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"Physical Laws should have
mathematical beauty."

P.A.M. Dirac

Abstract - A Simpson-Herndon model Hamiltonian defined on a space of ortho-
gonal Kekulé structures is derived for 1-factorable polyhex species (e.g.
benzenoid hydrocarbons) from either of two antecedent models. One antecedent
model is the semiempirical valence-bond model treated in the simple reso-
nance-theoretic approach of Pauling and Wheland; the other is the Pariser-
-Parr-Pople model treated within the bond-orbital resonance-theoretic ap=-
proach of Zivkovié, Finally the conjugated-circuit scheme of Randié is ob-
tained, though in a modified form.

INTRODUCTION

In the mid fifties Simpson (refs.1,2) proposed an elegant form of resonance theory. His argu-
ment was based upon orthogonal Kekulé structures that are exact. For example, for benzene the
two Kekulé structures, usually depicted as in Figure 1, were conceived as being formed from
symmetric and antisymmetric combinations of the exact 1A1 ground state and the exact lowest
1B, excited state. Simpson noted that these two combinatiBns would have the same symmetry
properties as the two structures of Figure 1 and quite plausibly the same pattern for bond-
-orders and electron density. For other conjugated hydrocarbons the Kekulé structures were
viewed as "coherent" states obtained by suitable unitary transformation of exact singlet eigen-
states. The unitarity of these transformations guarantees the orthogonality of the resultant
coherent Kekulé states. Finally Simpson assumed that a simple chemically appealling pattern

of interaction amongst such exact Kekulé structures would provide quantitative estimates of
the exact eigenenergies.

Fig. 1. The two Kekulé structures for benzene

Though Simpson occasionally used this scheme on 2 molecule or two of interest to him, the
scheme seems to have been largely ignored for some time. One exception to this neglect is
found in the Quantum Chemistry text (ref. 3) by McGlynn and co-workers, though even in their
description of the use of this technique they caution the reader that "We cannot teach this
art here; we can merely give examples..." The power and simplicity of the scheme was finally
largely independently developed by Herndon (ref. 4) in 1973 when he systematically used the
(appropriately parameterized) scheme to accurately reproduce by hand an otherwise computer-
-generated (ref. 5) list of 29 resonance energies. A notable simplification in Herndon's work
was that the ground-state wavefunction could be closely approximated by the simple equally-weigh-
ted sum of (orthogonal) Kekulé structures. In fact with this ansatz the resonance energy could be
developed (ref. 6) in terms of graph-theoretic invariants. Indeed Randié (ref. 7) indepen-
dently noted that what has only more recently been realized (ref. 8) to amount to the same
graph-theoretic resonance-energy expression could be obtained from aquantification of Clar's
qualitative ideas (ref. 9) concerning aromaticity. This expression, and/or various extensions
(ref. 10) of it, have now found numerous applications (ref. 11).

There are some points in this previous work that it would be desirable to clarify. Most par-
ticularly a systematic theoretical computationally amenable derivation of the Simpson-Herndon
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Hamiltonian would be of utility. The simple pattern proposed for interaction matrix elements
would be tested, and possibly corrected. Formulas, and ultimately values, for the interaction
parameters would result. Further the way would be indicated for extensions to more general
circumstances,

Here we initiate such a size-consistent theoretical derivation for i1-factorable polyhex spe-
cies (ref. 12). It starts from approximate resonance-theoretic treatments of either the
Pauling-Wheland valence-bond model (ref. 13) or the Pariser-Parr-Pople model (ref. 14). Thence
in the next two sections we briefly review relevant points of these two treatments. To under-
stand the basic many-body structure of the Hamiltonian and overlap operators it is crucial to
develop more local ("few-bond") operators acting on the space of Kekulé states. This problem is
solved in section 4, then utilized in sections 5, and 6. In section 6 a size-consistent
Simpson-Herndon model is derived by transforming "away” the non-identity overlap matrix. The
result (up through third-order of off-diagonal "overlap") is found to yield new interactions.
In section 7 we utilize Herndon's wavefunction ansatz to obtain a conjugated-circuits expres-
sion, now with parameters expressed in terms of the initial valence-bond or Pariser-Parr-Pople
models.

VALENCE-BOND RESONANCE THEORY

The valence-bond model (ref. 13) of Pauling and Wheland has now been around for more than a
half of a century. But especially for larger systems it is difficult to solve, and not fully
understood, so that, e.g., it has only recently been suggested (ref. 15) to be involved in
high~temperature superconductivity. Elsewhere (ref. 16) arguments have been marshalled to say
that at least for benzenoids the approximation wherein the model is restricted to the subspace
of Kekulé structures is qultereasonable Further discussion concerning the validity of this
assumption may be found in a forth-coming book (ref. 17).

Here we presume the restriction of the VB model to the subspace of Kekulé structures, these
being valence-bond (or Rumer (ref.18)) structures with nearest neighbor spin-pairing exclusive-
ly. The overlap and Hamiltonian matrix elements are conveniently expressed (ref. 19) in terms
of superposition diagrams obtained by superimposing the 7T—-bonds of pairs of Kekulé structures.
Thence in Fig. 2 are shown the three possible superposition diagrams arising from the Kekulé
structures in Fig. 1.

z AN

0 0

AN =

Fig. 2. The three superposition diagrams for benzene

The overlap between two normalized Kekulé structures K and K' on an alternant system of 2M
sites is

<k[R'> = (17N KKD-TKED

(2.1)
where 1(K,K') is the number of small islands (each corresponding to a single common 7m=bond in
K and K') in the superposition diagram of K and K', and T(X,K') is the number of big islands

(each corresponding to a cycle of m-bonds alternately in K and K') in the superpos1t10n dia-
gram. The interactions may be expressed (ref. 20) in terms of spin operators 3, for sitei and
an exchange parameter J, which is positive (antiferromagnetically signed). Intéraction matrix
elements between a nearest-neighbor pair of sites 1 and j then are nonzero only if i and
j are in the same island of the associated superposition diagram, in which.case

<K[2J§i-§j [K'> = ~=(3/2) J<K|K'> (2.2)
For more general circumstances (refs. 19,20) additional phases arise in (2.1) and (2.2).
The expressions of (2.1) and (2.2) determine the Hamiltonian and overlap matrices H and § of
current interest. These are conveniently expressed if to every Kekulé structure |K> we identi-
fy a corresponding orthogonal one ]K), so that

(K|K") = 8(K,K") (2.3)

Then overlap matrix is represented in an operator-theoretic form

§= 3% <K[K'> |[R)(K'] (2.4)
K,K'

and the Hamiltonian matrix is represented as
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H= I <K/H[K"> [R(K'] (2.5)
K,K'

The Hamiltonian matrix elements <K]H]K’> are a sum over nearest-neighbor pairs as in (2.2),
and so bear some resemblance to the corresponding overlap matrix.

The structure of these matrices bears further elucidation. The exponment in (2.1) is O or
greater; being O when there are only small islands. Each big island of 2m sites replaces m
small islands and thence makes a contribution of m=1 to the exponent. Further for benzenoid
structures (cut from the honeycomb lattice, without cutting "holes')(ref. 12) it is known
(ref. 21) that all big islands are of size 4n+2, n=1,2,3,..., so that such a big island in-
troduces a factor of g0 into the overlap where

s = 1/4 (2.6)

may be viewed as a type of local overlap. Then we can write

s=1+ 5 &V 2.7
N21
where 1 is the identity operator and
™~ [KUK' |_=N
s = b |K) ('] (2.8)
K,K'
with |KUK'|_ the sum over n-values for all the different big islands (of size 4n+2) in the

superposition diagram between K and K'. Similar consideration of the Hamiltonian matrix ele-
ments reveals

<K|H|K'> = -(3/2) ~J{M+|K UK],} <K|K'> (2.9
where we recall that 2 M is the number of sites and |KUK'|, denotes the sum over weights for

each big island in the superposition diagram, this weight being the number of nearest neighbor
pairs of sites in the big island minus 2n+1 for that island (of size 4n+2).

Fig. 3. The naphthalenic big island

Note for instance for the naphthalenic island of Fig. 3, this weight is 6 (since the two cen~
tral sites are nearest neighbors, in benzenoids). Then we write

H=-G/2)gMs+ 1 o a™ (2.10)
N21
where
|RUK' {_=N
Ve k] o] 2.1
K,K'

The crucial point to be utilized later is that both § and H may be expanded in overlap orders
as in (2.7) and (2.10), with the higher orders presumably being of lesser importance.

BOND-ORBITAL RESONANCE THEORY

This approach applicable to Hickel, Hubbard or PPP models has recently been developed by
Zivkovié (ref. 22). His approach entails a wavefunction ansatz of the form

lv> = A (¢, o5} 3.0

where A is the system antisymmetrizer and ¢, is the factor for electrons of spin ¢ = a or B.
Further he points out that each ¢0 may be approximated in terms of states corresponding to
Kekulé structures /

*
: (3.2)
|K0> = 111 {(1//2)(xi + ><i(1<>> o}
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where the product is over all "starred' sites in the alternant structure, i(K) denotes the
unstarred site T-bonded to site i in the Kekulé€ structure X, and the Y, are orthonormalized
atomic orbitals for site i. Variational optimization yields coefficiez%s for ]K > in the ex-
pansion of @0 that are independent of the choice o=a or B. o

Something quite remarkable then occurs for the matrix problem to determine &, First,
Zivkovié has shown (ref. 22) that the overlap matrix is exactly as in (2.4) and (2.7). That
is, <K _[K_'> is the same as <K|K'> in (2.1). Second, the Hamiltonian matrix is nearly the
same as in (2.5) and (2.10). That is, for the Hiickel model <K0|H0|KG'> is the same as K|H[K'>
in (2.9) if one replaces J by the Hickel resonance integral B. For the Hubbard and PPP models
an extra (near) constant multiple of <K|K'> is added. Thence for benzenoids the same matrix
diagonalization problem is obtained, though it represents an (apparently) quite different
wavefunction ansatz and approach. It is motivated in terms of bond orbitals (the(1/+2) (yx.+x.)
built from orthogonalized atomic orbitals) in the presence of a mean field due to the eléc-—
trons of the spin, whereas the VB approach is motivated in terms of strongly correlated sin-
glet electron pairs (fundamentally in terms of nonorthogonal atomic orbitals).

An important difference between the VB and bond-orbital resonance theories occurs for nonben-
zenoid alternants. For the simple VB resonance theories the basic matrix element formulas of
section 2 remain unchanged, when big islands of size 4n occur. However, for the bond-orbital
resonance theory such matrix elements are 0O, and in some other cases an additional minus sign
can appear in the analogy to (2.2). These features then account for Hickel's 4n+2 rule, and
Zivkovié then suggests that his version of resomance theory is superior, at least for
non-benzenoids. Here we constrain our attention to benzenoids, whence the bond-orbital reso-
nance-theoretic result is obtained from the Pauling-Wheland resonance theoretic result simply
upon replacing J by B.

KEKULE-SPACE ALGEBRA

In performing detailed manipulations within the space spanned by Kekul€ structures the alge-
braic structure of the associated operator space is of crucial significance. Especially the
"local" operators affecting only a local subregion, identified to an embedded subgraph vy, are
of interest. Here Y is presumed to be capable of carrying a local Kekulé structure, denoted
K' or K, and the operator changing a local structure K to K' is denoted

Al

2«' ok
Al'|R)= £ T |RD(KK] .1
¥ K' K

That is, if this operator is applied to a structure |K) it gives a nonzero result only if «
on y is a substructure in |K), and if so it gives back the structure |K') that is the same as
IK) except on Y where it coincides with k'. For instance, with y the left ring of naphthalene

A (::|||::) changes the first Kekulé structure of Fig. 4 to the second, while if applied to
the second or third it gives O.

Fig. 4. The three Kekulé structures for naphthalene

Next we seek the result of multiplying two fundamental operators. In particular consider the
product of AY (K1'1K1) and AY (K2'|K2). Following the notation of equation (4.1) with sub-
1 2
scripts 1 and 2 now appended to the y,<,k',K and K', one obtains the product of |K1')(K | with
[K,'")(K,|. Thence we consider the inner products (K1|K2') with K1Ej% and k,' SK,. Eviéently
thé resilt must be nonzero only if the restrictions of“k, and k! to Y, N7y “are the same.
Moreover this restriction must be a Kekulé structure on y,Ny,, for otherwise k, and k,, would
both have different m~bonds incident from outside of y1n Y, of single site(s) of y1n Yq-In
this case we say K4 and Ky are compatible,
t = 1 . P

Ky VK ek n Yy = K, n Y, is a Kekulé structure on Y n Y, (4.2)

Also we introduce the Kronecker delta function §(k, " «k,') that is nonzero only if k, vk,', in
. P : S l . E 2

which case it is 1. Now if «, n , it has been noted that Ky n Y2 is a Kekulé structure  (on
y1n'y2) and hence also must be the remaining portion (of Kq)

kilyy Ty = (eyniyy) (4.3)

and likewise so must be KZ'/Y1. Evidently for (K1|K2') to be nonzero, K1/y2 occurs in K2'
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and KZ as well, while KZ'/Yi occurs in K1 and K1' as well. Thus we have
1]
AY (¥, s

Y A (x)']k) =
f 1 Y, 2 2

Sy v ) AY1UY2(K1' U (" 1) [y /v U ) 4.4)

the fundamental relation enabling the manipulation of these operators.

Next several Hermitean operator sums are introduced. First

£ C
M® = I L AR (4.5)
C «

where C is summed over all eyclic subgraphs of type £ = 6, 10, 14a, 14b or 14c as shown inFig-
ure 5, and K denotes the Kekulé substructure on C that differs from k in having single and
double bonds interchanged.

’@

Fig. 5. The first five types of (feasible).cycles occurring in polyhex graphs

Second
A ) Em) C(m) ( | |
Em)) = I z A K(m) |k(m) (4.6)
c@ @ °®
where &£(m) = & x... x£_ denotes a set of m types; C(m) =C x...xC_ indicates m disjoint cycles,

the ith ¢, beifg of tyPe £;sand k(m)=K x...xK indicates a collection of disjoint Kekulé
st A .
structures, the i Ki being on cycle éi' Third

A6') = I g AC(E\K)
C «
10 ) _
AQ10") = (Z: (A (@&]o) + A (alo) + A, (ofo) + A (o]a) (4.7)
6x6 ©1%C3 _
A6,6') = z DI XCZ(K1X K2[K1XK2)+ AC1XCZ(K1XK21K1XK2)

C1xC2 K XK, 1
where a, 0, 0. denote the three naphthalenic Kekulé structures of Fig. 4.

Such Hermitean operator sums are themselves closed under anticommutative multiplication. For
instance

{r(6), A(6)}

4 4(6,6) +2A(10) + 2 A(6")

{A(6), A(10)} = 2 A(6,10) + 2 A(t4a) + 2A(14b) + A(10")

{A(6), A(B")}

20(6,6%) +2A(6) + AC10") (4.8)
{A(6), AC6,6)}= 6 A(6,6,6) + A(14b) + 2 A(6,10) + 2A(6,6")
as follows from the definitions (4.5)-(4.7) along with the basic relation of (4.4). As a con-—

sequence these operator sums form an algebra under anticommutation.

REPRESENTATION OF SYSTEM MATRICES

The various matrix operators of section 2 may now be represented in terms of the fundamental
operator sums of section 4. The first two orders of the overlap matrix are
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E(1)

5 (2)

A(e)

AC10) + A(6,6) (5.1)

recalling that cycles of size 4n+2 contribute to order n, pairs of cycles of size 4n,+2 and
4n_+2 contribute to order n,+n,, etc. The first three orders of the Pauling-Wheland resonance-
—t%eoretic Hamiltonian matrix are

5 = _(3/2)-343 06
(2)

|
n

-(3/2)«3-{6 A(10) + 6 A(6,6)} (5.2)

() L _(3/2)+3{9 A(14a) + 9 AC14b) + 7 A(14c) +9 A(6,10) +9 A(6,6,6))

==

where the integer preceding a A-operator is the common ]Kﬂ K'[+ value for the Kekulé struc-
tures yielding the cycles of that A-operator. This coefficient may be conveniently thought of
as a sum of terms for the cycles contributing to the A-operator, such a term being the number
of pairs of sites in the cycle that are nearest neighbors in the parent graph G minus half
the size of the cycle.

It is also of utility to develop the inverse square root of the overlap in terms of /-opera-
tors. Generally square roots, esvecially for matrices, are not unique, though there is a
"natural choice described by Lowdin (ref. 23). If the nondiagonal part S-1 is sufficiently
small, then Ldwdin's expansion for this inverse square root -

sV2 v 5 et (s - 0" (5.3)
- - m21 m -7

converges. Thence, with the use of (2.7),

S0 et Bty E(ix)' S (5.4)
w1 i

With the identification of the coefficient of &) as (8774 3) one then has

VB Ly s

sHD L e 5792 - 2y 5P (5.5)
Then upon substitution of (5.1) and use of (4.8) we obtain (after same manipulation)

s H M <) we)

@ Gy Ke,6) - (1/8) A(10) + (3/8) A(6") (5.6)

which are results of use in the next section.

A SIMPSON-HERNDON MODEL

A Simpson-Herndon model H may be obtained from either the Pauling-Wheland or bond-orbital re-
sonance-theoretic model. In either case

Hz g™V g g2 6.1)

where the desired structure-explicit formulas result upon expression in powers of the overlap
factor s. For the VB case of Pauling and Wheland, one has

H==(3/2) 041 + 5 Si+j+k (§f1/2)(i) E(j) (§f1/2)(k) 6.2)
i,j,k21
so that we identify
1 15 . oL i
IO DI (s 1/2)(1) E(J) (s 1/2)(1 i-9 6.3)
j=1 i=0

Then with the use of (5.2) and (5.6) along with the multiplication rules of (4.8) we find
(after some manipulation)

# o _(3/2)-3°3 AG6)
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(2)
3)

H -(3/2)+3-3{A(10) -~ A(6")} (6.4)

H

~-(3/2) «3+{3A(14a) + (3/2) A(14b) + 7A(14c) = 3AC10") + 3A(6)}

Hence, summation with the weights si, leads to
H==(3/2)+J+{M+1+ (51/64) A(6) - (3/64) A(6') + (3/16) A(10)
-(3/128) AC10") + (3/64) A(14a) + (3/128) A (14D)
+(7/64) K(14e) } +0 (D) 6.5)

Higher-order corrections could in principle be obtained following further the same approach. As
noted in section 3 the primary difference for the bond-orbital resonance-theoretic case of
Zivkovié entails the replacement of J by 8.

Our results of (6.4) and (6.5) differ notably in several ways from the earlier interaction
proposed by Simpson (ref. 2) and by Herndon (ref. 4). First, there is the term M-1, which how=
ever may be argued to be subtracted off in computing a resonance energy. Second, there are nov-
el terms involving A(6') and A(10'), simply not appearing in the earlier empirical versioms.
Third, the three types of 14-cycle embeddings occur with different weights, also contrary to
earlier treatments. Evidently these second and third features along with additional operators
would appear in higher orders.

A CONJUGATED-CIRCUITS MODEL

As has been shown (ref. 8) elsewhere earlier empirical Simpson-Herndon model Hamiltonians lead
to so-called conjugated-circuits models, when the assumption of a particular wavefunction
ansatz is made. This (ref. 4) ground-state ansatz, which (for the nonorthogonal case) traces
back to Pauling and Wheland (ref. 12), is

v =z K (7.1)
K

This assumption should be comparably reasonable for the present case, since the current model
appears quantitatively similar to the earlier one. Then if one considers a 6-cycle contribu-
ting to A(6'), contributing Kekulé structures occur in pairs differing in conjugation only
around that cycle and each member of the pair occurs with equal weight, so that

(YA W) = (¥]A6) ) (7.2)
Similarly one finds

iAo |y = 20¢|A(10) W) (7.3

Thus

(‘"_3"3/“’2) = M(¥]Y) + (¥]{(39/64) A (6) + (9/64) A (10)

+

(3/64) A(14a) + (3/128) A(14Db) + (7/64) A(14e)

0G| W) 7.4)

+

so that now it appears one is taking a matrix element over a Hamiltonian more like that of
Simpson and Herndon, without A(6') and A(10') operators. Next we introduce conjugated-circuit
counts

#E) = T #

(¥) (7.5
K &

where #g(K) is the number of cycles of type§ = 6,10,14a,14b,14c that occur with alternating
single and double bonds in Kekulé structure K. Evidently

#(8) = W|AE | (7.6)
Now substracting off the M.]-term to generate a resonance energy (RE) we have

RE

(Y[{H=- (3/2) IM1}|¥V)/(¥|®

-(3/2) J{(39/64) #(6) + (9/64) #(10) + (3/64) #(14a)
(3/128) #(14b) + (7/64) A(14c) + 0(s*) }/#(0) (7.7

+
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where #(0) is the number of Kekulé structures.

The resultant expression (7.7) bears a closer resemblance to the usual conjugated-circuits
expression than does our Hamiltonian of section 5 to the usual (ref. 4) Simpson-Herndon
Hamiltonian. Still, the different 14-cycle embeddings have different coefficients. The ratio
of the coefficient of #(10) to that of #{6) takes a value 3/13 20.23 that is somewhat smaller
than the empirically determined value (refs. 7,24) of 0.28. In fact the agreement for this
ratio is rather close, since the present values are chosen to reproduce the results of a
Pauling-Wheland or bond-orbital resonance-theoretic calculation, while the empirical ones
were extracted from the MO-based values of Dewar and de Llano (ref. 5).

DISCUSSION

A point crucial in achieving size-consistincy here is that all the unlinked terms with dis-
joint cycles have cancelled. For instance, the operator sum A(6,6) for a large (graphitic)
system admitting M m—bonds should generally involve n M2 pairs of disjoint 6-cycles and so
give rise to expectation values scaling ~ M%, although size-extensive energies scale ~ M. Also
for a system with noninteracting subsystems, this operator sum A(6,6) would generally give a
nonadditive expectation value, unlike the energy. Thus such a cancellation of unlinked terms
in H should be anticipated, for a “proper" theoretical development. Indeed for a so-called
"multiplicative" quantity such as § the "properness" of the present type of expansion (and
consequent results) is argued elsewhere (ref. 25). Our results of sections 6 and 7 evidently
achieve the desired size consistency.

There have been several other researchers who have addressed the problem of the derivation of
the conjugated-circuits model within a quantum chemical framework. Gomes (ref. 26) starts
from the VB model of Pauling and Wheland restricted to the space of Kekulé€ structures, much as
we have in section 2. Then he proposes to discard all superposition diagrams in H and S with
more than one big island. This does not give size-extensive correctionms. But evidently Gomes
also intends to discard all terms inig_with any (even one) big island. Thence he proceeds to
much the same functional form as suggested by Randié (ref. 7), and then he parameterizes this
form against resonance energies for a free-electron model. Another researcher Grindler (ref.
27) starts from a bond-orbital approach apparently akin to that of Zivkovié (ref. 22) and
finds that computations lead to resonance energies comparing well with the logarithm of the
count of Kekulé structures and with the average number of conjugated 6-circuits per Kekulé
structure,

There are advantages in our present approach. It is more nearly analytical and is developed
in such a way as to reproduce energies of the antecedent model up through a given overlap or-
der. The approach of applying the inverse square-root overlap matrix is a standard numerical
procedure in quantum chemistry, but its application in the present type of context to develop
model Hamiltonians seems to have been less utilized. Clearly it should also be of use in con-
nection with spaces other than of Kekulé structures. For instance, the whole space of covalent
valence~bond structures might be so treated to obtain an orthogonalized Pauling-Wheland model
which then via quasi-degenerate perturbation theory might be block-diagonalized on the sub-
space of Kekulé structures., Evidently then a refined Simpson-Herndon model should be obtained
simulating the full covalent-space valence-bond model. We surmise that the leading terms
should involve the same operators we have already found in section 6, but with different val-
ues for their coefficients. As noted in section 7 additional features (e.g., terms) have al-
ready been found notoccurring in the earlier work of Simpson, Herndon and Randié. Any phys-
ical consequences of these differences remain yet to be clarified. A point of note is that
because of phases (i.e., signs) on matrix elements for the case of nonalternants it is not so
clear how derivations would proceed or whether they would so readily lead to anything like
the currently used conjugated~circuits models.

In conclusion, a systematic size-consistent derivational procedure for Simpson-Herndon
Hamiltonians and conjugated-circuit models has been illustrated. In addition to some novel
terms arising, extensions to other circumstances, seen possible. Aid in these derivations is
found in our development of the fundamental Kekulé - space algebra, which should also have
many other applications, as in solving models defined on the space of Kekulé structures.
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