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Abstract .  The account presented i l l u s t r a t e s  t h a t  t h e  ideas  and i n t u i t i o n s  of 
the pioneers  of t h e  e a r l y  ‘ t h i r t i e s  were fundamentally c o r r e c t  and t h a t ,  i n  
one form o r  ano the r ,  t he  t h e o r e t i c a l  methods they developed a r e  here t o  stay.  

INTRODUCTION 

Sixty years ago, what is now called “quantum chemistry” was just beginning: Heitler and 

London had demonstrated in their hydrogen molecule calculation (ref.1) the validity and fea- 

sibility of the new “quantum mechanics”, in whose development both were deeply involved, 

as a means of attacking chemical problems. And every month saw new applications, to more 

complicated molecules, of the theoretical approach they had established. The key ideas had 

a deceptive simplicity, involving the parallel or anti-parallel “vector coupling” of the spins of 

unpaired valence electrons, which masked a formidable mathematical apparatus connected 

with the construction of antisymmetric wavefunctions. The general formulation, to which 

Rumer and Weyl made huge contributions, was largely dependent on group theory - which 

at that time was not much loved even by theoretical physicists - but qualitative applications 

of the new “valence bond (VB) theory”, notably by Pauling and Wheland, continued; and 

the idea of “resonance” was immediately embraced by organic chemists. There can be no 

better testimony to the value of this approach, and its general acceptance by chemists, than 

the continuing popularity of Pauling’s magnificent book “The Nature of the Chemical Bond” 

(ref.2). 

Much of this was soon to be swept away. When Slater (ref.3) introduced his determinants in 

1929 (claiming to have killed “the group pest”) a rival approach to the theory of the chemical 

bond, based on an independent-particle model (IPM) in which every electron occupied its 

own “molecular orbital”, began to gain popularity: MO theory involved no very sophisticated 

mathematics, it apparently performed almost equally well, and it was particularly successful 

- expecially in the hands of Robert Mulliken - in the interpretation of molecular spectra. It 

was this theory that, with the advent of the computer, was to be almost universally adopted 

as the means of making completely ab initio calculations of molecular electronic structures. 

Nowadays, VB theory is hardly mentioned in many quantum chemistry textbooks. 

After 50 years in the centre of the stage, with all the successes of self-consistent field (SCF) 

techniques and large-scale configuration interaction (CI), the limitations of the MO approach 

are by now well known. And new forms of VB theory are emerging. Modern VB theory 

rests heavily on the work of the pioneers of 1927-1935: it validates most of the qualitative 

ideas they propounded. The object of this review is to present the main issues involved 

and to show how some of the mathematical difficulties once considered insuperable are now 

being overcome. 

The hydrogen mdecule calculation 

Heitler and London’s 1927 paper on the hydrogen moleculae has been described (ref. 4) as 

“the greatest single contribution to the clarification of the chemist’s conception of valence 
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that has been made since G.N.Lewis’s suggestion in 1916 that the chemical bond between 

two atoms consists of a pair of electrons held jointly by the two atoms”. In retrospect their 

idea was simple: if X A ( r 1 )  is the wavefunction for an electron (1) of hydrogen atom A, and 

X B ( r 2 )  is that for an electron (2) of atom B, then 

is an ‘exact’ wavefunction when A and B are remote, and will be a reasonable appmzimate 

wavefunction when they approach. But when A and B are in close proximity* 

is equally acceptable (indistinguishability) and, taking account of spatial symmetry, the 

appropriate linear combinations to use will be * 

These symmetric and antisymmetric combinations lead to the famous results 

in which Q (the coulomb integral) represents the energy of the two atoms interacting as if 

they were ‘rigid’ charge distributions, while K (the exchange integral) reduces, with familiar 

notation, to 

K = 2 s  < x A j ~ l x B  > + < X A X B l d X B X A  > . (5)  

At the equilibrium internuclear distance K is large and negative and accounts for about 

90% of the deep minimum in the plot of E s  against distance. The negative value of K, 
however, arises not from the 2-electron term (which although it does involve exchange of 

electronic variables is actually positive) but rather from the one-electron term which contains 

a negative interaction energy representing the coulomb attraction between the nuclei and 

an overlap density x A ( r ) x o ( r ) .  Nevertheless, the wavefunction *s(= X A X B  + X B X A )  is the 

prototype function for describing a covalent bond A-B; and the bonding has come to be 

associated with the ‘exchange energy’ K .  

Of cowse, spin has been ignored so far. But provided relativistic terms in the Hamiltonian 

are ignored this is permissible: for with only two spin functions, a(.) and p ( s ) ,  the ground 

state including spin will be represented correctly as 

which satisfies the Pauli (antisymmetry) principle; and in computing the energy expectation 

value E =< * \ f I l Q  > / < > the spin factor will disappear in the spin integration! 

As van Vleck and Sherman (ref.5) first noted, it is the symmetry of the spatial factor that 

counts - to which that of the spin factor is only indirectly linked by the need for overall 

antisymmetry. As they put i t ,  the spin is merely an ‘indicator’. 

The idea of linking the bonding and antibonding spatial factors in (3) with the coupling of 

spins is attractive: antisymmetric coupling of the spins (‘pairing’) produces a spin eigenfunc- 

* For convenience, electronic variables in a product function will always be in the order 1,2,... 
* Throughout this paper, trivial normalizing factors will be omitted. 
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tion with S=O and an energy Es corresponding to bonding; symmetric (‘pardel’) coupling 

produces an antibonding triplet state with S = 1. Indeed, it is easy to show that, if the 

overlap term Sz in (4) is neglected, then the energies of the two states are exactly those of 

a model system with Hamiltonian 

-which contains only spin operators and numerical parameters, Q’(= Q - iK) and K. In 

other words, a model consisting of two interacting spins with the ‘spin Hamiltonian’ (7) 

has eigenstates whose energies coincide (in this VB approximation) with those of the lowest 

singlet and triplet states of the real system. Not surprisingly, this ‘vector model’ (generalized 

by Dirac, van Vleck and others) achieved instant popularity as a means of rationalizing the 

discussion of bonding in more complicated molecules. 

Let us now recall briefly the IPM description of Hz. With the same two basis functions, 

XA,XB, the symmetry-adapted MOs are 

the f i s t  being bonding, the second anti-bonding. The ground state is then represented by 

with both electrons in the bonding MO, instead of by (6). For the equilibrium bond length, 

the corresponding variational energy is not quite as good as in VB theory: but as the 

internuclear distance increases a much more dramatic failure occurs. The MO and VB 

curves are compared in Fig.1. The conclusion is obvious - and general. In all situations 

where covalent bonds are broken or formed (and thus in most chemical reactions) a simple 

MO approximation is of little value. 

E 
-1 .0 

-1.1 

- 1.2 
9 

R 1 .o 3:O 5.0 ’ 

Figure 1. Energy curves for the hydrogen molecule. Upper and lower solid curves show, 
respectively, the energy from a simple MO approximation and the experimental 
energy. The curve --- is the corresponding VB approximation, and curve -.- is 
the “full-CI” approximation (3 structures). 
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The defects of the simple MO approximation can of course be corrected by admitting con- 

figuration interaction: in the Hz example the electrons (one or both) are promoted into the 

anti-bonding MO and the resultant configurational functions (CFs) are allowed to mix, with 

coefficients which are optimized by solving a set of secular equations. The Heitler-London 

function can likewise be improved by admitting CFs which correspond to electron transfer 

X A  c) X B  and thus to ‘ionic’ situations A+ ... B- or A- ... B+. When all possible configura- 

tions are admitted (in general the case of ‘full CI’) we obtain the ‘basis-set limit’, determined 

only by the limitation to the two functions X A , X B  and it does not matter which approach 

(MO or VB) we use. 

The ‘full-CI’ curve is also shown in Fig.1; but it is marked ‘CF’ because it is mathematically 

equivalent to the Coulson-Fischer approximation (ref.b), which is of Heitfer-Zondon form, 

namely 

!@ = (kAZJ3 t f B g A ) ( d  - Pa). (10) 

The spherical 1s orbitals ( X A , X B )  have been replaced by 

Z A  = X A  t Xxn, Zn = X B  + X X A ,  (A positive), (11) 

which are egg-shaped and have a much larger overlap than the unmodified AOs: they are 

overlap-enhanced orbitals (OEOs). With OEOs the admission of ‘ionic’ configurations is 

unnecessary: in this simple example one covalent structure reaches the full-CI limit. 

Generalizations 

Some aspects of the calculations just discussed are of great generality. In particular, away 

from equilibrium geometry, the MO formulation which is usually adopted as the basis for ab 

initio electronic structure calculations cannot give reliable information on potential energy 

surfaces without including CI; and even for small molecules this may become very exten- 

sive. Fig.2 shows the situation for the fluorine molecule. The 1-configuration MO curve is 

completely false and the standard methods of admitting extensive CI (by many-body per- 

turbation theory) are very slowly convergent. Indeed, in calculations by Handy et a1 (ref.7) 

on the water molecule, many thousands of CFs were admitted and MBPT estimates showed 

unsatisfactory convergence even in 48th order! Only when orbital forms are optimized (e.g. 

by MC SCF theory) is a realistic energy curve obtained; and the optimized orbitals are then 

focalized on the separate fragments - as they would be in a VB calculation. 

2.0 3.0 4.0 5.0 R 

Figure 2. Energy curves for the fluorine molecule. 
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At this point it is clear that in principle the Heitler-London approach might well offer a more 

accurate and more compact description of molecular electronic structure as a function of 

geometry. The reasons for the slow development of VB techniques, at the ab initio level, are 

in fact purely technical: the non-orthogonality of the atomic orbitals (AOs or OEOs) leads 

to great computational problems when N,  the number of electrons, increases; for in one way 

or another the matrix elements of the Hamiltonian must involve N! permutations, whereas 

with determinants of orthogonal orbitals they follow from trivial algorithms (Slater’s rules). 

On the other hand, non-orthogonality is a key feature of all forms of VB theory: if overlap is 

eliminated (e.g. by orthogonalizing the AOs) exchange integrals such as (5) become positive 

and the ‘covalent structures’, with spins paired as in (4), predict no bonding (refs.7,8)! 

Indeed, the efficiency of the OEOs in (11) in describing the covalent bond simply reflects a 

well known ‘principle of maximum overlap’, used extensively in the ’thirties - in choosing 

the orbitals to be ‘paired’, in a polyatomic molecule, we look for those that overlap the most, 

combining them if necessary to form ‘hybrids’ with an enhanced overlap. 

Fifty years ago, the technical difficulties just indicated were computationally insuperable: 

but the underlying theoretical structure of the VB approach was sound and at a qualitative 

level much progress was made. Two simple examples will serve to recall the generalization 

of Heitler and London’s method to polyatomic molecules. 

Example (i) The hydrogen molecule dimer, H4. 

Figure 3. Rectangular conformation of the H2 dinier, with two VB structures. 

For the Hz dimer in a rectangular conformation (Fig.3), the four 1s AOs (a, b , c , d )  may be 

used to construct a wavefunction by associating the orbital product 

with a spin eigenfunction and antisymmetrizing. The spin functions introduced and exten- 

sively used by Rumer and Weyl (refs.lO,ll) contain pair-factors 

followed by, for non-singlet states, a parallel-coupled product such as a(sk)a(sl )  ... &(ap). 

With g pairs, such a function is an eigenfunction of Sz with eigenvalue S(S + 1) and S = 
f ( N  - 29) .  For two Hz molecules ( D / R  large in Fig.3) a plausible singlet function would 

thus be (introducing the usual antisymmetrizer A)  

which is equivalent to an antisymmetrized product of two Heitler-London functions. But 

another possibility would be 
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in which, by analogy, the ‘bonds’ are b-c and d-a. As Rumer first noted, there are 

no other independent possibilities: @I and 1 2  are independent ‘structures’ and a structure 

with crossed links is merely a linear combination of the two. A general singlet CF for this 

electron configuration is 

!P = c191 4- cz@z 

- usually known as a ‘resonance mixture’ of the two structures - and the coefficients may 

be optimized variationally in the usual way. For D / R  large, !P + and the one structure 

uniquely describes the two separate hydrogen molecules: this is the famous perfect pairing 

approzimation, used so extensively for saturated molecules where the assignment of the 

bonds may seem unambiguous. 

All the necessary matrix element formulae for such calculations were derived in convenient 

pictorial form, notably by Rumer and by Pauling, during the early years of VB theory. Un- 

fortunately, however, such algorithms depended on neglect of products of overlap integrals, 

an approximation now known to be untenable. 

Example (ii) The water molecule, HzO. 

Here the ‘valence configuration’ of the oxygen atom may be regarded as O[ls22s22p~2pz2p,], 

in which the 2p, and 2p, orbitals point roughly towards the hydrogen 1s orbitals (H1,Hz 

say) in order to maximize the overlaps. An electron-pairing scheme for the valence electrons 

may then be symbolized by 

(16 )  

which represents a perfect pairing approximation with two 0-H electron pairs and two ‘lone 

pairs’. But an alternative scheme would be 

which shows a bond between the hydrogen atoms and an internal pairing on the oxygen. 

Other possibilities would be 

in which the s-type lone pair has been ‘opened’ and replaced by one of p-type; and 

which represents an ionic structure H+ O--H. The full-CI function, with this limited orbital 

basis, will be a resonance mixture of 175 such structures in which 91 (the perfect pairing 

structure) has the greatest weight. 

The maximum overlap criterion suggests at once how the performance of the single-term 

approximation 91 might be improved. Hiickel and Pauling, both in 1931, introduced the 

concept of hybridization, essentially as a means of improving the perfect-pairing approxi- 

mation. By using three in-plane mixtures of 28, 2pz, Zp,, namely hl , hz (pointing towards 

the hydrogens) and ho (pointing along the axis of symmetry), the perfect-pairing function 

becomes 

91 = ~P,P~)(~O~O)(~l~l)(~Z~Z) 

where the lone pair (hoho) now points to the rear of the oxygen and the two bond pairs, with 
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enhanced overlap, give an excellent description of the bonding in the two 0-H regions. In 

particular, as we shall presently confirm, improving the overlap almost eliminates the need 

to consider ionic structures. 

Before passing to present-day developments, it must be repeated that all these fundamental 

ideas were in everyday use more thton 50 years ago; and that much of the mathematical 

machinery for implementing them had already been set up by Heitler, London, Rumer and 

Weyl, and developed by Serber, Pauling, and many others. 

Ab initio valence bond theory 

There are several ways of dealing with the non-orthogonality difficulty. The most direct is 

simply to expand every structure, 

Q, = A[no,] (17) 

say, in which n is an orbital product q51&...q5~ and 0, is a particular spin-coupled function, 

in terms of Slater determinants of non-orthogonal orbitals; and then to use the Lowdin rules 

(ref.12) for matrix element evaluation. Although feasible for small molecules (in the forms 

used by Karplus and Balint-Kurti (ref.l3), Simonetta et al (ref.l4), and others) this method 

is indirect, computationally heavy, and makes no use of existing VB techniques. 

Other methods, initiated largely by Goddard (ref.15) and Gerratt (refs. 16,17), employ 

group theoretical techniques and are somewhat closer to traditional VB theory. With func- 

tions such as (17), matrix elements of the Hamiltonian may be reduced by writing the 

antisymmetrizer in the form 

A = ( N ! ) - '  e p P  
P 

where e p  = *1 (a parity factor) and the sum is over all N !  electron index permutations. It 

follows readily that 

involving only orbital products, while Ds(P),x is the &element of the matrix associated 

with permutation P in the irreducible representation Ds (corresponding to total spin quan- 

tum number S) of the permutation group. Thus, when the spin eigenfunctions are orthog- 

Unfortunately, the Weyl-Rumer functions, constructed by spin pairing, are not orthogonal 

and the matrices defined by (21) do not provide a representation. The standard irreducible 

represntations ('irreps') of the symmetric group S N  of N !  permutations are carried by the 

branching diagram functions (refs.15,16), which are set up by coupling the spins sl,szr ..AN 

sequentially instead of in pairs. Every coupling sequence (up-down-up ..., up-up-down ..., 
etc.) is represented by a path in the branching diagram (Fig.4) and the number of distinct 

paths leading to a resultant spin S is Wigner's number 

which is the number of linearly independent spin eigenfunctions of given S, M (quantum 
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numbers) and determines the dimension of Ds. 

5 1 2  - 

Figure 4. The branching diagram. 

To determine the coefficients (21) from group theory one may consider the genewtors P,+L,~  
of the permutation group: these operators exchange only adjacent indices and the corre- 

sponding matrices are extremely sparse, with elements which are easily determined using an 

algorithm due to Young (see refs.19,20). All other matrices follow by matrix multiplication. 

By using this approach, Gerratt and coworkers (refs.16,17,21) have shown that the energy 

expectation value for a resonance mixture 

= CCKQ, 
K 

assumes the form 

E = CE[D?? < d'ilAl#j > + f D $ ; j  < d'id'jlgld'kd'l >1C'x (24) 
KJ. 

in which the D's (which are density matrix elements) can be generated efficiently by recur- 

sion. 

Since (23) is a one-configuration approximation (not including, for example, ionic coniigu- 

rations) it is important to optimize not only the expansion coefficients c, but also the forms 

of the orbitals 41, $2,  . . . b ~  - which at this stage have been left unspecified. The best mixing 

coefficients satisfy the usual secular equations. But the best orbitals are much more difficult 

to obtain: they satisfy a complicated set of coupled pseudo-eigenvalue equations 

in which there is one (exceedingly complicated) operator r"i for each orbital. 

solution is of course necessary. 

The results of such calculations, notably by Gerratt, Raimondi, and collaborators, are by 

now well known: they appear to give a spectacular confirmation of many of the conclusions 

reached by qualitative methods in the early 'thirties. To mention only one, a calculation 

on the benzene ?r-electron system (ref.22) shows that the optimized orbitals do localize 

mainly around the six conjugated carbon atoms; and furthermore that, on transforming 

from branching-diagram functions to the Weyl-Rumer basis, two Kekult structures lead to 

almost the same basis-set limit as a full-CI calculation with 175 structures! This suggests 

that it might be preferable to work from the beginning in terms of the Weyl-Rumer coupling- 

scheme of classical VB theory. To examine this possibility it is convenient to use a "spin-free" 

approach - which again goes back to 1928. 

Iterative 

Spin-free methods 

Heitler first showed that ezuct eigenfunctions of a spinless Hamiltonian could be combined 
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with spin factors to give an antisymmetric wavefunction 

Q = p , 0 ,  
n 

where the spin eigenfunctions { 0, } carry one irrep Ds, while the (degenerate) spatial 

eigenfunctions { F, } carry another, D S  say, the two irreps being “associate” * The exact 

energy corresponding to (26) is then 

(numerator and denominator reducing to sums of identical terms) and the result is valid for 

any choice of n: F, may be any one of the degenerate functions which carry the irrep Ds. 
This shows very clearly the significance of the statement (ref.5) that the spin serves only 

as an indicator of symmetry of the spatial wavefunction with respect to permutation of the 

electronic variables. Instead of explicitly considering spin it is sufficient to require that the 

spatial function belongs to a particular symmetry species, this observation being the basis 

of ‘spin-free quantum chemistry’ (ref.23). 

Let us now choose a particular basis vector of the irrep Ds, that for n = 1 say, and set up 

The effect of this operator on any orbitd product n~ = kikz .... kN,  where k i , k z ,  ..., klv 

(collectively denoted by K)  indicates a selection of orbitals from the set { 4 k  }, will be to 

produce a function 

FK = P ~ K  (29) 

of the desired symmetry species.** It  will then be possible to expand an ezact wavefunction 

of this symmetry species in the form 

F = ~ c K F ~ .  (30) 
X 

This expansion is the spin-free analogue of CI and thus goes beyond the single-configuration 

approximation used in the last Section: it permits the calculation of wavefunctions up to 

the full-CI limit. 

The matrix elements which enter the usual secular equations now reduce to 

and the sole technical problem is the rapid evaluation of such elements. There are two 

extreme possibilities, depending on which branching-diagram function is chosen as “the first” 

( K  = 1). Gallup (ref.24) has, in effect, taken the f i s t  function when the standard ordering is 

used (i.e. the ‘last-letter’ sequence of the corresponding Young tableau): but this function, 

which corresponds to the uppermost path in the branching diagram, does not lead to VB 
theory in its classical form - for it is a linear combination of all the Weyl-Rumer, spin- 

paired, functions. Another possibility (ref.25) is to take the last function of the standard 

set i.e the first function using reverse last-letter sequence. This second choice has many 

** From now on the species labels (s,l in (28)) are redundant and will be omitted. 

* When the matrices are real orthogonal,DS(B) = o p D ~ ( 6 ) .  



2096 R. McWEENY 

advantages. In particular, the corresponding spin eigenfunction is the single Weyl-Rumer 

function with couplings 1-2, 3-4, .... and when the orbitals in n~ have indices kl, kz, k3, ... 
the projected function (29) is in one-to-one correspondence with the VB structure with links 

k1 + kz, k3 + k4, ... etc.. In this way it is possible to retain close contact with the classical 

VB approach and the development (30) corresponds exactly to an expansion in classical 

structures. Moreover, this is a multi-configuration approach in which ionic structures are 

admitted simply by allowing repeated orbitals. There are other interesting connections not 

only with the work of the 'thirties but also with very recent progress. For example, the 

choice of index sets K needed in order to reach the full-CI limit is obtained by allocating 

the available indices to a two-column Young shape so that they increase on going down 

the columns but are non-decreasing in reading along the rows: the resultant standard Weyl  

tableau2 are the ones adopted in current unitary group approaches to CI. Such aspects are 

considered in detail elsewhere (e.g. ref.26, Ch.10 and references therein). 

Finally, let us consider the actual evaluation of the matrix elements in (31). The factor 

< O~lfilPn, >, which involves only an orbital product and a permuted product, is trivial: 

it yields only sums of 1- and 2-electron integrals multiplied by chains of overlaps. The 

coefficient 

D,(P),, =< 0llP0l >=< 0110: > (32) 

is also simple when 01 is of Rumer type, for the permutation merely produces a similar 

function 0 ;  with a new set of links and the scalar product in (32) may be evaluated at once 

by inspection of a superposition pattern and use of the Rumer-Pauling rules. In dealing 

with a 6-electron triplet state, for example, with 01 = e(sl,sz)e(s3,s,)a(s,)a(s~), the 

operator Pz3 gives 0; = e ( s l , s 3 ) e ( s , , s , ) a ( s , ) a ( ~ ~ )  : the two Rumer diagrams and their 

superposition pattern are then 

1' /? ?\ 4 
* *  
6 5  

' 0 .  

and the required scalar product is (ref.26, p.218) 

v being the number of arrow reversals to achieve head-to-head, tail-to-tail matching, g the 

number of electron pairs, and n the number of closed 'islands'. Generally, the factor 6~ is 1 

when there are no 'E chains' (open chains connecting an even number of points)and is zero 

otherwise. 

To perform complete ab initio VB calculations, with all non-orthogonality effects included, 

it is thus unly necessary to generate permutations systematically, evaluate coefficients effi- 

ciently using the Rumer-Pauling algorithm, and accumulate the matrix element contribu- 

tions in (31). 

Some applications 

To test the practical feasibility of the approach outlined above, ab initio calculations have 

been made on the systems referred to in earlier Sections - the hydrogen-molecule dimer, 
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the water molecule, and the benzene s-electron system. Some preliminary results have been 

reported already (refs.25,27,28) and other applications are in progress. A detailed discussion 

will be published elsewhere. 

(i) The Hz dimer. For four hydrogen atoms in plane rectangular geometry, with a minimal 

basis set of four 1s orbitals, there are two linearly independent non-polar singlet structures 

(Fig.3) and three triplets. Calculations were performed at three levels: (a) with unmodified 

AOs; (b) with OEOs of the form u’ = X(S.bb + Sadd) etc., with one variational parameter 

A; and (c) at the full-CI limit (20 singlet structures, 15 triplet). The results, for a range of 

geometries, are given in Table 1. Even though there is no attempt at full orbital optimization, 

two singlet structures or three triplets are sufficient to give close approach to the full-CI limit. 

Table 1. Energies of lowest singlet and triplet s~:i(es of 112. 112. 

D/R 1 .0 1 .5 2.0 2.5 3.0 
Singlet 
2 Kek.(AO) - 1.636 -2.020 -2.176 -2.226 -2.242 
2 Kek.(OEO) -1.641 -2.052 -2.205 -2.254 -2.269 
Full CI -1.641 - 2.05 8 -2.208 -2.255 -2.269 
Triplet 
3 Kek.(AO) - 1.574 -1.693 -1.683 - 1,672 - 1.668 
3 Kek.(OEO) - 1.645 - 1.772 - 1.732 - 1.698 - 1.684 
Full CI - 1.647 -1.775 - 1.717 - 1.700 -1.685 

(ii) The Hz 0 molecule. With axes and orbitals chosen as in Sect.3 Example (ii), ground-state 

calculations have been performed using a minimal basis (STO-6G). The 1 s  and 2p-z oxygen 

AOs (the latter being the only function of s symmetry) conveniently define a closed-shell 

core and a corresponding effective Hamiltonian for the 6 remaining valence electrons. The 

VB perfect-pairing approximation is then symbolized by 

in which the doubly occupied 2 s  orbital represents a first approximation to the oxygen u- 

type lone pair. Energy calculations using the unmodified AOs yield rather poor results, 

much inferior at the equilibrium geometry) to those obtained by standard SCF methods 

(Fig. 5); and the situation is not much improved by admitting hybridization in which 

~ , p , , p ~  + h ~ , h l , h z  (with or without an orthogonality constraint on the hybrids). On 

allowing a small amount of mixing between the bond hybrids and corresponding hydrogen 

AOs ( H I ,  H z ) ,  to obtain OEOs of the form 

there is a drammatic improvement (Fig.5). The perfect-pairing approximation gives a 

ground-state valence electron energy of 3 = -14.0887Eh , compared with the SCF value 

-14.0528Eh and the full-CI (frozen-core) limit -14.098131,. With two more structures, 

namely (hoho)(hlhz)(H1Hz) and (h lh l ) (hzhz) (H1Hz) ,  the energy falls to -14.090531, - 

recovering about 83% of the conventional ‘correlation’ energy. 

(iii) The benzene s-electron system. In this case the u-bonded framework is regarded as 

the core and the VB calculation refers to the remaining s electrons in the corresponding 
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effective field. The core orbitals (MOs) are obtained from a conventional SCF calculation 
and the effective Hamiltonian follows in the usual way. 

-13.0 'I 
AO thybrid.) ----- 
---I- 

- 14.0 I 

Figure 6. Energy approximations for ground and excited states of the benzene a system. H 
and K indicate the use of structures of KekulC or Dewar (i.e. "long-bonded") 
type 9 
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The calculations were performed at three levels, exactly as in (i), with OEOs which admit 

only nearest-neighbour mixing. The ground-state results (Fig.6) confirm those of Cooper et 

al (ref.22), two KekulC-type structures based on OEOs giving a remarkably close approxima- 

tion to the full-CI result * which employs 175 singlet structures. The first few excited-state 

energies, obtained using the same optimized orbitals, also approach quite closely the full41 

results. 

E 

-75.5 - 

Figure 7. Energy curves for symmetric-stretch dissociation of HzO. The ground-state 
curve was calculated using two KekulC-type structures. Curves marked S and T 
are for first-excited singlet and triplet states. The points indicated by circles and 
crosses show the results of full-C1 (245025 determinants) and MBPTS 
calculations (ref. 7). 

(iv) Dissociation of HzO. Since one of the main strengths of VB theory is its capacity 

of following the energy to a correct dissociatrion limit, it is of special interest to make a 

test calculation on such a process. Fig.7 shows the results of a minimal basis (STO-6G) 

calculation on the symmetric stretch dissociation of HzO. The oxygen 1s and 2p, orbitals 

defme a ‘frozen’ core, as in (ii), and the number of ‘active’ electrons is thus reduced to 

6 (2 for the remaining a-type lone pair and 4 for the two 0-H bonds). The solid curve 

in Fig.7 was obtained using the structures (hoho)(hl H ~ ) ( h z H z )  and ( h o h o ) ( h l h l ) ( H ~ H z ) ,  

with full optimization of the valence orbitals for every point. At the equilibrium distance 

the contribution of the second structure is very small but towards the dissociation limit it 

becomes important: there is an avoided crossing with the first excited singlet curve, after 

which the ground-state wavefunction begins to describe triplet spin couplings on the oxygen 

atom and in the H....H region (the spin eigenfunction implied then being that of the ‘top’ 

path in the branching diagram). The fist triplet energy surface is also shown. 

The points enclosed in open circles were obtained by Handy et al (ref.7) in calculations 

designed to test the efficiency of many-body perturbation theory (MBPT) as a means of 

correcting the usual closed-shell SCF reference function: they correspond to complete CI 

(involving the processing, at each point, of 245,025 Slater determinants) with a 6-31G basis*. 

The MBPT approximations, even taken to order 48, failed to give satisfactory convergence 

for bond lengths more than twice the equilibrium value, showing clearly the need to employ 

* The full-CI results for all states were obtained by Dr.F.E.Jorge, using the same basis but a 

completely independent approach (see ref.29 for the method). 
* Slightly inferior in quality to the one used in the present work. 
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a multi-configuration reference function. By contrast, the two-structure VB approximation 

gives a completely satisfactory account of both ground and first excited singlet surfaces at 

all distances. The first excited triplet needs only three structures. And at long range the 

oxygen atom correctly goes towards its triplet ground state. 

CONCLUSION 

It is clear from the results described in the last Section that there are no insuperable difficul- 

ties in performing VB calculations of the kind envisaged and discussed in the ’thirties - but 
now in a fully ob initio form. It is true that the famous “N! problem” still remains; but this 

is also the case with conventional MO calculations, whenever the CI expansion converges 

slowly, because the number of configurations available is also dependent on factorials. In 

all cases where a serious attempt is made to approach the full-CI limit, the most important 

criterion for success is the rapid convergence of the expansion - and this is very strongly 

dependent on the nature of the orbitals employed. It should also be noted that N generally 

denotes the number of ‘active’ electrons: normally there is a core of ‘passive’ electrons (as- 

signed in an MO-based approach to a common set of doubly - occupied orbitals) whose effect 

can always be rigorously absorbed into an effective Hamiltonian for the rest. It is normally 

assumed, with considerable experimental and theoretical confirmation, that processes such 

as electronic excitation, or bond breaking as a result of geometry change, primarily involve 

the active electrons in an effective field provided by the rest of the system. If this is indeed 

the case, then a vast area of chemistry now comes within the scope of modern valence bond 

theory. Some indication of the potential of the method is evident from other recent reviews 

(refs.30-32). 

The main features of the spin-free formulation described in Section 5 may be summarized 

as follows: 

(i) For up to at least 10 electrons outside a closed shell there are no technical difficulties in a 

‘permutation-driven’ approach. Permutations and corresponding coefficients in the Wigner 

operator can be generated rapidly and efficiently using only logical operations and integer 

arithmetic. 

(ii) With the relatively small non-orthogonal basis sets needed, a complete calculation can 

be done in the fast memory of a small computer **, no storage and repeated processing of 

intermediate data (e.g. permutation matrices) being required. 

(iii) By using localized orbitals, which pass smoothly into AOs on separating the atoms, 

correct dissociation is ensured for all possible bond-breaking geometries. In  other words 

there are no ‘size-consistency’ difficulties and calculations of entire reaction surfaces are 

feasible. 

(iv) Perhaps most imer t an t  of all: wavefunctions of excellent quality can be obtained using 

only a small number of classical VB structures, provided overlap-enhanced orbitals are ad- 

mitted, and every structure has an immediate significance for any chemist. All the intuitions 

built up during the last 150 years of chemistry - concerning for example the importance of 

Kekuld-type structures or the role of hybridization - can thus be fully exploited. 

These conclusions strongly suggest that the ideas and intuitions of the pioneers of the early 

** All the calculations reported in this paper were in fact performed on a personal computer 

with only 640 Kb of fast store. 
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'thirties were fundamentally correct and that, in one form or another, the theoretical meth- 

ods they developed are here to stay. 
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