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Abstract  - A general tight-binding analysis is described which differs 
from traditional methods in that 1) analytical forms are derived and 
utilized for obtaining the coupling parameters, and 2) the calculation 
of electronic-state energies is simplified sufficiently that they also 
can be obtained analytically. With these two features it becomes 
possible to write formulae for a wide range of bonding, dielectric, and 
electronic properties, in terms of the free-atom term. values of the 
constituent atoms and internuclear distances. Although the resulting 
predictions are less accurate than full first-principles computations 
and than empirical scaling theories, they do clearly show the 
dependences of these properties upon the chemical composition of the 
system and the geometry of the atomic arrangements. It is 
i l lustrated for molecules, covalent solids, ionic solids, and 
transition-metal systems. Different conceptual bases, but the same 
fundamental parameters, are required for each of these systems in 
order to simplify calculation of properties. 

THE MOTIVATION 

Tight-binding theory of solids is as old as the doctoral thesis of Felix Bloch (ref. 1). I 
would like to describe how it has been used in the past several years to give simple 
estimates of almost the entire range of properties of solids (ref. 2). For the 
experimentalist such a method is valuable in allowing him to estimate the expected 
range of any measurement, or to choose which material may be most appropriate for a 
particular application. Since it displays clearly the trends from one material to 
another it also allows him to guess which way to turn if one material is not adequate to 
his purposes. It gives the computational theorist a quick and dirty estimate before he 
commits himself to a full analysis, or helps him learn ahead of time which system or 
which geometry may be of most interest. 

Such a method does not compete with full calculations for accuracy, nor even with 
empirical scaling theories if there is enough related data to allow an interpolation. It 
does however have most of the utility of the more complete theory, and it is frequently 
much easier to understand the results and the physical origin of each effect. 

THE THEORY AND PARAMETERS 

Tight-binding theory 

The essential idea of tight-binding theory is that the electronic states Ivk> in a 
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molecule or a solid can be written as a linear combination of atomic states Jvi> of the 
constituent atoms. 

This becomes a simplification if we also assume that only a minimal basis set of such 
atomic states is needed, only those states from shells which are partially occupied in 
the free atom, and that is the approximation we make. For most systems this consists 
of the valence s- and p-states appropriate to the row in the periodic table from which 
the atom comes. The electronic eigenstates and eigenvalues &k are obtained by 
minimizing the expectation value of the Hamiltonian for the state Ivk> with respect to 
the coefficients Ui  . If, when these states are occupied by the number of electrons 
present, the atoms remain essentially neutral, the sum of the eigenvalues of the 
occupied states 

can be regarded as the total energy of the system in the sense that change in energy of 
the system as the atoms are rearranged (including separating them to free atoms) is 
equal to the change in this sum of eigenvalues. This provides a simple theory of 
virtually the entire range of properties of solids, since most properties (cohesion, 
elasticity, dielectric constants, etc.) can be written in terms of the energy. 

Values for the parameters 

In order to proceed we need values for the tight-binding parameters, which 
mathematically are the matrix elements of the Hamiltonian matrix in the basis of the 
atomic states. These parameters include the atomic term values Ei (the diagonal matrix 
elements) which we take as Hartree-Fock free-atom term values; a table is given, for 
example in Ref. 2. They also include the coupling Vij between electronic states on 
neighboring atoms (the off-diagonal matrix elements). It has turned out that to a good 
approximation those can be neglected except for nearest-neighbor atoms and that these 
nearest-neighbor couplings can be taken to have universal values given by 

Vsso = -1.32 H2/md2 Vppa = 2.22fi2/md2 

Vspo = 1942H2/md2 Vppn = -0.63H2/md2 
(3) 

The first two subscripts indicate the angular-momentum quantum number of the atomic 
state and the third indicates the angular momentum of the two states around the 
internuclear axis ( 0 for zero and n: for one unit, H ).  

A derivation of the coupling 

Where do these couplings come from? The question has an interesting answer that also 
gives us some idea how much confidence we can have in them. Initially these forms 
came from fitting an analytic form to values obtained from careful band calculations on 
semiconductors (ref. 3). It was then realized that these forms followed from the fact 
that semiconductor band structures could be well described by tight-binding theory but 
at the same time were very free-electron-like (ref. 4). 

This is most easily seen for the simplest case: that of a one-dimensional chain of 
atoms, each containing an atomic s-state. With nearest-neighbor coupling it is easily 
seen that the energy bands are given by Ek = E~ + 2Vsso cos kd , where d is the spacing 
between atoms and k varies from -n/d to +dd. If the spacing were such that the 
electrons also behaved as free, their energy could also be written &k = EO + H2k2/2m . 
The total band width, as k varies from 0 to n/d , is given in tight-binding theory by 



Tight-binding theory of molecules and solids 2163 

-4Vss0 , and for free-electrons by H2(x/d)2/2m . If these are to be consistent we 
conclude that Vsso = -(n2/8)H2/md2, of the same form as that given in Eq. 3. In fact, 
the coefficient -n2/8 is -1.23 . For the three-dimensional diamond lattice an 
analogous treatment gave the same form for all four interatomic matrix elements 
listed in Eq. 3 and for Vssa gave the value -9n2/64 = -1.39 ; the value -1.32 given 
in Eq. 3 came from fitting the known band structure of germanium. The differences are 
not so important. It is important, however, that these values cannot be very far off 
near the equilibrium spacing because in real semiconductors the band structures are 
quite free-electron-like. It has also turned out that these interatomic matrix elements 
remain quite the same when the atoms are rearranged, as in an ionic structure, so that 
it is reasonable to take them as universal. 

The neglect of coulomb effects 

We now have all the needed parameters for studying the electronic structure, and 
therefore the properties, of simple covalent (ordinarily semiconducting) and ionic 
solids. We should point out, however, what has turned out to be the most serious 
approximation given above: that is the assumption that each atom remains neutral in 
the solid. Frequently within the tight-binding context the atoms become charged - a 
sodium atom in rocksalt is found to have a net charge near 0.8 , and this must be taken 
into account to obtain reasonably accurate predictions of some properties. This has 
been undertaken, including self-consistent determination of the charges, and 
significantly improves agreement between theory and experiment (ref. 5). The 
corrections are not so large as one might at first think since the shift in energy levels 
on one atom, due to its charge, tends to be cancelled (usually to within 10%) by the 
shift due to its neighboring atoms which have opposite charge. It is appropriate not to 
worry about these Coulomb shifts in the present discussion as we discuss the theory of 
a variety of systems. 

A SIMPLE MOLECULE, N2 

Evaluation of the eigenvalues 

We begin by applying the above approach to a simple diatomic molecule, where the 
calculations are completely trivial, but at the same time show exactly how we may 
proceed in the solid. We first look up the term values for nitrogen, E~ = -26.22 eV and 
E~ = -13.84 eV. Here we take the internuclear distance from experiment, d = 1.09 A , 
although it is possible to extend the theory to estimate these (refs. 5 and 6). We 
immediately obtain the couplings from Eq. 3, giving for example VPpn = -4.04 eV and 
molecular n-states at energies E~ = EP k Vppx = -17.88 eV and -9.80 eV. In N2 only the 
lower state is occupied. The four o-states are also immediately obtained by 
evaluating parameters and solving a quadratic equation. 

In spite of the fact that these are reduced to trivial calculations, these results for the 
occupied states are in rather good accord with more complete theories requiring 
extensive computer calculations. The predicted value -17.88 eV for the bonding n- 
state may be compared with the results of a full calculation by Ransil (ref. 7) who 
obtained -16.7 eV. For the three occupied o-states we obtain -41.1, -21.7, and -21.5 
eV, compared to Ransil's -38.6, -20.3, and -15.1 eV. The empty states here, and in many 
cases is solids, are not at all well given, but they do not directly enter the ground-state 
properties. It is necessary to extend the theory if one is interested in the excited 
states (Ref. 5). 

A Simplification using hybrids 

Before proceeding it is interesting to simplify the electronic structure, which will be 
necessary for solids though it is completely unimportant for the simple diatomic 
molecule. We introduce the familiar concept of hybrid states. In the calculation of the 
o-states we may use as a basis hybrids in the form ( I S >  f Ip> )/d2 which are oriented on 
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each atom toward or away from its neighbor. If we again solve the appropriate 
quadratic equation we obtain precisely the values obtained above. However, we may 
instead make the approximation of neglecting the coupling of an outward-directed 
hybrid with any states on the other atom. Then these two states become nonbonding at 
an energy &nb = (Es + Ep)/2 = -20.0 eV . Further, the remaining two states are written 

immediately as &nb k (Vsso - 2Vspo - Vppo )/2 with the lower having the value -40.4 eV . 
We have not lost any appreciable accuracy by this simplification, but of course all we 
have saved is the solution of a quadratic equation so it is of no importance. Such a 
simplification in a solid, on the other hand, replaces a major computational task by a 
trivial estimate such as that in the diatomic molecule. The coupling between hybrids is 
called a covalent energy , in this case given by 

V2 = (Vsso - 2Vspo - Vppo )/2 = -3.19 W m d 2  (4) 

An analogous expression will apply to covalent solids. 

Cohesion of N2 

We may immediately evaluate properties for this diatomic molecule. We need, however, 
add a repulsion between atoms which arises from the overlap of atomic states on 
adjacent atoms and a corresponding increase in the kinetic energy of the electrons 
occupying these states. Without it, the bond energies proportional to l/d2 would cause 
the two nitrogen atoms to fall together indefinitely. This is called an overlap repulsion 
and we may guess, on the basis of the virial theorem (ref. 6), that it will vary as twice 
the power of the attraction, or as a constant divided by d4 . (Then this kinetic energy 
will end up half as large as the potential energy arising from the interatomic coupling 
as appropriate to the virial theorem.) Combining this with the energy of the occupied 
(and nonbonding) states we obtain a total distance-dependent energy of 2V2 + 4Vppn + 
A/d4 . (We have used hybrids for this evaluation.) This must be minimum at the 
observed spacing and that condition gives the value of A for the nitrogen molecule. We 
may now substitute that value back and subtract the sum of energies of the occupied 
states in the molecule from that in the two free atoms to obtain a cohesive energy of 
cp - cs + V2 + 2Vppn = -16.2 eV (a negative quantity as defined here). This may be 
disappointing as compared with the experimental binding energy of -8.7 eV, but this 
factor of two may be familiar. Extended Huckel Theory (ref. a), which is another 
simplified theory but one requiring computer analysis, also has been found ordinarily to 
overestimate binding energies by a factor of two. Indeed this turns out to be a feature 
of carbon-row systems. We will find that this factor of two discrepancy is not there 
for heavier systems. It is not even so much problem since we know to expect just this 
discrepancy for carbon-row systems. I do not believe that the origin of the discrepancy 
is known. 

We could of course also obtain the interatomic force constant as the second derivative 
of this total energy with respect to the internuclear distance and obtain the vibrational 
frequencies, or from the full curve obtain the full set of frequencies including 
anharmonicity. 

Polarizability of N2 

This description of the electronic structure also allows an analysis of the dielectric 
properties. The effect of the field E , in tight-binding theory, is simply to shift the 
term values on the two atoms with respect to each other by -eE.d. This makes the bond 
asymmetric, shifting charge to one side. The effect is obtained by solving a quadratic 
equation and leads to a polarizability for fields along the molecular axis of 

a = e2d2[ 1/V2 + 2/Vppn ] 
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We see that the entire range of properties of the system follows once we have a 
representation of the electronic structure. We begin with 
semiconductors, covalent solids which have bonds closely analogous to those of N2. 

The same is true in solids. 

TETRAHEDRAL SEMICONDUCTORS 

The two-center bond 

Silicon, gallium arsenide, and other tetrahedral semiconductors all have four valence 
electrons per atom. Since it is possible to make just four orthogonal hybrids with the 
four valence orbitals (sp3) per atom, and thus four independent bonds, these four 
electrons per atom are just enough to fill the bonds if each atom has four neighbors. If 
we construct these four hybrids (each of the form ( Is> + 43 lp>)/2 , with the p-state 
oriented along an internuclear distance ) and neglect its coupling with any but the 
opposite hybrid directed into the same bond, in exact analogy with our treatment of 
hybrids in N2 , we may treat the system as consisting of independent bonds, and the 
analysis becomes as simple as it was for N2 . The new covalent energy is 

This covalent energy for sp3-hybrids is slightly larger than the covalent energy for sp- 
hybrids given in Eq. 4. In a polar semiconductor such as gallium arsenide the two 
hybrids making up the bond have different energy, but we may find the bond energy by 
solving a quadratic equation, just as we did for N2 when a field was applied. We 
obtain 

where the hybrid energies are denoted as coming from the cation or anion. Half the 
difference of the hybrid energies arises so often that it is convenient to define it as the 
polar energy, 

Metallicity and the energy bands 

A third energy which enters many properties is called the metallic energy, 

v1 = (&s - &p)/4 (9) 

In a polar semiconductor there are two metallic energies, one for the anion and one for 
the cation. The coupling between two hybrids sharing the same atom in a tetrahedral 
s,olid can easily be seen to be equal to this metallic energy V1 . Thus adjacent bonds 
are coupled by this V1 (in a nonpolar semiconductor the coupling between bonds is 
easily seen to be V1/2 ). Thus it is V1 which broadens the bonding levels into bands 
just as the coupling VssO broadened the s-levels in the atomic chain discussed above 
into a band of width 4Vss0 . 

In a simplest approximation the bonding band, or valence band, width in a tetrahedral 
semiconductor is given by -4v1 . In that approximation the band gap between the 
valence and empty conduction bands is -2V2 + 4 v i  . (Note that both V1 and Vp are 
negative.) This turns out to be approximately true even in a more complete calculation 
of the bands. Thus if the metallic energy exceeds half the covalent energy, the gap goes 
to zero and the system becomes metallic. This occurs in tetrahedral tin; it is the 
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increase in the ratio 2V1/V2 , called the metal l ic i ty, from diamond to silicon to 
germanium to tin (principally due to the decrease in V2 from the increased interatomic 
distances) which provides the main trend in the properties of these systems. 

Cohesion in semiconductors 

The calculation of the total energy in terms of the two-center bonds described above is 
directly parallel to that for the molecular N2 . It gives in fact -2V1 + V2 per bond for 
nonpolar (V3 = 0 ) semiconductors in direct analogy with the E~ - E~ + V2 + 2Vppn which 
we gave for N2 . Interestingly enough, this goes to zero, as did the gap, as the 
metallicity approaches one. However, as the metallicity grows, the effects on the 
energy of the coupling between each bond and the neighboring antibonds becomes 
important and must be included to get meaningful results. This is quite easily done in 
perturbation theory giving corrections (called metall ization ) to the cohesive energy 
proportional to V12/V2 (ref. 6). The resulting cohesion, for the polar as well as 
nonpolar semiconductors, is good to approximately 20% (ref. 6), except for carbon-row 
systems in which we overestimate the cohesion by a factor of two, as indicated above. 
It may be noted that for tin, the cohesion arises entirely from metallization, since 
-2V1 + Vp = 0 ; the bonding energy ( V2 ) is just cancelled by promotion energy (-2V1) . 
The dielectric properties 

We may also directly calculate the polarizability of these two-center bonds for fields 
along the bond, as in N2 , and average over angles to obtain the dielectric susceptibility 
of a semiconductor. It is given by (ref. 2) 

This is not one of the most accurate predictions. It tends to be too small by a factor of 
order one half for the homopolar semiconductors, but it gives quite accurate trends. In 
particular the ratio of the susceptibilities of the polar semiconductors is quite close. 
For example, the ratios X(GaAs)/X(Ge), X(ZnSe)/X(Ge), and X(CuBr)/X(Ge) are very close 
to experiment. 

In judging the predictions we should not forget that they have been made without 
computation, with all of the dependencies upon bond-length and composition directly 
displayed as in Eq. 10. Furthermore, it is the same three fundamental parameters, V1, 
V 2 ,  and V3, which determine the dielectric as well as the bonding properties. This is 
of course because the theory is based upon the fundamental electronic structure, 
crudely described as it is. 

IONIC CRYSTALS 

We turn next to compounds such as rocksalt. If we considered a molecule of NaCl rather 
than a crystal we could of course proceed with the two-center bond as in N2 . However, 
in the crystal each atom has six neighbors and it is not possible to make six 
independent hybrids from the four orbitals per atom. Nor does it make any sense to try 
to add higher-energy orbitals such as the d-states in order to do this since in reality 
the coupling of these d-states to the valence states of the sodium and chlorine pushes 
them still higher and leaves them still unoccupied. We need a new view of the 
electronic structure, but fortunately can proceed with the same parameters. Again 
using Hartree-Fock term values we see that the lowest sodium valence state is far 
above the highest chlorine valence state, 

Es(Na) - E~(CI)  = 8.8 eV . (1 1)  
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The coupling between them is quite small, at d = 2.82 a , we obtain from Eq. 3 the value 
Vspo = 1.36 eV . This is characteristic of the ionic solid. Electrons drop from the cation 
states to the anion states and are little disturbed by the residual coupling. 

Coupling neglected 

As a first approximation we can neglect the coupling altogether and treat the system as 
composed of independent ions. Then the energy gap between occupied and full states is 
given by the 8.8 eV of Eq. 11, in very good accord with the experimental value of 8.5 eV 
. It is at first astounding that the answer is even near to correct since we have used an 
energy near the ionization energy of chlorine for an added electron when the electron 
affinity, which might seem more appropriate for an added electron, is over ten electron 
volts higher. However, as we indicated at the outset, the Madelung shift very nearly 
cancels the intraatomic repulsion giving the difference between electron affinity and 
ionization energy. The extent of the agreement is perhaps fortuitous. These Coulomb 
potentials do not quite cancel and there are corrections to the one-electron theory of 
opposite sign which remove the resulting discrepancy (ref. 5). 

We also obtain the cohesion immediately from the differences in one-electron energies. 
As the solid is formed we gain Es(Na) - E~ (C I )  per atom pair from the transfer of the 
electron. Thus the cohesion is also predicted to be just the 8.8 eV of Eq. 11, again in 
good accord with the experimental 8.0 eV. In fact this theory has given an empirical 
rule which we believe is new, that the cohesion of an alkali halide is equal to the gap. 

This same almost trivial theory gives quite good trends both for the gap and the 
cohesion for all of the alkali halides, and similar agreement for the divalent alkaline- 
earth chalcogenides. 

We turn finally to the dielectric susceptibility which, without coupling, we find equal 
to zero. On the scale of the semiconductor susceptibilities this is not a bad estimate. 
However, if we wish to obtain values we must incorporate the coupling between levels. 

The inclusion of interatomic coupling 

We may first perform a simple band calculation, analogous to that which we did for the 
atomic chain, and find that at k = 0 the symmetry is high enough that there is no 
coupling of the s-states to the p-states. Thus our prediction of the gap is unchanged by 
the inclusion of coupling and remains in good accord with experiment. At other 
wavenumbers the bands push each other apart. 

For other properties it is most appropriate to include this weak coupling in perturbation 
theory. The coupling of each occupied chlorine p-state to each of two neighbors gives a 
shift of -VspG2/(Es(Na) - E ~ ( C I ) )  . Thus the six p-electrons per chlorine have their energy 
shifted by -12Vspo2/(~s(Na) - E~(C I ) )  = -2.5 eV, which is a small contribution to the 
cohesion. It is partly cancelled by the overlap repulsion which must also be included as 
it was for the covalent bonds. 

The susceptibility may also be directly calculated in perturbation theory (ref. 2). The 
coupling of each p-state electron to a neighbor transfers a charge VSpo2/(Es(Na) 
cp(C1))2 to that atom. When a field is applied that charge changes, due to the change in 
Es(Na) - E~(CI)  . The corresponding dipole leads directly to a susceptibility of 

The independent-ion theory is not importantly affected. 

x = 4e2Vspo2/[(&s(Na) - ~p(CI))3d] = 0.06 

for NaCI, again nearly a factor of two smaller than the observed 0.10. Again it is of the 
right order and the formula applies to all of the other alkali halides and alkaline-earth 
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chalcogenides. Again also, the same theory and the same parameters give us the entire 
range of properties of these ionic solids. 
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TRANSITION-METAL COMPOUNDS 

When transition-metal atoms are present we must include their d-states among the 
valence states. These states have atomic term values near those of the atomic s-state, 
but the d-states are much more strongly localized near the nucleus; thus their coupling 
with neighbors tends to be weaker. For our purposes here we shall again neglect 
Coulomb shifts in the d-states though frequently they are far from negligible ( ref. 5). 

Usually the lowest-energy empty states and highest-energy occupied states (in the 
sense of an ionic crystal) are the metallic d-states and nonmetallic p-states. The 
coupling between these can be obtained (ref. 2) by a theory analogous to, but somewhat 
more intricate than, that given above for coupling between s- and p-states. [The d- 
state theory actually predated the sp-theory and suggested that the latter was a 
possibility.] The largest coupling is given by 

Vpdo = -2.95 fi2rd3/2/md5/2 . (1 3)  

The parameters are known for each transition metal, given for example by 0.80 A 
for iron and 0.67 A for copper (ref. 2). Again we have all the parameters needed to 
calculate the electronic structure and properties of the compounds. 

rd 

Frequently the coupling Vpdo is not sufficiently small compared to &d(M) - E ~ ( X )  that we 
can use perturbation theory, e. g., in TIC and in the cuprates. We again need a new view. 
A particularly convenient one is to use the method of moments to estimate the width of 
the pd-bands which are formed. Then we can approximate the resulting density of 
states as a constant, as illustrated in Fig. 1. We see that the five atomic d-states, 
coupled to three atomic p-states, leads to two nonbonding p-bands, three bonding bands 
and three antibonding bands (just as, in fact, the single sodium s-state coupled to three 
chlorine p-states gave two nonbonding p-bands, one bonding and one antibonding band). 

‘ 4  

Fig. 1. Simplified pd-density of states for transition-metal compounds. 

The average energy of the bonding band, obtained from the second moment, is found to 
be 
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wi th  V3 = (Ed - ~ ~ ) / 2  and V2 = d n  (1/3Vpd.2+2/3Vpdx2)1’2, with n the number of 
neighbors, six in the rocksalt structure. Using these forms we can directly proceed 
with the bonding and dielectric properties of these systems. 

It is interesting to view the energy from Eq. 14 as arising from resonant bonds (ref. 9). 
There are three electron pairs forming a bond with a covalent energy and a polar energy, 
but shared for each atom with six neighbors. Of particular interest is the enhancement 
of the covalent energy by the factor dn ; the energy of a resonating bond is enhanced by 
the square root of the number of bond sites among which it resonates. This resonance 
energy comes from the theory directly without additional parameters. Similarly the 
coupling in rocksalt added an energy -12Vspo2/(~s(Na) - E ~ ( C I ) )  for the two electrons in 
the resonant bond, with the coupling enhanced by a factor of 46 . Similarly also for 
benzene the resonant n-bond energy is enhanced by d2 in comparison to that in ethane 
and by a factor of 43 in graphite. 

SUMMARY 

We see that tight-binding theory makes it possible to estimate most of the properties 
of molecules and of covalent and ionic solids; values are available for all of the needed 
parameters. The estimates become simple if  we take an appropriate outlook, and that 
outlook is different for different systems. Indeed, the outlook in each case is quite 
close to that traditionally taken for these systems. For full numerical solution of the 
electronic structure and properties of these systems it would not be necessary to have 
any understanding, but that understanding, or outlook, is essential if we wish to make 
the theory simple For the same reason, our understanding can be enhanced sometimes 
more by the simple theory than by the full, more accurate, solution. 
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