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Abstract.- The mathematical foundation for the present quantum theory of 
atoms and molecules is discussed. After a brief review of the mathematical 
properties desired of operators corresponding to physical observables and the 
tool of operator inequalities, the basic properties of the Coulombic Hamiltonian 
for a system of electrons and atomic nuclei are studied. It is shown that this 
operator is not only self-adjoint - as proven by JSato - but also bounded from 
below, and that its lowest eigenvalue is negative and is situated at the bottom of 
a continuum due to the motion of the center of mass. After removing the 
motion of the center of mass, the remainder Hamiltonian is investigated in view 
of the WHVZ-theorem to show a sufficient condition for the mathematical 
existence of a molecule in its ground state. Some general aspects on the 
connection between the Coulombic Hamiltonian and present molecular theory 
are also discussed. 

INTRODUCTION 

In 1929 Dirac made a famous prediction about the future of physics and chemistry: "The 
general theory of quantum mechanics is now almost complete, the imperfections that 
still remain being in connection with the exact fitting in of the theory with relativity 
ideas. These give rise to dimulties only when high-speed particles are involved, and are 
therefore of no importance in the consideration of atomic and molecular structure and 
ordinary chemical reactions .... The underlying laws necessary for the mathematical 
theory of a large part of physics and the whole of chemistry are thus completely known, 
and the dtflculty is only that the exact applications of these laws leads to equations 
much too complicated to be soluble". In studying this statement, one has to remember 
that Newton's laws of gravitation and classical mechanics regulate the planetary motions 
in our solar system, but they don't describe the system itself: the various planets and 
their masses, and the initial conditions for studying their motions. In the same way, 
quantum theory does not describe the system under consideration, but it may tell us the 
laws which are valid for it. One should further observe that the mathematical theory of 
the quantum-mechanical equations involved is a research field itself dealing with the 
existence, nature and character of the solutions, whereas the numerical evaluation of the 
solutions belongs to the fields of applied mathematics and computational science. 
There is hence a long way to go - perhaps even longer than Dirac anticipated - from the 
Schrodinger equation for a system with a Coulombic Hamiltonian to an understanding of 
the electronic structure of atoms and molecules, and, in this paper, we will try to 
discuss and highlight certain aspects of this problem. It should further be emphasized 
from the very beginning that, even if the atomic nuclei may be considered as point 
charges described by their atomic numbers and masses, our current ab-initio quantum 
chemistry is to a large extent still based on a great deal of chemical and physical insight 
of mostly experimental nature. 
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SCHRdDINGER EQUATION AND ITS BOUNDARY CONDITIONS 

Modern quantum mechanics [ref.l] is built on the idea that a physical situation is 
described by a state vector or wave function Y ,  which obeys the Schrbdinger equation 

with the initial condition Y = "(0) for t = to . Here H is the classical Hamiltonian in 
which each momentum P k  is replaced by the operator P k =  - (h/2i)(a/axk,a/ayk,a/azk). In 
principle, this equation is easily solved by means of the evolution operator S(t, to) = exp{- 
(h/2i) H (t- to) }  leading to the solution Y(t) = S(t, to) "(0). If H = Ho + hV, and the operators 
H,and V do not commute, one has also the famous solution is terms of the interaction 
picture, which forms the basis for the time-dependent perturbation theory. The so- 
called stationary states are given by solutions, where the space part satisfies the time- 
independent Schrbdinger equation: 

HY s E Y  . (21 
As a partial differential equation of the second order, this equation has solutions for 
every real or complex value of the parameter E . However, only a few of these solutions 
satisfy the physical boundary conditions, and the corresponding parameter values are 
said to form the energy spectrum (E) of the system. The quantity IY 1 2 i s  usually 
interpreted as  being proportional to the probabibility density, and solutions which 
correspond to the condition J I  Y I dX c 00 are said to correspond to closed states 
associated with a discrete eigenvalue E. Usually the wave functions are normalized so 
that I Y I 2 dX = 1. In physics, there are also scattering states, for which the integral 

I Y I 2  dX is divergent but which instead have the property that the absolute value I Y I is 
finite "almost everywhere". These states are associated with continuous eigenvalues E 
which form intervals on the red axis. 

The Hilbert space. One of the foremost mathematical tools used in modem quantum 
theory is the concept of the abstract Hilbert space Iref.21, which is a linear space W = 
(Y) having a binary product cYllY2> which is linear in the second position, hermitean 
symmetric, and positive definite, so that: 

cYl IY2+Y3 > = <Y11Y2> +<"I /Y3>, cYlIY2 a> = cY11Y27 a, 
<Y21Y'1> = CYllY2>*, 

1 1  Yll2= cYlY> 2 0, and = 0, if and only if Y = 0. (3) 

The abstract Hilbert space consists of all elements Y having a finite norm llYll c 00. It 
is further assumed to be complete, in the sense that it contains all its limit points in the 
norm, i.e. to every fundamental sequence Yl,Y2,Y3,Y4,,, , with the property 1 1  Y,,, - Ynll c E 

for m > n > N (E), there is a limiting element Y having the property 1 1  Y - Ynll c E 

whenever n > N (E). It is also assumed to be separable, in the sense that there exists an 
enumerable set @= (@k) which is everywhere dense in H. so that to any element Y there 
exists at least one element @k for which 11 Y - @kll c E . The separability axiom makes sure 
that there exists at least one complete orthonormal set, which spans the abstract Hilbert 
space, and we note that it is also the basis for all approximate calculations of arbitrary 
accuracy in this space. 

In ordinary quantum mechanics, one deals with at least two realizations of the abstract 
Hilbert space. The first one is the sequential Hilbert space consisting of all infinite 
column vectors c = (Ck) having a finite norm 11 cII in terms of the binary product cel b> = 
at b = & akf bk . The second one is the ~2 Hilbert space consisting of all wave functions 

= "(XI, where X is a many-particle coordinate X = ( X I ,  x 2  , x 3 ,  ... X N  ) consisting of 
combined space-spin coordinates Xk= (rk,(k) , having a finite norm \lYll = <Yl Y>ln in 
terms of the binary product: 

CYII Y2> = jYi*(X)Y2(X)dX , (4 )  

where the symbol jindicates that a Lebesque integration is to be carried out over all the 
space coordinates rk  and a summation over all spin coordinates (k. 
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I t  is now convenient to reformulate the boundary conditions to the eigenvalue problem 
(2) in terms of the L 2  Hilbert space. I t  is evident that an eigen-function Y corresponds 
to a closed state and a discrete eigenvalue E , if Y is an element of the L2 space: i.e. Y E 
L 2  , For the scattering states, on the other hand, it is clear that the eigenfunction Y(E) 
does not belong to L 2  , since it has an infinite norm. A closer study of the continuum 
wave functions shows, however, that they are also related to the L2space, in the sense 
that they are derivatives of principal functions @(El which are in fact elements of the L2 

space, so that Y(El = d@(E) / dE. A good elementary example is provided by the wave 
function for a free particle. Using the definition of the derivative, one finds the relation 

(@(X,E + l/n)- @(X,E)]  
( l /n )  = lim "-, oo f n  (X,E) Y(X,E)= lim "-, oo 

which shows that Y(X,E) is a limit point of the L 2  Hilbert space - not in the norm - but 
in absolute value, so that there exists a series of elements fn (X,E) in L2 such that IY(X,E) 
- f n  (X,E) I c E , whenever n > N (X, E), which implies point-by-point convergence of the 
sequence fn (X,E) towards the continuum wave function Y(X,E). This result is of essential 
importance in the quantum theory of scattering phenomena, since it means that one can 
apply L2 -methods also in this case. 

Expectation values. If F is an operator corresponding to a physical observable F, its 
expectation value cF> in a physical situation represented by the wave function @ is given 
by the well-known expression: 

It is evident that, if F is a physical observable, the expectation value cF> ought to be a 
real quantity, i.e. cF> = <F>* . Since the denominator c@I@> is always real, the same 
must apply to the numerator c@IFI@>. Hence, one has <@IF(@>= <@IF/@>*= cF@I@> . At 
this stage, one may apply the so-called polarization identity, which gives: 

4 1  lFICP2> E (1/4)(<@1+@21F1@1+@2> - <@1-@2)F1@142>}+ 

+ (1/4i)(c@l+i@2JFJ@l+i@27 - <@1-i@2JF1@14@2>} = 

+ (1/4i)(cF(@l+i@n)l@l+i@p> - cF(@+D2)1@1-i@p2>] = 
= (1 /4)(<F(@1+@2)1@1+@> - <F(@1-@)1@1-@2>}+ 

= <Fa1 (@2>. (7) 
An operator having this property is said to be hermitean symmetric. I t  is easily shown by 
partial integration that Schrbdinger's momentum operator p = (h/2x i) a /a x has this 
property. In the mathematical theory of the Hilbert space, a linear operator T is said to 
have the adjoint operator Tt defined through the relation: 

<@I IT @> = <Tt@l1@2> (8) 
An operator T is further said to have the domain D (T) = (01 if - for each of its elements - 
both 0 and TCP belong to L2. In the same way, the adjoint operator T t  has its own 
domain D (Tt). A linear operator F is further said to be self-adjoint : F = F t  , if it 
satisfies the relation c@1IF@y = cF@11@2> and if F and F t  have the same domain: D (F) = D 
( F t ) .  Even if it may be comparatively easy to show that the operators in quantum 
mechanics corresponding to physical observables are hermitean symmetric, it is much 
more difficult to show that they are also self-adjoint, and we will return to this question 
at a later stage. 

ODerator ineaualitiea. An important mathematical tool in quantum theory is the use of 
operator inequalities. If a self-adjoint operator R has the property c@IRI@> > 0 for all @ 
in the domain of R , one says that the operator R is positive de$nite and writes R > 0 . 
Similarly, if A and B are two self-adjoint operators and if <@IAI@> > c@IBI@> for all CP in 
the common domain of A and B, one writes A > B. Putting @ = TO and using (81, one 
gets further the relation T t  A T > Tt B T, so that 

A>B, * TtAT>TtBT. (9) 
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Let us now consider a self-adjoint projector 0 having the properties 0 2  = 0, Ot= 0 , or 
in one relation 0 = Ot 0. Such a projector fulfills the inequality 

0 1  0 2 1 ,  (10) 

i.e. the projector 0 is situated between the zero operator and the identity operator. The 
proof is simple and follows from the fact that <@1014>= c@IOtOl@>= <0@10@>= 11 OOII 2 
0, which gives 0 2 0. Since the same reasoning applies to the projector P = 1 - 0, one 
has also P = 1 - 0 10, which proves the remaining part of the theorem. Combining (9) 
and (lo), one gets further 

0 1  V O T  < T n .  (1 1) 

If A is a positive definite operator, and T = T t  = A’/* is chosen as the positive square root 
of A, one has the operator inequality 

0 2 AlDOA1/2 I A ,  (12) 

and the operator A’ = All2 0 A112 is often referred to as the inner projection of A with 
respect to the projector 0 lref.31. I t  provides apparently a lower bound to the operator 
A. The concept may be further generalized to other types of operators . 
Let us next consider a self-adjoint operator F having only discrete eigenvalues fk  

associated with the eigenfunctions cp k. which form a complete orthonormal set q = { qk). 
The orthonormality may be expressed in the relation <(Pkl(fq>= & I  or in matrix form 
< q l p =  Q ,  and the completeness in the relation l=Ck IVk><(Pkl  = ) a p > < a p l .  which is a 
resolution of the identity . Letting F work on the last relation, one gets also F 
fklqk><qkl = lap> f cql , which is the spectral resolution of the operator F. Here ff is the 
diagonal matrix formed by the eigenvalues f k .  In “fat symbols”, one has hence the 
relations 

We note that the operators ok = (qk><Vkl are self-adjoint projectors, which satisfy the 
inequality (10). Let u s  now assume that the operator F has a lowest eigenvalue fo, so that 
f k  2 fo for all k. Using the spectral resolution and the fact that (fk-  fo) ok 2 0, one gets 
immediately 

which means that the operator F is bounded from below. The proof is easily extended 
also to the case when F has partly a continuous spectrum. 

On the other hand, if a self-adjoint operator F is bounded from below, so that F > a.1, it 
has always a lowest eigenvalue, which is eitherdiscrete or continuous. In order to prove 
this statement, we will assume that the number f, is the best lower bound , so that F 2 
f,.l. It is evident that the operator CZ = F - f,.l is positive semi-definite. so that s1 2 0. 
Let us further assume that the equality sign in the relation <QlCZl@> 2 0 is attained for a 
normalizable wave function cpo in the domain of Q, and let u s  then consider the 
normalizable trial function @ =cpo+hv - where h is a real parameter - and the associated 
inequality 

<@1R)@> = <q,+hyf)Qlqo+hp =h<W)RJq,>+h<cp,)R~~>+h2<WIRl\y> 2 0, (16) 

which becomes a contradiction unless <vIQlcp,>= 0. Putting yr = Qcp,. one gets cyldlq,> = 
< R ( P O ~ ~ ~ O >  = 11 Qcp~ll 2 =  0, i.e. o?e has Qq0= 0. Hence fo  is a discrete eigenvalue to F 
corresponding to a closed state with the normalizable eigenfunction qo. 
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It should be observed, however, that the best bound may not be attained for any 
normalizable wave function. A simple example is provided by the operator T = p2/2m for 
the kinetic energy. One gets directly c@ITI@> =c@Ip210>/2m =cp@lp@>/2m = I [  pcD112 /2m 2 0, 
and the best lower bound is hence 0. We note, however, that there is no normalizable 
wave function for which this value is attained, and the reason is, of course, that the value 
0 is the lower limit of the continuous spectrum for the operator T = p2/2rn . These 
preliminary considerations are enough to permit us  to go to the main problem of this 
paper. 

THE COULOMBIC HAMILTONIAN AND ITS PROPERTIES 

Let us consider a system of particles k with mass mk and charge ek having the Coulombic 
Hamiltonian: 

H=Cg+C % = T + C ,  rkl 

k k c l  

where T is the kinetic energy and C the Coulomb energy. I t  was early proven by 
Schrodinger that this Hamiltonian was hermitean symmetric, but it would take until 
1951 until Kato (ref.41 proved that it was essentially self-adjoint. Kato' s proof takes 
about 18 pages, and it gives a great deal of insight into the mathematical properties of 
the Coulombic Hamiltonian. 

Let us assume that the system under consideration consists of N electrons having mass 
m and charge e and being labeled with the index i = 1,2,3, ... N and the additional index j 
whenever electron pairs are studied, and of A atomic nuclei considered as point charges 
being labeled with the index g = 1,2,3. ... A and the additional index h whenever pairs are 
involved. In such a case, the Hamiltonian (17) may be separated into four terms: 

H = & pg2/ m, + e2 & h ZgZdrgh + ci ( Pi'/ rn - e2 & Z&g ) + 

+ Z<j e2/rij , (18) 

with obvious physical interpretations. The first, second, and fourth terms are all 
positive definite and have no upper bounds. The main problem is the nature of the third 
term, and the mathematicians have intricate methods to show that it is bounded from 
below. Here we will try to give a simple proof using only the principles outlined in the 
first section. 

A hydrogen-like ion consisting of a single electron and a nucleus with atomic number Z 
and infinite mass has a Hamiltonian of the form: 

HI = p12/ rn - e2 Z / T I g ,  (19) 

the eigenvalue problem of which may be solved exactly analytically. 
spectrum consists of a series of discrete levels 

The energy 

En = - 2~ 2 me4 2 2  / n2 h2, for n = 1,2,3 ,...... (20) 

and a continuum covering the interval [O,+ca]. Using the theorem that a self-adjoint 
operator is bounded from below by its lowest eigenvalue - if it has one - one obtains the 
operator inequality 

and in general for electron i and nuclei g: 

Hi=Pi'/m- e2 &/rig 2 -2x:2mdZg2/ h2, (22) 

which is still a "sharp" inequality. 
obtains then the following rough estimate 

For the third term of the Hamiltonian (IS), one 

( Pi'/ rn - e2 & Z&i ) = Ci &, A-1( pi2/ rn - e2 A z$ng ) 2 

2 Z & A 1  (- 2 ~ 2  me4A2 Zg2/ h2) = (- 2x2 me4AN / h2) & 292. (23) 
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Hence also the total Coulombic Hamiltonian is bounded from below. and the spectrum 
has a lowest eigenvalue Eo , so that 

H 2 Eo.1, (24) 
This in turn gives rise to the relation c@IH I@> 2 E,.c@,I@> and to the well-known uariation 
principle: 

which forms the basis for most of computational quantum chemistry. It is interesting to 
observe that the lowest eigenvalue Eo is always negative, and for the proof we will use 
the scaling procedure introduced by Hylleraas in 1929 lref.51. Using a positive scale 
factor q , he scaled all the coordinates according to the formula r k '  = q r k  and the wave 
function @ by the relation 

Observing that the normalization integral stays invariant, so that <@'(@'>=<@I@> = 1, he 
obtained for the expectation values of the kinetic energy and the Coulomb energy, 
respectively: 

<T>' = <WIT[ @>= ~2 &ITI@>= 112 <T>, 
<C>' = C q C I  w>= q <@lCI@>= q <c>, 

<H>' = q 2  <T> + <C> = <T>{ q + <C>/ 2<T>}2 - <C>2/ 4<T>, 

( 2 7 )  
(28) 

(29) 
and 

which assumes the minimum value - cC>2/ 4cT>, which is negative. For the value q = - cC>/ 
2cT>, the virial theorem is automatically satsfied Iref.61. Hence one has the inequality 

& cH>' 5 0, (30) 

which proves our statement. As we will see in the next section, the lowest eigenvalue Eo 
of the Coulombic Hamiltonian lies at the bottom of a continuum, and this means that the 
associated eigenfunction y k  corresponds to a scattering state. At first sight, this may 
seem confusing, but we will see below that there are good physical reasons for this type 
of behaviour. 

Constants of motion and the sep aration of the motion of the center of mass. The 
Coulombic Hamiltonian is translationally and rotationally invariant, and it is further 
invariant under permutations of the electronic coordinates r i  and of such nuclear 
coordinates rg as are associated with nuclei having the same mass mg. These 
invariance properties indicate that the Coulombic Hamiltonian has the following 
constants of motion: 

1) The total momentum: P = & P k ,  

2) The total angular momentum: L = & r k  x Pk,  

3) The permutations P of the electronic coordinates Xileading to the Pauli principle and 
the antisymmetry property of the wave function: P Y = (-l )P Y . 
4) The permutations of such nuclear coordinates as are associated with nuclei of the 
same mass and the symmetric group in general. 

Needless to say, there may also be more complicated constants of motion - like the 
Runge-Lenz vector for the hydrogen atom - but those have to be worked out in every 
special case. 

According to the laws of quantum mechanics, the center of mass of our system 

(31) 
I 5 = W ' C k  rk,  M = C k  mk,  

is moving like a free particle having an energy spectrum covering the interval lO,+wl, 
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and this means that the lowest eigenvalue E, is at the bottom of a continuum. From 
many points of view, it is hence desirable to separate the motion of the center of mass 
and to write the total Hamiltonian in the form: 

H=(pg2/2M )+ H'=Tg + H ' ,  (32) 

where the remainder term H' may have discrete or continuous eigenvalues. This may be 
achieved by introducing a specific reference point ro and the position vectors with 
respect to this point r k o =  r k  - ro . As to choice of reference point, one has several 
possibilities 

1) the center of mass of the entire system, 

2) the center of mass of the atomic nuclei involved, 

3) one of the moving particles (electron or nucleus) of the system. 

The explicit forms of the remainder Hamiltonian H' may look completely different, but 
one should observe that they are always identical H' = H - Tg . In the special case 3). the 
kinetic energy takes the form 

T = Po2/ mo + s - 1  pk2/ mk = 

= pg2/ 2M + ck-1 pok2/ mk + (1/2 mo ) ( Ck-1 Pok) 2 ,  (33) 

The derivation is elementary, but for details the reader is referred elsewhere [ref.7]. 
Since the Coulomb energy depends only on the relative coordinates, i.e. rkl= I r k  I = I  rko - 
rlo I ,  it is evident that the total Hamiltonian is separable and that one should look for wave 
functions of the product type: 

( r k )  = (5) y' (rko), (34) 

where the second factor Y'(rko) is an eigenfunction of the remainder Hamiltonian H'. We 
note that discrete eigenvalues of H'  are associated with closed s ta tes  - atoms and 
molecules - whereas continuous eigenvalues are associated with scattering s ta tes  
involving separated clusters of particles. It should be observed that both types of states 
may be calculated by essentially the same L2-methods, as long as one observes that the 
type of convergence obtained by using larger and larger orthonormal basis sets are very 
different. Of course, any mathematical theorems about the nature of the energy 
spectrum of H' are highly useful in this connection. 

Once one has removed the motion of the center of mass, it is practical to remove the 
rotatfon of the system as a whole by studying the total angular momentum in terms of 
specific Eulerian angles. Even if this problem is elementary, some of the 
transformations involved are lengthy and fa r  from trivial, and for details the reader is 
referred elsewhere. Fortunately, the eigenvalues of the total angular momentum are all 
discrete, so they will not influence the general character of the spectrum of H'. There 
are other difficulties which - at least for the moment - have higher priority. 

Difficulties associ ated with the Coulombic Hamiltonian H'. From the point of view of 
physics and chemistry, a molecule consists of atoms, which can be arranged in different 
ways - leading to the phenomenon of isomerism. For a specific isomer, there may be 
many different arrangements of the atoms around the various bonds corresponding to 
different conformations From this point of view, the Coulombic Hamiltonian H' does not 
provide much obvious information or guidance, since there is no specific assignments of 
the electrons occurring in the systems to the atomic nuclei involved - hence there are 
no atoms, isomers, conformations, etc. In particular, one sees no molecular symmetry, 
and one may even wonder where it comes from. Still it is evident that all this 
information must be contained somehow in the Coulombic Hamiltonian H'. In this 
situation, it is possible to proceed in two completely different ways: 

1) One may use p~ of essentially experimental nature as to 
the existence of molecules, their shape, symmetry, etc. to get started. In the Born- 
Oppenheimer approximation [ref.81 , one assumes that the nuclei of a molecule are in 
fixed positions with infinite masses mg = CO, and studies the electronic structure of the 
system by solving the corresponding Schr6dinger equation. Once this structure has been 
determined, one may evaluate the force fields working on the nuclei, now with finite 
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masses, and study the vibrations, rotations, and vibrational-rotational couplings. This is 
certainly a natural approach, since the nuclei are so much heavier than the electrons. 
An important problem in this connection has been the derivation of the Eckart-  
Hamiltonian from the true Coulombic Hamiltonian, and one should perhaps note that this 
problem is still not completely solved [ref. 91. It should be observed that most current 
ab-initio quantum chemistry is of this type, and that it is hence still highly dependent on 
empirical experience. 

2) One may use mathematical analvsis and solve the Coulombic Schrodinger equation H' 
Y = E Y at least in principle. In order to show the existence of a molecule in its ground 
state, one has to show that the lowest eigenvalue Eo of the associated Hamiltonian H' is 
discrete and corresponds to a closed state. Since one usually cannot solve the many-body 
problem involved exactly, one has to proceed by using some fundamental mathematical 
theorems. During the sixty years of the development of quantum chemistry, one has 
often used the conjuncture that, if one can find a trial wave function Q, for which the 
expectation value <HI> is not only negative but below the estimated energy of all 
separated fragments, then the Hamiltonian H' has at least one discrete energy level below 
< H I > ,  and the system has a closed ground state. 

If we consider a system of two electrons and two protons, we have the possibility that 
they may form a hydrogen molecule H 2  or occur in the form of the following fragments 
or separated clusters: H+ H ,  H+ + H-, Ha+ + e, H+ + H ++ e + e, etc. In the scattering theory 
describing chemical reactions, these separations represent different possible channels. 
The existence of a ground state of the Ha-molecule in quantum chemistry was hence 
based on the fact that the pioneers Iref.101 had found electronic trial wave functions @ = 
@(1,2) with lower expectation values < H I >  than the estimated energy of the separated 
clusters. Even the nuclear motions have now been included in the non-adiabatic 
framework described by Kolos [ref. 111 

The main problem is now whether one can rely on this conjuncture, and - in this 
situation - it is worthwhile to turn to the mathematicians for help.. Already in 1909 Weyl 
[ref. 121 proved a theorem for self-adjoint operators which in current terminology states 
that, if one can find a trial function Q,, for which the expectation value cH'>  is lower than 
the bottom of the essential spectrum of the operator, then the operator has at least one 
discrete eigenvalue situated below <HI> . In this context, one should observe that the 
essential spectrum consists essentially of the entire spectrum {El  excluding all the 
discrete eigenvalues of finite multiplicity . I t  took quite some time before the nature of 
the bottom of the essential spectrum could be precisely clarified for a Coulombic 
Hamiltonian. In the years 1960-80, the so-called HVZ-theorem named by Barry Simon 
Iref.131 after Hunziker, Van Winter, and Zhislin Iref.14) was proven: it states that, for an 
N-body system, the bottom of the essential spectrum of H' is precisly obtained by looking 
at the lowest energy of all separated clusters. Hence it confirms the previous conjecture. 
An important mathematical problem is further whether one can predict the number of 
discrete states below the continuum in an atom or atomic ion [ref.15]- and later in a 
given molecule. For more references to the mathematical literature, the reader is 
referred elsewhere 171. 

In quantum chemistry, we are not only interested in the ground state of a molecule but 
also in its isomers and their conformations, and the question is how one may tackle this 
problem. For this purpose we will consider a general enerm surface, which is 
constructed in the following way: Let X be all the electronic coordinates and Q all the 
nuclear coordinates with respect to a specific reference point, and let us consider the 
Hamiltonian H' = H' (X,Q) and all the possible trial wave functions Q, = CD (X,Q). The 
binary product is defined by the standard formula 

where one integrates over both the electronic and nuclear coordinates. 
surface is then constructed by considering the expectation value 

The energy 

as a function of Q, = Q,(X,Q, a) , where a = (al, a2. a3 ,.... ap ) is a set of parameters. 



From Coulombic Hamiltonian to electric structure of molecules 2073 

The energy surface E = <HI> = E ( a )  shows minima, maxima, terrace points, etc. , and the 
minima are  supposed to correspond to stationary s ta tes  of the system under 
consideration. At this point, it should be mentioned that there are currently many 
scientists [ref. 161 who claim that there are no isolated molecules and that molecules 
exist only in a specific environment. In order to consider this problem, we have to leave 
pure quantum mechanics. 

General auantum theory. Pure quantum mechanics does not contain such concepts as 
temperature, entropy, free energy, etc. In order to incorporate such concepts into 
quantum theory, one has to go over to the more general formulation developed by v. 
Neumann Iref.21, which is a n  ensemble theory built on the use of density matrices p or 
system operators r having the properties [ref. 171 : 

r t = r  , r 2 0 ,  T r r = l .  (37 )  

The set (l-1 of all system operators is a complex set, which is determined by its limits 
points having the additional property r2 = r . The expectation value of the operator F is 
defined by the relation 

<F>= Tr F r. 

In the case of a limit point, the system operator r is a projector with the range [@.a], and 
it has  then the explicit form r = I @>c@l@>-l<@ I ; in such a case, formula (38) reduces to 
the form (6), and it is then clear that the limit points correspond to pure quantum 
mechanics, whereas the interior points describe the more general ensembles. 

In the operator space (TI, it is feasible to define the binary product of the two operators 
A and B by means of the expression: 

(A I B] = Tr At B = c k,l At kl B Ik = c k,l A Ik* B Ik . (39) 

For the norm square, one has in particular IlAll 2 =(A I A1 =C k,l A Ik* A Ik=C k,l IA Ikl 
2 0. All the linear operators T having a finite norm IlTll form another realization of the 
abstract Hilbert space called the Hilbert-Schmidt space [ref. 181. Let u s  now consider 
the positive semi-definite operator C2 = H' - Eo.1, and in particular the product of the 
positive square roots T = (H' - E0.1)1/2r1/*. One gets immediately 

= Tr (HI- Eo.l)  r = <HI- Eo.l> 2 0, 
i.e. 

<HI> = Tr H' r 2 Eo. 

Even in general quantum theory, one has  hence a variation principle for the energy. If a 
system operator r is a function of some parameters a , one can now construct the 
energy surface E = <HI> = E(a) and study its minima, maxima, and terrace points, etc. 
One may find that some molecules have rather deep minima, others have symmetric or 
asymmetric double-well minima, whereas certain molecules - like the giant biomolecules 
with all their conformations - have energy surfaces which are rough "landscapes" with 
numerous minima. For each minimum, one may study the molecular structure by 
calculating the expectation values of e.g. the internuclear distances rgh to get the "shape" 
of the molecule. In this connection, one is particularly interested in the question of the 
existence of symmetry properties Lref.191, and the origin of such symmetries. I t  is 
evident, however, that the calculation of energy surfaces E = <HI> = E(a) as functions of 
the parameters a is a computational effort which is much larger than anything 
undertaken so far in the so-called ab-initio quantum chemistry, and that one may have 
to wait for a new form of computer architecture before it can be done. In the meantime, 
it may be feasible to carry out the mathematical analysis and to develop theoretical 
methods for handling these types of problems. Even if it is a long way from the 
Coulombic Hamiltonian H' to the electronic structure of molecules, we may one day find 
new and forceful short-cuts. In this connection, we should also acknowledge the 
tremendous help our field has  had from the pure mathematicians. 
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