this paper. However, let us first return to the secular determinant and 
examine the situation in which Hll = H22, that is, the energies of $1 and $2 are equal. 
(See Figure la) Insertion of this into the secular determinant yields 

( H ~ I - E ) ~  - ( H ~ ~ - E S ~ ~ ) ~  = o 
and the two solutions for the energies are: 

(12) 

where Eb equals the energy of the bonding orbital and Ea is the energy of the antibonding 
orbital. 

Upon insertion of the value of Eb into equation 7 ,  one obtains the intuitively obvious 
relationship for the coefficients of the bonding orbital: 

An analogous relation is obtained for the coefficients of the antibonding wavefunction, 
except for sign reversals: 

112 c1 = -c2 = 1/[2(1-S12)1 (15) 

Fig. 1. Energy levels from a 
2x2 secular determinant. 

Fig. 2. Percent character of $a 
in bonding orbital. 
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The important points to note are that in this situation the energies of the bonding and anti- 
bonding orbitals relative to Hi1 are directly dependent on Hi2 while the coefficients of the 
wavefunctions are completely independent of the Hi2 values. 
not exact when the two diagonal terms differ from one another it is true, nevertheless, that 
to a first approximation the eigenvectors are primarily dependent upon the values of the 
diagonal terms relative to one another while the eigenvalues are sensitive to the magnitudes 
of the off-diagonal terms. 

Figure 2 demonstrates the Sensitivity of the eigenvectors to the relative values of the 
diagonal terms. With one of the diagonal terms fixed at -10 eV a change of the other from 
-8 eV to -12 eV alters the character of the lower molecular orbital from 80% on atom A to 
76% on atom B. In addition to illustrating the sensitivity of the eigenvectors to small 
changes in the diagonal terms when they are nearly degenerate, the diagram also illustrates 
that the closer the value of a diagonal term is to a final eigenvalue the greater will be 
the participation of the atomic orbital in the molecular orbital. Thus, as diagramed in 
Figure lb, when $2 has an energy of -12 eV and $1 an energy of -10 eV, then by EHT. methods 
the bonding eigenvalue at -12.66 eV has 76% $2 character. Naturally the antibonding 
molecular orbital at an energy of -8.66 eV is primarily $1 in character (again 76% in this 
simple example). 

The high sensitivity of the eigenvectors to the relative positions of the diagonal terms 
should be a consideration in the evaluation of a theoretical method. It is very important 
to determine exactly how the procedure calculates or fixes the positions of these terms. 
A bond between two atoms can be easily altered from ionic to covalent or vice-versa by what 
might appear to be only small adjustments in the input values of the method. 
consciously or unintentionally bias the output to favor ones preconceptions of what the 
correct answers should be. In such instances the results can be simply a facade and not an 
independent reinforcement of a concept. 

Table 1 illustrates the effects associated with alteration of the value of the off-diagonal 
term, H12. 
this term although the conclusions we shall reach are equally applicable to other approximate 
methods. In EHT 

While these relationships are 

One can either 

To simplify our considerations we have employed the EHTformalism to evaluate 

In most recent applications F = 1.75 although historically other values, expecially F = 2.00 
have been used. 
-12 eV respectively. As indicated by the table, if one alters F from 1.75 to 2.00 the eigen- 
value of the bonding orbital is stabilized byalmost 0.4 eV with only a minor change (from 
24% to 29%) in the character of the eigenvector. 
of wavefunctions to substantially alter the overlap integral from 0.2 to 0.4 there is a 
stabilization of almost 1 eV in the eigenvalue with only a small percentage change in the 
character of the eigenvector. 

Therefore, whether one is evaluating the validity of a literature article or choosing an 
approximate calculational method for one's own use, it is imperative that one understands 
how the diagonal terms (which affect the eigenvectors) and the off-diagonal terms (which 
affect the eigenvalues) are determined. 

In Table 1 the values of Hi1 and H22 have been kept constant at -10 and 

Similarly, if one chooses a different set 

COUNTER INTUITIVE ORBITAL MIXING 

If the coordinate systems of two atoms in a molecule are chosen such that the overlap 
integral, S12, between an atomic orbital on each atom is positive (See Figure 3 ) ,  then the 
wavefunction of the bonding molecular orbital: 

$'b cl$l -k c2$2 (6) 

should have positive coefficients for both C1 and C2. One can rearrange equation 7 for 
the coefficients to yield: 

Recall that H11, Hi2 and E are all negative and since the bonding orbital is more stable than 
Hi1 then the absolute magnitude of E is greater than the absolute magnitude of H11. 
fore the denominator of equation 17, i.e. (Hll-E), will be positive. 
and C2 to both be positive it is necessary that (H12-ES12) be negative. 
and 512 is positive it is clear that not only must Hi2 be negative but it must be larger in 
absolute value than ES12, that is. 

There- 
Then in order for C1 

Since E is negative 
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TABLE 1. Effects of changes in Hij 

1.75 0.20 -3.85 -12.66 -8.66 24 
2.00 0.20 -4.40 -13.05 -8.03 29 
1.75 0.40 -7.70 -13.51 -5.35 35 

TABLE 2. Counter intuitive orbital mixing 
~ 

H11 = -43.00 H22 a -3.00 Hi2 -16.00 S12 = 0.400 

Eb = -43.031 Ea = 3.602 Eb'S12 -17.21 H12-ES12 +1.21 

$b = 1.011 $a - 0.028 $b 
% Character of $a = 101.06% % Character of $b = -1.06% 

In particular circumstances that are frequently encountered in dealing with organometallic 
systems, both Extended Huckel Theory and the Fenske-Hall method (and very probably other 
approximate methods as well) fail to satisfy equaiton 18. The consequence is that in the 
bonding orbital, $b, C1 and C2 will have opposite signs and therefore the wavefunction 
appears to be anti-bonding instead of bonding. Hoffmann and co-worker8 (ref. 17) called 
this anomalous behavior "counter-intuitive orbital mixing" and in their original discussion 
imply that in certain circumstances it may be valid. I maintain that it is wrong and is 
simply a consequence of the failure of approximate methods to properly evaluate Hij. 

Let us examine the conditions under which it can arise. Again, for simplicity of calculation 
we shall employ EHT. Table 2 illustrates the circumstances within the framework of our 2x2 
determinant. Note that one of the two diagonal terms is much larger in magnitude than the 
other. Naturally for the bonding orbital the value o f  E is larger still. What is clear is 
that Hi2 is smaller in magnitude than ES12. The conclusions in Table 2 can be generalized. 
With F = 1.75, the usual EHT value, equation 16 yields 

H12 = 0.875 (Hll+H22)'Sl2 

When Hi1 is much larger than H22, then to a 

(Hll+H22) Hi1 

E z Hi1 and 

Both equation 20 and 21 are demonstrated by 
relations into (H12-ES12) yields 

good approximation 

the results in Table 

(19) 

(20) 

(21) 

2. Substitution of these 

Since Hi1 is negative and S12 is positive, equation 22 shows that (H12-ES12) will be positive 
instead of negative as required. 

A characteristic indication that the counter-intuitive breakdown has occurred appears in the 
Percent Characters of the orbital participations in the molecular orbital. As demonstrated 
in Table 2, one of the percent characters of greater than 100% while the other is negative. 
The consequence of this effect is that when the Mulliken Population Analysis is used to 
calculate the electron distributions to the various atoms more than two electrons per 
orbital can be assigned to one center at the expense of positive charge being assigned to the 
other. In those approximate methods, such as the Fenske-Hall approach, in which the 
computations are cycled to self-consistent charge distributions, these errors have some 
effect on the eigenvalues as well. 

As Table 2 illustrates, the differences between Hi1 and H22 must be substantial in order that 
the approximation in equation 20 is valid. Nevertheless, as mentioned earlier, the counter- 
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intuitive breakdown is quite common in certain organometallic systems. One such class of 
compounds are those which contain cyclopentadienyl rings (n5-C5Hs-). 
illustrated thusly: 

While the diagonal terms of individual carbon atoms in the Cp ring have values of -15 eV and 
-25 eV for the carbon -2p and carbon -2s orbitals respectively, their bonding interaction 
with each other to form the sigma framework of the Cp ring stabilizes these sigma levels to 
values such as -37, -33, and -28 eV. These low lying sigma framework levels can interact 
with the very diffuse virtual 8- and p-orbitals of the transition metal whose diagonal term 
energies can be at -9  to -5 eV. The diffuse character of these metal orbitals results in 
substantial overlap integrals with the sigma framework, creating precisely the conditions 
required for equations 20-22  to apply. 

To avoid the problems associated with the counter-intuitive mixing, Hoffmann and co-workers 
(ref. 17) include an algorithm which essentially increases the value of F in equation 16 
to increase Hij so that the requirement of equation 18 is satisfied. Since the Fenske-Hall 
method does not employparameters such as the F-value of equation 18 an alternativemethod 
had to be found. We call it the frozen ligand core orbital approximation. To illustrate 
this, let us return to the example of the Cp ring. The ten most stable orbitals in the Cp 
fragment are associated with the sigma bonds between carbon-carbon and carbon-hydrogen atoms. 
Since they are so low in energy (large negative values) and the metal 8 -  an p-orbitals are so 
very high in energy, the considerations of the earlier section of this paper (Figures lb and 
2 )  require that the resultant final molecular orbitals should be esentially 100% ligand 
orbitals (for those levels, Eb, that are stabilized) or 100% metal orbitals (the antibonding 
counterparts to the interaction). Our approach is to require these orbitals to & 100% 
ligand or metal. That is, we transform our diagonal and off diagonal terms from an atomic 
basis to a "ligand" basis composed of fragments of the molecule. Such a similarity trans- 
formation does not alter any of the values. However, once transformed, we treat the low 
lying ligand orbitals as "frozen", that is, non-interacting with the metal, by setting the 
new off-diagonal term between the metal and these transformed orbitals to zero. This is 
completely equivalent to "freezing" the atomic cores such as the 1s orbitals on carbon or 
the 1s through 3p orbitals on a chromium atom and interacting only the "valence" orbitals 
of the atoms in a molecule. During each iterative cycle in the FH procedure] the ligand 
orbitals interact to form the core sigma framework which are then frozen from further 
interaction while the pi orbitals of the Cp ring do interact with the metal system. 

The effects associated with the frozen core approximation in the Fenske-Hall method are 
demonstrated in Table 3 which compares results on the CpRe (CO)(NO)(PH3)+ ion with and 
without freezing the ligand core orbitals. Substantial differences in the charges on the 
atoms are especially apparent. Note also that when the ligand core orbitals are not frozen 
therhenium6p orbitals have negative electron populations and the lowest lying sigma frame- 
work orbital appears to be occupied with 2.385 electrons. Such extremes as to result in 
the unrealistic negative population are not common but this does represent a dramatic 
illustration of the errors that can result. With the exception of the negative electron 
population in the rhenium orbital these erroneous occupations are not obvious if the 
electrons are examined only in an atomic basis rather than transformed to the ligand 
orbital basis. 
to ligand fragments for purposes of data analysis. 

Finally, the counter-intuitive breakdown is most readily detected in negative percent 
characters of atomic orbitals in particular molecular orbitals or in occupations of 
greater than two electrons in ligand fragment orbitals when basis transformations have been 
carried out. 
inspected for signs of this effect. 

Why this occurs can be 

This emphasizes the usefulness of the transformation of the atomic results 

The computer print out of the very low lying orbitals should be carefully 

SOME CONSEQUENCES OF THE CHOICES OF ATOMIC BASIS FUNCTIONS 

A discussion of the effects of atomic wavefunctions on the results obtained by approximate 
molecular orbital methods is complicated somewhat by the varying degrees in which the 
methods actually utilize the basis functions. This is particularly true in regard to the 
determination of the diagonal terms of the secular equation. For example, in EHT the 
diagonal terms for the valence orbitals are completely independent of the choice of basis 
functions. They are determined from experimental ionization energies of the neutral atoms 
and remain unchanged throughout the calculations. 
used, the metal diagonal terms were dependent on the charge on the metal but were still 
independent of the atomic wavefunctions.) At the other extreme, the Fenske-Hall method 
calculates the one center coulomb and exchange integrals so that the diagonal terms can be 
quite sensitive to the choice of atomic functions used in the basis set. In INDO, the 
diagonal terms are generated from a combination of experimental ionization energies, 
electron affinities, and computed one-center coulomb intergrals. Hence, the effect of 
altering the basis sets on the diagonal terms is even more difficult to generalize. However, 
all three methods utilize wavefunctions to evaluate the off-diagonal term. 

(In earlier versions, still occasionally 
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TABLE 3. Frozen and unfrozen ligand core 
calculations on CpRe ( C O )  (NO) ( PH3 )+ 

Mulliken Electron Population 
Orbital Frozen Unfrozen 

~~~ 

Re 6s .420 .176 
Re 6px .298 -.095 
Re 6PY .262 - .lo4 
Re 6pz .054 -. 392 
cp 0-1 2.000 2.385 

Re charge - .045 +l. 717 
Cp charge +.073 -0.751 

S (6pz,U-1) 0.640 0. 640a 
H (6pY6p) -10.18 eV -6.13 eV 
H (u-1,u-1) -38.54 eV -36.75 eV 
H (6pz,U-l) 0 -18.46 eV 
E (bonding) -38.54 eV -38.38 eV 
(Hij - ESij) * +6.10 eV 

aThis is the "group overlap'' with the linear 
combination of atomic orbitals for the 
sigma framework of the Cp ring. 

I "' I 

(b) 

::::I. , . , , , , , , , , , , , , , , 
1.5 3.0 4.5 

RADIAL DISTANCE 
Fig. 3. Qualitative and quantitative 

orbital overlaps. 

Equation 16 has already presented the evaluation of Hij for EHT and from it we see that Hi3 
is proportional to Sij, the overlap integral. 
for the Fenske-Hall (ref. 7) and INDO (ref.5) methods respectively: 

Equations 23 and 24 present the expressions 

Thus it is clear that all three methods involve the use of the overlap integral, Sij, in 
the estimation of Hij. 

Consider two identical sigma bonding p-orbitals on adjacent atoms in which the coordinate 
systems are such that the positive lobes face one another as in Figure 3a. 
integral is positive. Now envision the two atomic centers slowly approaching one another. 
Initially the overlap integral may increase as the positive lobes overlap more and more. 
Eventually, however, the situation depicted in Figure 3b must ultimately occur. Note that 
part of the positive lobe of one atom overlaps with the negative lobe of the other. In fact 
as the two centers merge the final overlap integral would equal* 1 as can be imagined 
by the exact overlay of the positive lobe of one orbital with the negative lobe of the other. 
Thus, a plot of overlap as a function of distance for sigma p-orbitals yields the curve 
presented in Figure 3c. Several factors are noteworthy. First of all, there is a point at 
which the overlap integral equals zero and then becomes negative. This distance can be 
quite removed from merging the two centers. 
behavior. Similarly whether Hi 
Such inappropriate behavior by $i as a function of distance is undoubtedly why approximate 
methods are generally inadequate $or total energy calculations for bond length estimations. 

All of this becomes quite obscure in dealing with real systems. For example, two identical 
p-pi orbitals increase their overlap to a maximum of 1 as the internuclear distances goes 
to zero, (Figure 3c), while an s-orbital on one center and a p-orbital on the other reach 
some maximum value and then decrease to zero as the bond distance goes to zero. Consequently 
the overall trends in the energies of a complete set of occupied molecular orbitals can be 
quite complex. Whether a maximum total energy is obtained and at what internuclear distance 
depends upon the system under study and which equation is used to evaluate the total energy. 
For example, since two adjacent Is orbitals approach a maximum of plus 1 as the bond 
distance goes to zero then, as previously indicated, the theoretical maximum energy for H2 
would also be at R = 0 if equations 4 and 16 were universally good approximations. 

The overlap 

It is very doubtful that Hij follows the same 
reaches a maximum when Sij does is also highly questionable. 
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It is important to realize that near zero values of Sij (and therefore of Hij) are not 
restricted to changes in bond length. It can be observed at normal bond distances between 
a diffuse orbital on one center and a tight orbital on the second center. In fact this is 
a common occurrence when one uses orbitals for transition metals that are generated from a 
single atom, i.e. atomic, calculation regardless of how rigorous that atomic calculation was 
performed. 
(the electron density of the atomic wavefunction $1 as a function of the radial distance, 
r, from the atomic nuclei. 
3.555 atomic units (1.886 Angstroms) from the manganese. The radial distribution of the 
carbon atom both toward and away from the manganese is plotted. Because of the sign of the 
angular portion of the carbon p-z orbital, the overall function will be positive on one side 
and negative on the other. Thus the value of the integrandinan overlap calculation on one 
side of the carbon will tend to be cancelled by the integrand of opposite sign on the other 
side of the carbon. Notice that the diffuse orbital obtained from an SCF calculation on an 
isolated manganese atom spreads to both sides of the carbon function. 
manganese funct.ion employed in Figure 4b will obviously have a larger sigma overlap. The 
actual overlap integral values for the two manganese functions are given in Table 4. It is 
clear from these results that the valence 4s and 4p orbitals for the first transition row 
elements (or the 58, 5p and 68, 6p orbitals for the second and third row elements) that are 
available from literature sources or computer programs should not be used in molecular 
calculations. 
equally important in rigorous calculations as well. 

This is demonstrated in Figure 4a and 4b. These figures plot the value of $2r2 

The manganese atom is centered at r = 0 and the carbon atom at 

The tighter 

This warning is not limited to approximate methods but has been shown to be 

1.5 3.0 4.5 1.5 3.0 4.5 

RADIAL DISTANCE (A.U.) RADIAL DISTANCE (A.u.) 
4. 4 b  

Fig. 4. a. Mn (atomic) and C (atomic) p-orbital radial densities. 
b. Mn (maximum overlap) and C (atomic) p-orbital radial densities. 

TABLE 4. Overlap integrals between manganese and carbon functions 

(atomic) = 0.023654 (2,10.085) - 0.081694 (3,3.975) + 1.00304 (4,0.975) 
(max overlap) = 0.085854 (2,10.086) - 0.310574 (3,3.975) + 1.04284 (4,1.617) 

$4P 

$4P 
$,, (atomic carbon) = 0.801684 (2,1.25572) + 0.260484 (2,2.72625) 

where $(n,a) = N rn-l e- ra 
Mn(atomic) Mn(max overlap) 

s (4po,2pa) 0.009 0.286 
S (4pn,2p~) 0.285 0.264 

The foregoing discussion naturally raises the question as to how the proper atomic wave- 
functions should be chosen. 
neutral atom functions for the ligands, for example, the carbon, nitrogen, and oxygen 
Is, 28, and 2p functions of Clementi (ref. 18) are curve fit to single zeta exponents. 
Slater functions for the transition metals are then generated by curve fitting to Herman- 
Skillman atomic Xa calculations by the method we have already presented in the literature 
(ref. 19). This latter approach yields very good core functions, 1s through 3p on a first 
transition row element for example, as well as the metal d-orbitals. A series of calcula- 
tions are then performed with varying Zeta values for the 4p functions with the further 
requirement that the 4p orbital be orthogonal to the 2p and 3p core functions. At the bond 
distance available from crystallographic data the sigma and pi overlap integrals between the 
4p functions and the neighboring ligand atom are computed. 

S = S(4po,ligand pu)+ZS(4pn,ligand T ) .  (25) 

The traditional approach in our laboratories has been to use 

The 

The quantity S is calculated from 

Equation 25 yields a weighted maximum sigma and pi overlap between the 4p and the ligand atom 
as a function of the 4p orbital exponent, zeta. 
exponent for both the 4s and 4p functions appropriately orthogonalized to their core orbitals. 

This zeta value is then assigned as the 
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Fig. 5. Mn(C0)gBr highest filled orbitals. a. Atomic 4s and 4p Mn 
functions. b. Maximum overlap 4s and 4p Mn functions. 

Figure 5 demonstrates that the choice of virtual 8 -  and p-functions can have a dramatic 
effect on both the sequence of eigenvalues of occupied orbitals and the character of the 
eigenvectors associated with the energy levels. When the diffuse atomic 4s and 4p functions 
on the manganese are chosen as part of the basis set the HOMO (highest occupied molecular 
orbital) consists of a pair of orbitals highly localized on the bromine atom. 
contracted 4s and 4p orbitals are used, the bonds between the manganese and bromine are 
quite covalent, in accord with experimental evidence. In passing, one should note the 
effectiveness of utilizing ligand fragments in the analysis of the results. In both 5a and 
5b the diagonal terms are those of the fragment Mn(CO)5+ which splits the d-orbitals by the 
stabilizing effect of the carbonyl ligand interactions. This fragment approach 
clarifies the covalent character of the pi interactions by the proximity in energy of the 
"metal" and bromine e-orbitals. 

When more 

CHARGES ON ATOMS IN MOLECULES 

In spite of our acceptance of the concept within molecular orbital theory that an occupied 
orbital spans the entire molecule, there is a strong tendency to wish to divide the charge 
density and assign it to the individual atoms. This has been mitigated somewhat by the 
ability of present day computers to efficiently compute density maps associated with an 
individual orbital or a sum of the occupied orbitals. Nevertheless a variety of techniques 
have been proposed to calculate the charges on the atoms with the most commonly employed 
method being the Mulliken electron population analysis refrred to earlier in this paper. 

One of the uses to which charges on atoms have been put is to rationalize or predict the site 
of electrophilic attack in the reaction chemistry of organometallic complexes (ref. 20). In 
my view this is a reasonable course of action as long as certain limitations are recognized 
and appropriate precautions are taken. To illustrate this let us return again to the inter- 
action of the valence s- and p-orbitals of a transition metal and their interaction with the 
nearest neighbor atoms. 

TABLE 5. 

A: From a single orbital: 

Population in dZ2 = (.365512 + (.3655)(.381)(.130) + (.3655)(.444)(.119) = .1706 

Population in pz = (.2357)2 + (.2357)(.381)(.495) + (.2357)(.444)(.285) = .1299 

Mulliken populations in Mn(C0)gBr 

J, = .3655 dZ2 + .2357 pz + .381 C, + .444 C, + other terms 

Ratio = .1336/.1706 = 78% 

Ratio = .0556/.1299 = 42% 

B: Total Orbital Populations (Manganese 4s and 4p) 
4s = .388 4px = .435 4py = .435 4pz = .400 

Mn = -0.305 (+1.353) 
C = +0.193 (-0.083) 
Br = -0.331 ( -  .414) 

C: Mulliken Charges 
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It will be recalled for equation 11 that in the Mulliken Population Analysis the two 
contributions to the assignment of electron density to an atom are the square of the 
coefficient of that atomic orbital in the molecular orbital and the sum of all the cross 
terms times their respective overlap integrals. A typical example of such contributions 
are illustrated in Table 5 for a single orbital in Mn(C0)gBr for the bond between the 
manganese and the carbon trans to the bromine atom. 
78% of the contribution comes from the square of the coefficient of the dZZ orbital in the 
molecular orbital. However, for the 4pz orbital, 58% of the "occupation" comes from the 
cross terms with the carbon orbitals, CiCjSi . From Figure 4, it is clear that most of this 
cross term is in closer proximity to the cardon nucleus than it is to the manganese nucleus. 
Furthermore, Figure 4 reminds us that even for the "tighter" manganese 4p function much of 
its density maximizes in the vicinity of the carbon atom. Thus in the case of these diffuse 
valence orbitals of the transition metal assignment of their density to the metal rather than 
t o  their nearest neighbors will tend to place too much negative charge on the metal atom. 
Table 5, part B, lists the total occupations of the 4s and 4p orbitals on the manganese. 
Part C lists the final atomic charges via the Mulliken analysis. The values in parentheses 
list the charges when the 4s and 4p populations are re-distributed to the six nearest 
neighbors to the manganese. The latter values are probably a much more reliable indication 
of the charge density distribution in the molecule. 
atomic charges, especially those on the central transition element and its nearest 
neighbors, should be treated very cautiously. 

In the case of the d-electron population, 

In any event it should be apparent that 

FINAL C O M M E N T S  

While this paper has focusssed on possible pitfalls in the utilization of approximate 
molecular orbital methods I have done so with the hope and expectation that these approaches 
will continue to be used in the years ahead. They have provided insight into the electronic 
structures of systems too large to be treated by rigorousmethods and by so doing have 
advanced our understanding of coordination chemistry. 
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