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Abstract - Carbohydrate radicals are used for stereoselective
syntheses of C-glycosides, C-disaccharides, and deoxysugars.

Carbohydrate radicals, in particular glycosyl radicals, can be easily generated from halides,
selenides, and nitro compounds with trialkylstannanes (ref. 1). Utilization of these
radicals leads (a) in CC-bond formation reactions to C-glycosides, and (b) in rearrangement
reactions to 2-deoxysugars (Scheme 1).
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Because of the ring oxygen, the stereochemistry of glycosyl radicals often differs from that
of cyclohexyl radicals. Thus cyclohexyl radicals are attacked by 1,2-disubstituted alkenes
preferentially from the less crowded equatorial position, whereas stereoelectronic effects
glve rise to trans attack with respect to the non-bonding electron pair of the ring oxygen of
the glycosyl radical (Scheme 2). This leads to a-C-glycosides, 1if the radicals adopt

401 or Bp,5 conformations (Scheme 3). But if swmall atoms or groups like H, Cl
(ref. 2) or OH (ref. 3) are transferred to the radical centers, cyclohexyl radicals are also
axially attacked. The synthesis of C-disaccharide 1 from glucosyl radical 2 and

alkene 3 is a good example for this stereoselectivity in which both CC~ and the CH-bonds
are formed via axial attack (Scheme 4).
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Glycosyl radicals can also be used In syntheses that mimic enzymatic aldol reactions between
phosphoenol pyruvate and carbohydrates (Scheme 5).

Whereas respective ionic in vitro reactions fail in the absence of enzymes, alkenes 4 - 6
are suitable synthons for pyruvate in radical CC-bond forming reactions (Scheme 6). Alkenes
4 and 5 lead wvia trilalkyltin radicals and subsequent oxidation to aldol products.
But these alkenes differ from phosphoenol pyruvate being C-4 instead of C-3 units (Scheme 7).
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A more sultable synthon of phosphoenol pyruvate is ethoxyacrylonitrile, which reacts as C-3
unit with glycosyl-Co complexes and gives substitution products (Scheme 8).
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The glycosyl-Co complexes can be synthesized from glycosylbromides and Co(I) complexes.
Photolysis gives glycosyl radicals that react with radical traps (Scheme 9).
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With alkenes these radicals lead after combination with the Co(II) complex to new organo-Co
compounds. Depending upon the substituent Y either solvolysis or elimination reactions lead
to products (ref. 4) (Scheme 10).

Glycosyl-Co complexes react with acrylonitrile to addition products whereas
ethoxyacrylonitrile undergoes substitution reactions, which give aldol reaction products
after hydrolysis (Scheme 11).

In the absence of radical traps acylated glycosyl radicals isomerize. Thus, in the presence
of omnly tiny concentrations of tributylstannane, these glycosyl radicals undergo an ester
migration. Hydrogen atom abstraction then leads to an 2-deoxysugars (ref. 5) (Scheme 12).
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This is a general synthesis of 2-deoxysugars, that can be applied to g~ or R-glycosides, to
pyranoses and furanoses (Scheme 13). Rearrangement only occurs if the anomeric carbon atom
is the radical center. Therefore halogen atoms at other positions of the carbohydrates lead
to reduction products without migration (Scheme 14). The driving force for the rearrangement
is the formation of an acetal-like center (ref. 6) (Scheme 15).
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Solvent and substituent effects have shown that the ester migration proceeds via a dipolar
transition state, intermediates are presumably not formed (ref. 7) (Scheme 16).

Similar to these isomerization reactions are fragmentation reactions of carbohydrate radicals
that are postulated to occur in the blosynthesis of deoxyribose (ref. 8) and the radical
induced DNA cleavage (ref. 9) (Scheme 17).
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