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Abstract: The title total syntheses have been accomplished employing
commercially available D~arabinose (10) as the starting material, The
explored synthetic scheme involves the following novel features: (1)
convergent synthesis of the methyl ketone (13) from 10, (2) stereoselec~
tive addition of an aryllithium to 13, (3) regioselective oxidation of the
1,4,5,8~tetramethoxynaphthalene (20), (4) efficient intramolecular aceta-
Tization, and (5) regiospecific Diels-Alder reaction of the naphthoquinone
(8: R=Ac), the CDEF-ring system, with highly functionalized dienes. Cyto-
toxicity assay of the produced nogalamycin congeners and their related
compounds disclosed novel aspects of the structure-activity relationships.

Nogalamycin (1a) and its congeners are notable members of the anthracycline family
because of their prominent antitumor activity (ref. 1). Especially, (+)-7-con-O-methyl-
nogarol (2a), the most well-known semisynthetic derivative of 1a, has been selected for
clinical trials due to its superior antitumor activity to the parent compound (la) (ref. 1)
Furthermore, these compounds (la and 2a) carry the characteristic DEF-ring system in which
the aminosugar (F-ring) is fused to the D-ring of 11-deoxyanthracyclinone to form the new E-
ring. Their promising antitumor activity and unique structures distinguish these compounds
as unusually attractive targets for total synthesis (ref. 2).
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This report concerns with the first total syntheses and cytotoxicity assay of the
nogalamycin congeners, (+)-nogarene (6a), (+)-7-deoxynogarol (4a), 2a, and their related
compounds. The latter studies disclosed novel aspects of the structure-activity relationships
of nogalamycin congeners (ref. 3).

From retrosynthetic perspective on 1 and its congeners, it was anticipated that
their 11-deoxyanthracyclinone frameworks could be effectively constructed by the regioselec—
tive Diels-Alder reaction employing the naphthoquinone (8), the CDEF-ring system of 1, as a
dienophile in a similar manner to those established for the syntheses of usual 11-deoxy-
anthracyclinones (ref. 4). Prior to the synthesis of 8, the preparation of the DEF-ring
system (9) was first studied to explore an efficient and reliable synthetic scheme to produce
the characteristic bicyclic acetal structure of 8 in an optically active form.

Syntheses of the DEF- and CDEF-Ring Systems (9 and 8): (ref. 3a,b) As shown in
Scheme 1, we succeeded in obtaining the optically active DEF-ring system (9: R=Ac) from
commercially available D-arabinose (10) by way of benzyl B-D-gentosaminide (11) (ref. 5).
The benzyl glycoside (11) prepared in 8 steps from 10 according to the method reported for
the corresponding methyl glycoside (ref. 6), involves the desired stereochemistries concern-
ing the C-2', C-3', and C-4' positions (the nogalamycin numbering). Successive protection of
the methylamino and the two hydroxy groups of 11 followed by debenzylation and oxidation
afforded the lactone (12). This was readily converted to the methyl ketone (13) (ref. 5) by
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sequential addition of methyllithium and silylation. Reaction of 13 with arylTithium gener-
ated from 14 proceeded in a stereoselective manner to give a mixture of the alcohol (15) and
its C-5' epimer (8:1). The selective formation of 15 can be reasonably explained by a
chelation-controlled mechanism (ref. 3a). The alcohol (15) was derived to the acetal (16) in
3 steps. Reduction of 16 followed by debenzylation produced the unstable hydroguinone (17).
Treatment of 17 with trimethylsilyl bromide cleanly effected simultaneous cleavage of the
three methoxymethyl groups and intramolecular acetalization, giving the bicyclic acetal (9:
R=H), This was acetylated to produce 9 (R=Ac) (ref. 5). X-ray crystallographic analysis of
9 (R=Ac) unambiguously established the assigned structure.

According to the the synthetic scheme similar to that explored for 9 (R=Ac), the
preparation of 8 (R=Ac) was next attempted. As shown in Scheme 2, addition of the aryl-
lithium generated from 18, similarly took place in a highly stereoselective manner, yielding
the alcohol (19) and its C-5' epimer (14:1). The major alcohol (19) was assumed to have the
desired stereochemistry by taking into account the results obtained in the preparation of 9
(R=Ac). This was converted to the acetal (20) in 5 steps. Oxidation of 20 with ceric
ammonium nitrate (CAN) was found to occur in a regioselective manner to give the desired
naphthoquinone (21) along with its regioisomer (22) (5:1). This notable regioselectivity can
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be rationalized by the electron density of naphthalene ring. After reduction of 21, the
formed unstable dihydronaphthoquinone (23) was transformed to the bicyclic acetal (24) in a
similar manner to that described for the preparation of 9 (R=Ac). Cleavage of the two methy]
ethers of 24 followed by quenching with triethylamine and oxidation of the formed triethyl-
amine complex with CAN, produced 8 (R=Ac) (ref. 5).

Syntheses of the Nogalamycin Congeners (2-7): (ref. 3b,c) With 8 (R=Ac) in hand, the
synthesis of 6a, the simplest congener which had been derived from 1a, was first examined.
As shown in Scheme 3, the Diels~Alder reaction of 8 (R=Ac) with 25 (ref. 7) followed by air
oxidation of the addition product and desilylation during mild acidic workup, gave rise to
7b. The regioselectivity of this reaction can be explained well by the hypothesis proposed
by Boeckman (ref. 8). Dehydrogenation of 7b readily afforded 6b. Acidic hydrolyses of 6b
and 7b produced 6a and (+)-7,8-dihydronogarene (7a), the hitherto unknown congener of 1la,
respectively (ref. 5). When the recemic diene (26) (ref. 7) was subjected to the Diels-Alder
reaction with 8 (R=Ac) in place of 25 the mixture of 4b and 5b could be obtained in 1:4
ratio after mild acidic workup. This diastereoselectivity can be rationalized by assuming
that 1) the addition reaction follows the endo-rule, 2) 26 approaches 8 (R=Ac) from the
direction opposite to the sterically congested F-ring, and 3) the steric bulkiness of the
trimethylsilyloxy group is larger than that of the methyl group. Deacetylation of 4b and 5b
gave 4a and unnatural (+)-9-epi-7-deoxynogarol (5a), respectively (ref. 5). With an aim to
obtain 2a, the highly functionalized recemic diene (27) (ref. 7) was allowed to react with 8
(R=Ac). Mild acidic workup of the Diels-Alder addition products, followed by stereoselective
introduction of the C-7 methoxy group according to the reported procedure (ref. 1), gave a
mixture of 2b and 3b (2b:3b = 1:3). Both 2',4'-diacetates (2b and 3b) were deacetylated to
afford 2a and unnatural (+)-7,9-di-epi-7-con-O-methylnogarol (3a), respectively (ref. 5).
Synthetic 2a, 4a, and 6a were identical with the corresponding authentic samples derived from
Ta, in all respects.

In Vitro Cytotoxicity of the Nogalamycin Congeners (2-7) and Their Related Compounds
(8, 9, 28, and 29): (ref. 3b-d) With completion of the total syntheses, 2a,b-7a,b and their
related compounds such as 8 (R=Ac), 9 (R=H or Ac), 28a,b, and 29a,b (ref. 9), were subjected
to in virto cytotoxicity assay against P388 murine leukemia cells to disclose novel aspects
of the structure-activity relationships of nogalamycin congeners. Based on the results of
cytotoxicity assay (Table 1), it appeared evident that all the carbon framework (the ABCDEF-
ring system) and the C-7 methoxy group are both indispensable for pronounced cytotoxicity.
Furthermore, it was also revealed that, for the congeners carrying the C~7 methoxy group, the
stereochemistry of the C-9 position may play an important role for inhibitory activity.

Conclusion: As mentioned above, the first total syntheses of nogalamycin congeners
have been accomplished starting from commercially available 10. The explored synthetic route
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Table 1 In Vitro Cytotoxicity of the Nogalamycin Congeners (2-7) and Their Related -
Compounds (8, 9, 28, and 29) against P388 Murine Leukemia Cells

Compound ICsg (ug/m])a) Compound ICgq (ug/m1)a) Compound  ICg (ug/m1)a)

2a (natural) 0.006 5a 0.31 9 (R=H) > 10

2a (synthetic) 0.003-0.012 5b 0.30 9 (R=Ac) > 10
2b 0.014 6a 0.1 28a 1.4
3a 0.40 6b 0.17 28b 1.5
3b 0.53 7a 0.13 2% 0.032
4a 0.41 7b 0.58 29 0.016
4b 0.17 8 (R=Ac) 0.10

a) Cell growth inhibition (percent) after incubation for 48 h at 37 °C.
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involving numerous novel aspects is anticipated to hold promise as the most efficient and
reliable method for synthesizing a wide range of nogalamycin congeners obtainable (2a, 4a,
and 6a) or not obtainable (3a, 5a, and 7a) from Ta. Studies on the cytotoxic activity also
uncovered novel aspects of the structure-activity relationships of nogalamycin congeners.
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