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Abstract - Similarities and differences between the thermodynamics of macromolecu-
ar systems and small-molecule mixtures appear mainly in their miscibility beha-
viour., Liquid-liquid phase separation in polymer solutions is considered on the
basis of the still usefull classic lattice model. The phase behaviour will mainly
be governed by variations in chain-length (molecular weight distribution} and by
disparity in size and shape between molecules and/or repeat units which implies
differences in numbers of nearest neighbour contacts. Further statistical and
empirical refinements of the model need to be included if a quantitative descrip-
tion of experimental data and prediction of other properties in a reasonably
accurate manner is required. The system under consideration will be
cyclohexane/poly(styrene) with moderate polymolecularity.
The influence of pressure, an important variable in polymer production and pro-
cessing, can be dealt with by using the simple mean-field lattice-gas model. Here
again, theory includes a number of semi-empirical parameters that enlarges as the
system in hand becomes more complex. The predictive power of the molecular model
needs to be tested against thermodynamic properties as we intend to demonstrate in
the system n-alkane/poly(ethylene) with wide chain-length distribution.

INTRODUCTION

Partial miscibility is an important practical phenomenon in polymer science and engineering.
Polymerisations frequently take place in solution, and demixing is not a rare phenomenon,
even if the monomer serves as the solvent, Such liquid-liquid phase separations are to be
avoided since they disturb the production process by the segregation of highly viscous
phases. The cause of the relatively smal) resistance to demixing shown by polymer solutions
is to be found in the long-chain structure of macromolecules. The blending and compounding
of polymers reveals even more emphatically this sensitivity towards phase separation which,
depending on application purposes, may well or-not, have to be avoided. The mechanical pro-
perties of polymer blends, block copolymers and composites are, of course, enormously depen-
dent on phase relationships and morphology. Theoretical models, as well as experimental
techniques, have been and are stil) being developed. Basic thermodynamic relations on
heterogeneous equilibria in mixtures of small molecules also apply to solvent/polymer and
polymer/polymer systems. The most simple statistical-mechanical theory of Flory, Huggins and
Staverman (FHS) only permits a qualitative description of the observed phenomena. Further
statistical improvements and semi-empirical refinements that improve molecular theory over
its mean-field nature in the description of reliable thermodynamic data on polymer systems
is highly desirable. Such treatments will provide us with a deeper understanding of the
molecular background of polymers themselves and of the demixing phenomena and will allow us
to predict related thermodynamic properties more accurately.

As Van der Waals [1] already noticed, the difference in molecular size of the components in
solvent/polymer systems is very large, which causes the miscibility gaps to become highly
asymmetric, with the consolute states occuring at low mass fractions of polymer. An example
is given in figure 1, where hexane and anilin have comparable sizes and masses and the
miscibility gap is fairly symmetrical around a mass fraction of §. The solvent diphenyl-
ether, however, differs in molar mass from the poly(ethylene)-sample by a factor of about
1000, and in this system the miscibility gap is confined to the extreme left (solvent-rich

part) of the diagram, leaving the larger part of the composition range to homogeneous solu-
tions.

Figure 1 is an arbitrarely selected example of a very familiar phenomenon. There is a maxi-
mum temperature (precipitation threshold) above which the system is completely miscible in
all proportions. This type of demixing is called upper critical solution temperature (UCST)
behaviour. The opposite also occurs, partial miscibility setting in when the temperature is
raised. Then there is a minimum threshold temperature and the system is said to be of the
Tower critical solution temperature (LCST) type. An example of both LCST
(n-hexane/poly(ethylene) and UCST behaviour (cyclohexane/poly{styrene)) is given in figure
2.
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Fig. 1.

Miscibility gap in a system with molecules of comparable
size (n-hexane/anilin) and with molecules differing by
a factor 103 in molar mass (diphenylether/poly(ethylene)

of My = 155 kg/mole).
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Fig. 2. Experimental cloud point curves (cloud point temperature versus weight
fraction of polymer) and critical points (o). Top: n-hexane/poly(ethylene)
(2] (My = 180 kg/mole; M,/M, = 23; M;/M, = 7); bottom:
cyclohexane/poly(styrene) [3] (My/Mp = 1.07; My/M, = 1.4).
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Synthetic polymer samples practically always contain a large number homologues components
differing in molar mass. Their solutions or mixtures are thus multicomponent systems and
two-dimensional phase diagrams (e.g. temperature-composition diagrams as shown in figures 1
and 2) are, though very useful, in principle ambiguous and require great care in
interpretation. Figure 3 represents the phase bounderies in a ternary system solvent (S),

polymer 1 and polymer 2 (Pj, Pp; two homologous macromolecules differing in chain-length) as
a function of temperature at constant pressure.

The binary systems SPy and SPp show complete and limited miscibility (this would imply that
the molar mass in Py is smaller than in P3). The line SX represents all systems containing a
mixture X of components P} and Py and solvent S. For ‘these systems SX is the composition
axis. The plane TSX intersects the binodal surface, and the resulting curve, the cloud point
curve (CPC), was called a 'quasi-binary section' of the ternary phase diagram. It is called
CPC of mixture X in solvent S since in experimental determinations carried out by cooling or
heating solutions of X of known concentrations in S, it is found by plotting the temperature
of incipient phase separation (first cloudiness) against the concentration of the mixture X
in S. Similar reasoning can be applied to the spinodal surface (thin line in figure 3),
which is the limit for metastable equilibrium in the phase diagram. The spinodal touches the
CPC and shares a common tangent plane with it at the critical point Cg (for the mixture X in
S) situated on the critical line CC’. It can also be seen from figure 3 that polymolecularity
(e.g. the existence of a molecular weight distribution (MWD) in the polymer) causes the cri-
tical point to shift from the maximum to the right-hand side (more concentrated solution) of
the CPC as is experimentally verified (see figure 2).
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Fig. 3. Miscibility or binodal surface in a strictly ternary system solvent (S),
polymer 1 and 2 (Pj and Pp), identical in chemical nature but differing in
chain-length as a }unction of composition and temperature. Construction of
cloud point curve AB and critical point Cg for the mixture X of Py and P
in the solvent S. CC' is the critical line of the ternary system SPiPj. gee
text for detailed explanation.

Fig. 4. Schematical representation of a small molecule mixture (top) and a polymer
solution (bottom) on a lattice.

Another important difference between macromolecular systems and small-molecule mixtures is
that the concentration range of validity of the colligative limiting laws is much more
restricted; except at very great dilutions, overlap an interpenetration of the domains of
the coiled or rodlike macromolecules produces characteristically large deviations from the
limiting behaviour. As chain-length is increased and the number of macromolecules in a given
mass or volume decreases, the entropy of random mixing becomes smaller which can be accom-
panied by drastic changes in the miscibility behaviour of polymer solutions and polymer
blends [4]. In section 2, we briefly explain the FHS molecular theory for polymer solutions
and illustrate its application to and refinement in the description of the
poly(styrene)/cyclohexane system by Nies et al. [5-7). A more detailed description of
hetereogeneous equilibria in polymer systems can be found in the recent litterature [8].

The influence of pressure on the miscibility behaviour of polymer solutions is both
interesting and important. Although polymers have a negligible vapour pressure, we do not
only have to deal with condensed phases. Many polymerisation processes take place in solu-
tion at elevated temperatures and/or pressures and vapour phases appear frequently. Momomers
are often relatively volatile and may cause sizeable vapour pressures that have to be
accounted for. We may recall the low-density poly(ethylene) production in compressed ethy-
lene at high pressure and temperature. Solution polymerisation of ethylene in hydrocarbon
solvents usually proceeds at elevated pressures. In both cases, the actual working con-
ditions include temperature and pressure ranges in which the system is unstable as a homoge-
neous one-phase liquid or fluid and knowledge of phase relations is essential for
controlling the production. Since the excess volume of mixing is zero in the statistical
mechanical rigid-lattice considerations, the disadvantage of these models to describe
pressure-effects is obvious. The need to describe and predict pressure effects on the misci-
bility behaviour of polymer solutions can be fulfilled in a satisfactory manner by using the
simple mean-field lattice-gas (MFLG) model introduced by Trappeniers [9] and applied and
developed by Kleintjens and Koningsveld [10, 11] to describe the phase behaviour of
supercritical systems. Before discussing, we will illustrate in section 4 some general
theoretical considerations related to the MFLG model and describe some applications in the
system n-alkane/poly(ethylene). For a review of fluid phase separations in polymerising
systems at elevated pressures we refer to the literature [12].

RIGID LATTICE MODEL: APPLICATION TO
CYCLOHEXANE/POLY(STYRENE)

The rigid lattice model, developed independantly by Flory [13], Huggings [14] and Staverman
(15, 16] still provides a usefull way of dealing with partial miscibility in condensed
systems where pressure has no significant influence. In the FHS rigid lattice model, the
mixture is represented by a number of regularly arranged lattice sites, each of fixed volume
and definite coordination number (see figure 4). Only contacts between nearest-neighbours
are accounted for in the enthalpy of mixing and the entropy of mixing is evaluated on the
basis of regular solution theory.
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We write for the Gibbs free energy AG of mixing ny moles of solvent with ny moles of polymer
with a single molar mass My:

¢ [
AG _ "1 2
NRT ~ my n 4 * m, In 9 * 9919, (1)

where RT has its usual meaning, g is the Van Laar interaction parameter, N is the total
number of moles of lattice sites and ¢ are the relevant composition variables (volume
fractions):

m; being the number of lattice sites occupied by molecule i. For polymer solutions, it is
natural to define the site-volume as the molar volume of the solvent (m; = 1) so that

Ml
A
where V; is the specific volume of component i. The first two terms on the right-hand side
of eq. 1 are the contributions from the combinatorial entropy in which we recognise the
macromolecular analogues of the ideal solution free enthalpy for small-molecule mixtures.
The smaller resistance towards partial miscibility in liquid mixtures containing macromole-
cules is due to the fact that the entropy of mixing is drastically reduced while the number

of nearest-neighbour contacts per unit volume responsible for most of the g-term is scarcely
smaller than in the small-molecule case (see also figure 4).

Experimental data suggest the interaction parameter g to be composed, in first approxima-
tion, out of an entropic contribution g in addition to the enthalpic term gy [17-19];

9H
g:gs-i-T— (2)

In a strictly binary system, i.e. a hypothetic monodisperse polymer in a solvent, one has
2 AG
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0 (spinodal) (3)
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3

0 (critical point) (8)
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Application of (3) and (4) to equations (1) and (2) leads to:

W _1 -4, 1
T:"'gsl'('"z "'2‘,;2') (%)

Schultz and Flory [20] used equation (5) to find the parameters gg and gy, identifying the
critical temperature To with the maximum threshold temperature. The predictive power of
their treatment is therefore rather poor as is illustrated in figure 5, which shows the
calculated spinodals for different molar masses [5-7] with the parameters from a
Shultz-Flory plot for cyclohexane/poly(styrene) (gs = -0.27; gy = 236 K). It can be seen
from figure 5 that the critical temperatures are obviously described well, but the critical
concentrations and coexisting phase compositions are not.

Evidently, the parameter g must depend on concentration. Staverman already found in 1937
that the description of heats of mixing of small-molecule mixtures can be improved by taking
into account the disparity in size and shape of the compounds [21]. Application to polymer
solutions, leaving the rigid lattice model as an abstraction of real fluids yields the
concentration-dependant interaction parameter g [5-7]

- %
g-go*m (6)
where g1 summerizes the temperature dependance of g (for instance g; = g9 + 911/7) and

op/01 (7 =1 -02/01) is the ratio of molecular surface areas of polymer segments and solvent
molecules.



Thermodynamics of polymer solutions 163

TT/C IN G/CM2

294

294

284

294

0.4 02 — CONC IN G/100CC
Fig. & Fig. 6

Fig. 5. Spinodal points for the cyclohexane/poly(styrene) system for indicated
values of the mass average molar mass (in kg/mole). Curves calculated on
the basis of Shultz-Flory analysis (----), Staverman's approximation (—)
and further theoretical developments by Nies et al (-.-.-) [5-7]. Data by
Scholte [22] and Derham et al. [23].

Fig. 6. Reduced osmotic pressures N/c (in g/cmz) for the cyclohexane/poly(styrene)
system for indicated values for the number average molar mass (in kg/mole)
as a function of concentration and temperature (top, middle and bottom cur-
ves for 50, 40 and 30 °C, respectively) Data by Krigbaum [24], predictions
using equation (6).

Fitting critical .points [5-7] for various molar masses in the system
cyclohexane/poly(styrene) with narrow MWD to equations (1), (3), (4) and (6) yields the
parameter values listed below

go = -0.22; g19 = 0.57; g11 = 108 K; v = 0.22

Note that the value found for o3/01 is 0.78 and compares surprisingly well with the value
calculated from Bondi's group contribution method, viz. 0.87. The calculated spinodals
using equation (3) and the parameter values listed above show a much better agreement with
the experimental data (figure 5). Both maximum separation temperature and concentration are
now reproduced. This is not totally unexpected since in this approximation both critical
temperatures and concentrations were used to determine the parameters..Yet, the experimental

curves are still broader than the calculated ones, which requires further refinement of the
model.

The shortcoming in describing the system cyclohexane/poly(styrene) with narrow MWD using
Staverman's approximation can be emphasized by comparing the predicted osmotic pressures for
different molar masses and temperatures to experimental data by Krigbaum [24] as is done in
figure 6. The agreement between calculations and experimental data is quite good, deviations
becoming larger at high temperatures as the molar mass is increased.

Two more aspects can be included in the rigid lattice model, namely the polymer coils being
isolated at high dilution (non-uniform segment density) and the chains bending back
('back-biting') on themselves.

The first aspect has been dealt with by Stockmayer et al. [25, 26]. As we fail to quan-
titatively describe 1iquid-liquid phase equilibria in polymer solutions, where one of the
phases is very dilute (isolated coils) and the other so concentrated that the coils overlap
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extensively, Stockmayer remedies the situation. He writes the interaction function as a sum
of two terms, one for each concentration range:

g = g*(T, mp)P + g€ (7

where g¢, representing the concentrated regime, may be expressed by eq. (6), and g*(T, mp)
quantifies the differences relevant for the dilute regime compared with the uniform density
state. g*(T, mp) is attinuated by the probability factor P

P = exp (-xom2§¢2) (8)

where A\, can be expressed in molecular parameters, obtainable from independant measurements
(25, 26?. A detailed analysis [5-7] reveals the following semi-empirical expressions are
needed to deal in a satisfactory manner with all available experimental data (i.e.; spinodal

points, critical points, coexisting temperatures and compositions, x-values from light
scattering):

e s 1

g = {8+ 8 (T- 0} (T- o)1 - /g (9)
a a

5 73 et (3 ) (T2 9) (10)

where 8 is the Flory-temperature. It is seen from figure 5 that the calculated spinodals
using eqs (1), (3), (4), (7)-(10) are in overwhelming agreement with the experimental data.

It should be mentioned that the trend expressed in eq. (10) was predicted by Stavermans
calculations of the effect back bending of the chain on itself has on the combinatorial
entropy of mixing, particularly in poor solvents [27].

Although the number of parameters thus gathered is quite large (see list below) and the
general form of the equations can be justified by molecular considerations the procedure

needs to be justified by the predictive power it contains. Examples are shown in figures 7
and 8.

List of parameters obtained by Nies et al. [5-7]:

gio = -0.89
g1 = 490 K
7 =0.29

ay = -0.003
az = -2.10
a3z = 0.00282
ag = 0.032
B = -0.0281
B2 = 0.00069
Ao = 0.885

In figure 7, it is witnessed that osmotic pressures, calculated on the basis of equations
(7)-(10) pass trough Krigbaum's experimental results, within the specified accuracy (compare
to the predictions using the 'second level' approximation in figure 6).

Figure 8 shows a ternary coexistence curve by Hashizume et al. [28] and the calculated bino-
dal in the ternary mixture with the present level of approximation [5-7]. The agreement is
fairly good, in view of the assumption that the ternary system can be treated as a simple

superposition of two binary ones by replacement of the second term on the right-hand side of
equation (1) by [29, 30]:

¢ ¢

21 22
—=1n ¢ + —=1n ¢
Moy 21 M)y 22

while ¢2 = ¢21 + ¢22. For the sake of comparison, we have added in figure 8 a calculated
part of the binodal using the 'second level' approximation, based on eq. (6) where the
agreement with experimental data is far from quantitative.

Note that the effect of polydispersity has been totally left out of consideration here since
the experimental data used were carried out with polymers having a sharp-peaked MWD. The
phase relationships discussed in this section can however also be studied numerically if the
polymer constituents have any number of components [2]. The simplest FHS expression for the
free enthalpy of mixing a 'real' binary polymer/solvent system could be written as:

86 -y 1n g, + 3 21 In ¢, + g ¢,9 (11)
NRT 1 1 m it 99%

where ¢; are now the volume fractions of polymer species i (whole polymer volume fraction is
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n, = 90.5

Fig. 7. As in fig. 6, predictions using
equations (7)-(10) by Nies et al. [5-7].

nsc ¢

C (g/100 mi]

¢2 = L ¢3) and m; is the number of lattice sites occupied by macromolecules i (measure of
their chain-length). Without going further into detail, we show some cloud points curves in
figure 9, calculated on the basis of equation (11) with g independant of ¢, but temperature
dependant. It illustrates the effect polymolecularity has on the location of the critical
point as well as on the shape of the CPC, compared to a strictly binary system (see also
figure 2). The molar mass distributions have equal My and M,/M, values but still differ in
width, expressed as M;/M,. The calculated spinodals are therefore identical but CPC's appear
to be very sensitive to the width parameter M;/M, which is associated with a quite different

location of the TSX plane in figure 3. We note that the CPC may show a dent in the proximity
of the critical pcint.

1o b Fig. 9

Fig. 8

0.2 0.1 0.2

Fig. 8. Ternary phase relations (at a temperature of 19 °C) in the cyclohexane/
poly(styrene) system. Molar masses of polymer constituents: 45 and 103
kg/mole. Data (e—e) by Hashizume et al. [28]. Curve represents highest
Jevel prediction of binodal (=), tie lines (---) and critical point (@)

[5-7]. Dashed curve represents predicted part of the binodal using eq. (1)
and (6).

Fig. 9. Cloud point curves calculated [8] on the basis of equation (11) (with g
independant of composition) for various molecular weight distributions
equal in My and M,/Mp, but with increasing width (M /M, value ranging from
1, curve 1, to 4.5, curve 4) —: spinodal; 0: critical points.
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MEAN-FIELD LATTICE-GAS MODEL: APPLICATION TO THE SYSTEM
n-ALKANE/POLY(ETHYLENE)

The importance of pressure as a thermodynamic variable in controlling production processes
and optimising polymerisation conditions has already been pointed out in the introduction.
We may remind the example of the solution polymerisation of ethylene, carried out in mix-
tures of hydrocarbons, on the average roughly resembling n-hexane. Phase diagrams like the
LCST curve, shown in figure 2 have been recorded for various (high-density) poly(ethylene)
samples differing in molar mass, at varying pressures. Further information exists on the
melting point of the polymer as a function of pressure and on boiling points and critical
conditions of the solvent. As a consequence, the Bakhuis Roozeboom p, T, wp (wp: weightfrac-
tion of polymer in the solvent) has an estimated appearance as shown in figure 10 [8), which
reveals how preciously little is known about the system, nevertheless practically important.

Further, the asymmetrical phase diagram is normal for polymer solutions in contrast to
small-molecule mixtures.

The influence of pressure (expansion or contraction upon mixing) cannot be dealt with within
the scope of the FHS rigid lattice considerations, unless the g-function is adapted in a
semi-empirical way [4, 31]. A simple and elegant alternative is provided by the mean-field
lattice-gas model. This procedure has been shown to give adequate descriptions and predic-
tions of the influence of pressure on thermodynamic properties of pure, polar or non-polar,
compounds and mixtures of small molecules as well as macromolecular systems [10, 11, 32-34].
In this section, we briefly wish to explain the molecular background and statistical assump-
tions, underlying the MFLG treatment followed by a short demonstration of its adequacy in
the description and prediction of the influence of pressure on liquid-liquid phase separa-
tion in the system n-alkane/poly(ethylene).

p/atm

100 r

100 — 200 > 300
wy \

Fig. 10. Estimated p(T) and T(wp) projections of the Bakhuis Roozeboom phase
diagram for the system n-hexane/poly(ethylene). Heavy curves indicate the
p(T) ranges for which experimental data exist. Light curves are estima-
tions. Triple point poly(ethylene): A.

In the MFLG model, introduced by Trappeniers et al [9], each fluid, liquid or gas, is repre-
sented by a lattice in which the sites are either occupied or vacant (holes). It is assumed
that only first nearest-neighbour contacts between molecules contribute to the internal
energy. The number of these contacts is related to molecular suface areas following a
suggestion by Staverman ([21]. The entropy contribution to the free energy is calculated in a
strictly regular solution approximation and usually empirical entropy correction parameters
must be introduced. Besides temperature variations, one can also deal with pressure
variations of the system because of the introduction of free volume. Molecules are allowed
to occupy more than one site but the molar volume for each site, vq, is taken constant,
independant of pressure and temperature. We write for the Helmholtz free energy of 'mixing'
ocupied sites (molecules 1) and vacant sites (holes o):

LA s n *fllnwlr ) (12)
NeRT ~ %o % m 179 %%

where the 'concentration' variable ¢ is directly related to the density d (in g/cm3) of the
system (M} = molar mass in g/mole):
d Vomy

") =
1 My
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Further, mp is the number of sites per molecule, Ny is the total number of moles of lattice
sites, and the interaction function g has the same form as equation (6):

Brg * B1y/T
RS cen n (13)
(1- 79

where B1] can be related to the interaction energy between molecules per unit contact sur-
face, and 77 = 1 - 01/04. a1 and B1g are empirical entropy corrections for which a molecular
origin has recently been formulated [35]. Thus, six adjustable parameters appear in eq. (12)
and they all have a clear physical meaning.

Standard classical thermodynamic relations yield expressions for the MFLG equation of state
(EOS), spinodal, critical condition and chemical potentials of the constituents [10]. We
only recall here the EQS, derived with

BN,
p = '(av )Tv n].

-pv B (1 - 7,)
o _ 1 2 1 1
RT =g+ (L) SR ¥ § (14)
- - B11 -
where Q =1 - 7141, B) = B10 * — and the total volume V is given by
V = Ngvg = (ng + nimp)v, (15)

with ny and ni the amounts of vacant and occupied sites in moles.

If equation (12) is used to describe a polymer species, the second term on the right-hand
side must be replaced by £ ¢3/m; In ¢; as in eq. (11) and as a result m; in eq. (14) will be
related to the number average molecular weight mp. In the spinodal and critical condition,
my will be replaced by m, and mwz/mZ respectively.

It is worthwhile to mention here that in view of Frenkel's estimation [36] of an equilibrium
hole volume of ca. 20 cm3/mole, we hold on to this value for all pure substances, as well as
for mixtures, thus avoiding the design of mixing rules. In figure 11, we show an example of
the MFLG description of liquid/vapour equilibrium data and critical region in the pure
substance n-hexane. As is witnessed by figure 12, macromolecular systems also fall within
the scope of the MFLG model. The description of p-V-T-relations in molten linear
poly(ethylene) of low molecular weight (M, = 8000 g/mole) is in reasonable agreement with
available experimental data at pressures below 500 bar.

so- Fig. 11
L € n-hexane 2000 ~ ).Y\\\\\ Fig. 12
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Fig. 11. MFLG description of gas-liquid equilibria and critical region in n-hexane
(0: exp. data «: exp. critical point). Parameter values: see table on the
fol lowing page.

Fig. 12. Experimental {37] and MFLG-calculated specific volumes for linear low
molecular weight poly(ethylene) (M, = 8000 g/mole) in the melt as a func-
tion of pressure and temperature. Parameter values: see table on the
fol lowing page.
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The relevant AA expression for the quasi-binary system n-alkane (1)/poly(ethylene) (2) con-
tains, in addition to the pure component parameters, two extra parameters ap and gp (T) in
the interaction term for the repeat units in the alkane and within the poly(ethylene):

A = in ¢+ ¢_1 In ¢, + ¢ ¢—2_l—i 1 + ( + 5—1-) + ( + .5_2)

NRT % o " 1 my g %2, T %% (11 7T g %22 (22 ¥ Q
9,(T)

+ ¢1¢2 (“m + O ) (16)

with Q =1 - 7141 - 72¢2.

The overall volume fraction of the polymer ¢ = Ig2 § is related to the weight fraction wp

by
c -1 -1
= 2 (30" .
) -{1 + 5 (@2 1)}

where the binary volume fraction ¢2° = ¢5/(1 - ¢o), c1 = m/M] and cp = mp/My.

We refer to the literature [10, 11, 32-34] for the derivation of EOS, spinodal and critical
conditions and details on procedure for binary systems.

Since linear poly(ethylene) (LPE) and n-alkanes consist of identical repeat units, one
might assume for both parameters of the mixture ap = gu(T) = 0 [32]. This assumption seems
at present too simplistic to even qualitatively describe recently measured cloud point cur-
ves for n-hexane/LPE of a known MWD at different pressures by calculated spinodals. However,
figure 13 illustrates that it is possible to find parameters for the mixture which describe
the measured LCST behaviour and it's pressure dependance fairly reasonable.

200}
180

160

T (c)—

140

120~

100 1 1 1 |
0-00 0-05 0-10 015 0-20
Weightfraction LPE —=

Fig. 13. Comparison of MFLG calculated spinodals (—) with experimental cloud point
curves -[38] in the system n-hexane/linear poly(ethylene) (LPE) at
different pressures; 6 bar (0), 25 bar (¢) and 50 bar (o). Parameter
values listed in table below.

TABLE of MFLG-parameters (vo = 20 em3/mole)

Pure compounds:

m] 71 o] B1
n-hexane 4.3555 -3.5403 0.93441 -1.0443 + 673.34/7
n-octane 5.3817 -3.9691 0.89020 -0.93205 + 661.06/T
n-nonane 6.0469 -4.8307 0.89456 -1.0119 + 711.02/7
linear 454 .89 0.17687 0.86853 -0.52627 + 260.25/T7 + 109500/T2

poly(ethylene)

Mixture of linear poly(ethylene)/n-alkane
ap = 0.22499
gm(T) = 0.89485 - 395.22/7
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Fig. 14. Comparison of experimental cloud point curves [41] with predicted spino-
dals (—) at indicated pressures (in atm.) for the ternary system LPE (M =
36700; M, = 49300 g/mole)/n-octane/n-nonane as a function of the mole
fraction of nonane in the binary solvent mixture (0: x = 1.0,0: 0.726;
0: 0.473; O : 0.240; a: x = 0.0).

It was recently demonstrated that extension of this treatment to ternary and multicomponent
mixtures is straight-forward [39, 40]. To test the predictive power of the MFLG model, we
compare in figure 14 predicted spinodals in the ternary system LPE/n-octane/n-nonane for
different mole fractions in the binary solvent mixture with measured phase boundaries [41].
The agreement between experimental data and theoretical prediction is reasonable in view of
the fact that interactions between alkanes were ignored and 'three body terms' left out of
consideration.

CONCLUSION

In this paper, we have tried to underline the importance of liquid-liquid phase separation
in polymer solutions in polymer science and engineering. The miscibility behaviour of
polymer solutions also reveals the differences between such systems and small-molecule
mixtures. It has further been demonstrated that pressure plays a non negligeable role in the
synthesis and processing of polymers.

The rigid lattice model proves to be an adequate method in the theoretical description of
phase separation phenomena. We have reviewed the description of thermodynamic properties of
polymer solutions as far as the model would permit, taking cyclohexane/poly(styrene) as an
example. Although the molecular origin of the many parameters thus appearing can be
indicated roughly, their number is still excessive and the procedure resembles curve fitting
of a primitive kind. Yet, it deserves a high level qualification because of its power of
quantitative prediction. The influence of free volume, left out of consideration here, may
be held responsible for a still too rough theoretical treatment.

Free volume can be taken into account by the simple mean-field lattice-gas model. The phase
behaviour of polymer solutions, in particular the influence of pressure, can be described in
a qualitative sence, using a moderate level of approximation (Stavermans surface contact
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statistics) and with a small amount of parameters for the mixture. Description and predic-
tion of phase equilibria in the system n-alkane/linear poly(ethylene) are far from quan-
titative and we are fully aware of the crudeness of comparing calculated spinodals with
experimental cloud point curves. In view of this point, and considering the recent theoreti-
cal advances in deriving lattice equations of state [35, 42] the detailed description of
the phase behaviour of series of n-alkanes, p-V-T-relations in different linear
poly(ethylenes) and demixing phenomena in their mixtures is still a subject of current
research [43].
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