
Pure&Appl. Chern., Vol. 61, No. 12, pp. 2185-2194, 1989. 
Printed in Great Britain. 
@ 1989 IUPAC 

Some comments on the present situation of 
quantum chemistry in view of the discussions at  
the Dubrovnik workshop on the electronic 
structure of molecules 

By Per-Olov L(iwdin* 

Quantum Theory Project, Departments of Chemistry and Physics, University of 
Florida, Gainesville, FL 3261 1, USA. 

*F'rofessor Emeritus at Uppsala University, Uppsala, Sweden. 

Abstract.- A review is given of certain parts of current quantum chemistry, with 
emphasis on the structure of the theory. I t  is stressed that a great deal of 
experimental insight is needed not only in finding the initial conditions Y = Y(0) 
for solving the time-dependent Schrodinger equation but also for solving the 
eigenvalue problem H Y = EY. The standard methods based on the quantum- 
mechanical variation principle 6<H> = 0 are discussed. It is pointed out that the 
transition-value formula cH>~, = cqJHI@>/<ql@>, where cp is a reference function 
and @ is a trial wave function, is an excellent mathematical tool for solving the 
Schrodinger equation, but also that it sometimes gives energy results which are 
fortuitously good. The resolvent methods, the partitioning technique, the 
concepts of wave and reaction-operators as well as perturbation theory are 
discussed from this point of view. Finally a comparison between the variational 
expression and the transition-value formula is made. 

INTRODUCTION 

The Dubrovnik Workshop on the Electronic Structure of Molecules is now coming to an 
end, and the Organizers have kindly asked me to make some concluding remarks. This is 
a great honour and privilege for me, and at the same time I realize that it is impossible to 
give a proper summary of all the nice presentations - in lectures as well as in posters - 
and discussions which have occurred during this week. Instead I will only make a few 
short comments which are inspired by what has been going on during the week, dealing 
particularly with the structure of the theory. 

Quantum chemistry is certainly a very rapidly developing field, which has greatly 
benefited from an  intense international collaboration in which the Ruder Boskovic 
Institute in Zagreb has played a very important role. Our problems come from many 
different areas: from industry and technology, from experiments in chemistry and 
physics, and from theory itself, so the background is certainly very rich and varying. A 
leading theoretician working as a consultant for industrial applications said some time 
ago that once a problem in technology or experiments had been properly defined and 
formulated, it was already halfway solved, and the same statement is certainly true even 
today. The question of the formulation of the problem is particularly pronounced in the 
time-dependent quantum mechanics, which is based on the solution of the time- 
dependent Schrodinger equation: 

with the initial condition Y = Y(0) for t = to , where H is the Hamiltonian for the system 
under consideration. The initial condition is not given by theory itself but by the 
experimental set-up, and the proper definition of the complex wave function "(0) - a s  
to absolute value as  well as phase - may require a great deal of collaboration beween an 
experimentalist and a theoretician. The latter may try to circumvent this problem by 
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writing the solution in the form Y (t) = S(t ,to) "(0). where the so-called evolution operator 
S = S(t ,to) satisfies the Schradinger equation 

with the simple intitial condition S(to,to) = 1 , where 1 is the identity operator. If the 
Hamiltonian does not contain the time t explicitly, it has the well-known exponential 
solution S(t ,to) = exp{ H (t - to)). This solves the mathematical part of the problem, at least 
in principle, but - in order to study the physics or chemistry of the system under 
consideration - one still has to determine "(0) . I t  should be observed that this problem is 
still far from being solved. 

In time-independent quantum mechanics built on the Schradinger equation H Y = E Y 
as an eigenvalue problem, the question of the solution is essentially a mathematical 
problem, and one is hence inclined to consider this equation as the basis of ab-initio 
quantum chemistry. As I have pointed out in another lecture at this symposium, the 
study of a molecular problem based on the Coulombic Hamiltonian may - in the current 
situation - still require a great deal of physical and chemical insight of an experimental 
nature. This means that in the future perhaps somewhat more attention should be given 
to the formulation of the problem itself. 

VARIATION PRINCIPLE AND ASSOCIATED METHODS 

The theoretical methods for treating the eigenvalue problem H Y = E Y come essentially 
from mathematics, and there is no question that, during the first six decades of quantum 
chemistry, the Rayleigh-Ritz variation principle [ref. 11 has played a dominating role. It is 
based on the expectation value 

where @ is a trial wave function, and the statement that the best approximation is 
obtained whenever 6<H> = 0 , Quite a few of the standard computational methods are 
based on this approach, and at this workshop we have had reports about recent progress 
in the Hartree-Fock (HF) scheme [ref.2]. in the Multi-Configurational-Self-Consistent- 
Field (MC-SCF) method [ref.3], and in the Configurational Interaction (CI) approximation 
Iref.41. Of particular importance is the Graphical Unitary Group Approach (GUGA) kef.51, 
which has made large-scale CI-calculations possible. Of a somewhat different variational 
nature is the Electron-Density-Functional-Method (EDFM) Iref.61, where one starts only 
from the knowledge of the one-electron density, and some of the old favorites - as the 
X,-method iref.71- may be considered as special cases of this approach. 

A characteristic feature of all the methods based on the variation principle is that they 
give upper bounds to the energy values, which give a clue also to the accuracy of the wave 
functions. The rapid developments in these areas as reported at this workshop depend 
not only on progress in methodology but also on the developments of the modern 
electronic computers. 

TRANSITION FORMULAS, WAVE AND REACTION OPERATORS, 
PERTURBATION THEORY 

In addition to the variation principle, one has during the last decade studied the bi- 
variational principle . If T is an arbitrary linear operator with the adjoint Tt, it is easily 
shown Iref.81 that the eigenvalue problems TC = h C and TtD = p D are equivalent with 
the relation 6<T>12 = 0 for the bi-variational expression 

where @1 and 0 2  are two arbitrary trial wave functions. This approach is of particular 
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value in the current method of complex scaling, which deals with the study of physical 
resonances and their life-times by means of non-self-adjoint Hamiltonians (ref.91. 

In many cases, one prefers to work with one of the variational functions fixed, say with 
0 1  = cp. and one is then often speaking of cp as the reference function, which is usually 
chosen normalized so that ccpIcp> = 1 . Instead of the variational expression (31, one is 
then using the transition formula: 

where Q, is a trial wave function: for @ = Y ,  one has <H>t r  = E , and the formula 
becomes exact. We note further that, since one may choose 0 so that ccpl@> I. f 0, one 
has c H > t r  = f w r  which means that the quantity <H>tr is unbounded. The transition 
formula has been used for a long time in quantum mechanics, and it has been given 
different names in various connections. It has turned out to be one of the strongest 
mathematical tools used in quantum theory, and - at the same time - it should be 
remembered that the transition formula has no direct physical interpretation, even if 
many of the "interpretations" given in this context may have value as mnemonic rules. 

Let us for a moment consider the ground state energy Egr, so that the operator E = H - Egr 

. I  is a positive definite operator. Let us further consider two normalized functions cp and 
@, so that ( 1  cp ( 1  = ( 1  @ ( 1  = 1 .  Using Schwartz's inequality in the special form ( 1  cp lZ1@>112 I 

ccp ISIp > c@lEl@> , one obtains 

where 

A = (<cplHlq> Egr)'" {<@IHI@> Egr) 'Q / I<cpl@>l. (7) 

This transition formula inequality tells us  that, if one of the two expectation values 
ccplHlcp> and/or <@IHI@> becomes close to Egr, then <H>tr also becomes close to E g r ,  as 
long as IccpI@>I is bounded. 

The transition formula is dangerous from the point of view that, for certain trial wave 
functions 0, one may have < H > t r  = E , and still @ may be far from the correct wave 
function Y .  Good agreement with experiments or bench-mark values may hence be 
completely fortuitous! At the same time, it should be observed that, if the transition 
formula is properly handled, it may give strict upper and lower bounds to the energy E . 
In the early 1950's. Schwinger [ref.101 introduced the idea that perhaps one could obtain 
the exact eigenfunction Y as a mapping of the reference function cp through a particular 
wave operator W, so  that Y = W cp . This operator is by no means unique, and Brueckner 
and his collaborators [ref. 111 concentrated on finding the form which corresponds to 
quantum-mechanical perturbation theory in the case when H = Ho + V . We note that, in 
order to treat the discrete and continuous part of the energy spectrum {El on an equal 
footing, one does not require the function Y or its approximate form 0 to be normalized. 
Instead it is convenient to introduce the intermediate normalization through the 
relation: 

Ccpl@> = <cplW Icp> = 1 ,  (8) 

and the transition formula now takes the simple form 

<H>tr = <cplHI@> = <qlHW "p>. (9)  

Mathematically this looks like an expectation value, but physically it is not. The operator 
C2 = HW is sometimes referred to as the bracketing operator for reasons we will see later. 
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If one chooses the reference function cp so that it becomes an eigenfunction to Ho , i.e. cp 
= cpo and Ho cpo = Eo cpo , and uses (9), one obtains 

<H>tr = <qol(Ho + V )W = Eo + C C ~ O ~  V W I'~o>= Eo + C C ~ O ~  t I%>, (101 

where t = VW is Schwinger's scattering operator for the continuous case, and Brueckner's 
reaction operator for the discrete case. Replacing the Hartree-Fock energy EHF = ccpol Ho + 
V Icpo> with the exact energy E = ccpol Ho + t [go>. Brueckner could, with the recipe V + t, 
formulate an exact self-consistent Beld theory for many-particle systems [ref. 121, and one 
obtained for the first time a simple formula for the inter-particle correlation energy: 

(1 1) Ern,, = E -  EHF =<cpolt-V [TO>. 

Brueckner's research was in the field of nuclear physics. However, also in quantum 
chemistry, one had similar developments, and Nesbet [ref.13] had discovered that, if H is 
a Hamiltonian which contains one- and two- particle operators like the Coulombic 
Hamiltonian, if cpo = D is a single Slater determinent and if the exaxt wave function Y is 
expanded in terms of excitations of this determinant: 

where the symbols s.e., d.e., t.e., etc. indicate sums of singly excited, doubly excited, 
triply excited terms, etc. to orthogonal orbitals with respect to D , then Brillouin's 
theorem gives <DIHIDs.e.>= 0, and one obtains simply 

E = cDIHIY > = cDIHI D> + cDIHI Dd,e,> = EHF + cDIHI Dd.e.>, (13) 

since all other terms dissappear identically depending on the orthogonality requirements 
and the nature of the operator H . Relation (13) gives another simple formula for the 
correlation energy. Since the term Dd,e relative to D could be expressed in terms of a 
finite number of pair functions. Nesbet [ref. 141 and Sinanoglu [ref. 151 devoted a great deal 
of time and effort to the study of these functions. In view of some presentations at this 
workshop, we can see that the philosophy of this approach is still alive - even if it has 
taken a somewhat modified form. 

In the treatment of many-particle systems, it is evident that it may be practically very 
difficult to find a reference function cpo which is a n  exact eigenfunction to the 
unperturbed Hamiltonian Ho . For this reason we will now return to the choice of an 
arbitrary normalized reference function c p ,  and we will particularly consider the 
inhomogeneous Schrodinger equation 

where z is a complex variable, and the coefficient a is chosen so that the solution Yz 
satisfies the intermediate normalization ccplY, > = 1. If one introduces the resoluent 
operator R ( z )  = (2.1 - H)-I , one finds immediately the explicit solution Y, = - a R ( z )  cp = R 
( z )  cp / ccp IR (z)lcp > . and one has a =-ccp IR (z ) lq  >-I . The function W(z) = ccp IR (z) lq >-I is 
sometimes referred to as the Weinstein function. The resolvent is complex symmetric, 
i.e. Rt(z) = R (z*), and hence the function a(z) has the property a(z*) = {a@)}* : it is obvious 
that it is real on the real axis. Since dR (z)/dz = - R 2(z) , one immediately gets the relation 

da(z)/dz = - cYpIY,>, (15) 

which quantity is negative on the real axis, and - as a rule - non-vanishing. 

We note that the inhomogeneous equation (14) goes over into the ordinary Schrodinger 
equation whenever a(z) = 0 , i.e. whenever the Weinstein function has a pole z = E . One 
would hence anticipate that the equation a(z) = 0 would be equivalent to the 
characteristic equation for the eigenvalues z = E , but the existence of relation (15) 
indicates that all the multiple roots have been reduced to single roots, and that a(z) = 0 
hence corresponds to the reduced characterisitc equation for the eigenvalues. The 
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relations given here form the background for the resolvent operator methods, or - if one 
is using the associated kernels - the Green's functions method. Through the relation 
R (z) = 2-1 + 2-1 H R (z) . they are also associated with the propagator technique lref.161. 
These methods are very forceful, and it is hence remarkable that we have not seen more 
of them at this workshop. 

The resolvent R (z) is a bounded operator for I z  - E I> p , and one has IIR (z) 011 < ( l / p )  
1 1  011 . which explains the usefulness of this approach. It should be observed, however, 
that the resolvent is singular for z = E , and that the expression for Y', then takes the 
form 4 0 0 .  In this situation, one may start from the identity (2.1 - H) R (z) cp = cp ccpl (2.1 - H) 
R (z)l cp> and derive the resolvent identity [ref.17] : 

where P = 1 - Icp><cpI is the projector for the orthogonal complement to the projector 0 = 
Icp>apI associated with the reference function cp . This gives a very simple expression for 
the wave operator: 

W = (1 - PH/ ~ ) - 1 ,  (17) 
which may be used as a convenient starting point for further studies. We note that the 
same expression may be obtained also in the partitioning technique, in which the Hilbert 
space is partitioned into two parts by means of the projectors 0 and P forming a 
resolution of the identity 0 + P = 1. [ref.19]. In this connection, one should observe the 
existence of the useful operator identities 

(A - B)-1 I A1 + AlB(A - B)-1 E A - ~  + (A - B)-1 B A1, (1  8 )  

(19) (1 - RS)-' R I R( l  - SR)-1 

For the wave operator, this gives the alternative expression 

W = 1 + TH, T = (2.1 - PH)-1 P = P(z.1 - PH)-1 = P(z.1 - PHP)-l P, 

where the operator T(z) = (2.1 - PH)-l P is the so-called reduced resolvent. The last form 

in (20) is of particular importance, since = PHP is the outer projection of H with 

respect to the projector P with eigenvalues k k satisfying the inequality E k > E k in 

order from below Iref.191 and having a resolvent R =  (2.1 - PHP)-l which exists whenever z 

# E k . Since T = P w .  the reduced resolvent T(z) exists for z # 

(20) 

k , [ref.20]. 

Let us now return to the solution of the eigenvalue problem in the form a(z) = 0. 
Multiplying the relation (14) to the left by ccpI and <YpI, respectively, and using the 
normalization relations ccpIcp> = 1 and <Y',*lcp> = 1, one obtains 

The function 21 = f(z) has the derivative df(z)/dz = 1 - <YZ*(Yz >, which is always negative on 
the real axis. and Lagrange's mean-value formula shows then that, between z and z1 , 
there is always at least one true eigenvalue E .  For this reason, the z1 = f(z) is often 
referred to as the bracketingfunction. If one solves the "algebraic" equation a(z) = 0, by 
means of the Newton-Raphson formula, one gets further 

where the right-hand member - for complex z - is identical to the bi-variational 
expression, which - for real z - reduces to the variational expression. 
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Let us now consider the case when H = Ho + V for an arbitrary reference function cp . I t  
is now convenient to introduce the operators Woand To associated with the unperturbed 
Hamiltonian Ho : 

Wo = (1 - PHo/z)-‘ , To = (2.1 - PHo)-’ , (24) 

and observe the existence of the alternative forms for To . Putting H = Ho + V 
original expressions for W and T , and using (181, one obtains 

into the 

W = (1 - PHo/z - PV/Z)-~ = (1 - ToV)-1 Wo , (25)  

T = (2.1 - PHo - PV)-1 P = (1 - ToV)-’To, (261 

and it is evident that the operator (1 - ToV)-1 is going to play an important role in the 
theory. Using (18). one obtains directly (1 - ToV)-l= 1 + ToV (1 - ToV)-l , and it is then easily 
seen that the operator 

t = V ( l  - ToV)-’ , (27) 

is a generalization of Brueckner’s reaction operator satisfying the relation VW = t WO. One 
gets further the reciprocity relations:: 

T =  To +TotTo, t = V + V T V ,  (28) 

by means of which one can expand T in an infinite series in terms of powers of To and V. 
If the perturbation V has an inverse, one has also the simple two-term formula 

t-1 = V-1 - To , (29) 

which plays an  important role in the treatment of the theory by means of inner 
projections and in the development of rational approxfmations bef.211. The bracketing 
function may now be expressed in the form z1 = f(z) = <cpIHWlcp> = <cplRlcp>, and for the 
bracketing operator R = HW, one obtains 

R = HW = (Ho + V) (1 - ToV)-1 Wo = Ho {l + ToV(1 - ToV)-1)Wo + t WO = 

= Ho {I + Tot )Wo + t Wo = HoWo + HOT0 t Wo + t Wo = 

which means that even the bracketing operator may be expressed in terms of the 
reaction operator t. 

+Wot(Z*) t Wo(Z) , (30) 

If one puts H = Ho + hV, it is possible to expand the fundamental operators W, T , a, and t, 
in power series of the perturbation parameter h . In the conventional perturbation 
theory developed in quantum mechanics, one simply assumed that the wave function Y 
and the energy E were analytic around the point h = 0. and the strict mathematical 
background for this approach was finally given by Rellich and by Kato bef.221. A closer 
study of the mathematical foundation for the partitioning technique briefly described 
above has also been started, but it may take some time before it is completed. 

In connection with the developments in perturbation theory, one should perhaps also 
mention the current studies of the free energy expressed in the form F = - kT log Tr exp { - 
(Ho t h V)/ kT) . Large-scale calculations of free energy differences for various types of 
biomolecules have recently been carried out under the assumption that the Hamiltonians 
involved are classical [ref.23], but also perturbation expansions of the free energy for 
quantum systems have been studied [ref.24]. One can anticipate that, in the future, it will 
be of great importance to incorporate such concepts as temperature, entropy, free 
energy. etc. into quantum chemistry. 
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COMPARISON BETWEEN TRANSITION VALUES AND EXPECTATION 
VALUES 

In the previous section, we have emphasized that the variational expression (3) and the 
computational methods based on the variation principle 6<H> = 0 give upper bounds to 
the energy values E. On the other hand, the transition formula (5) is a very strong 
mathematical tool, but - since it is unbounded - it may sometimes give fortuitously good 
results. In terms of the wave operator W , we are dealing with the two expressions 

and we will now try to compare them in somewhat greater detail. For the exact wave 
operator W and z = E, the two expressions are identical, of course, so we will concentrate 
our interest on the approximate case. 

For the wave operator we have according to (20) the expression W = 1 + TH with T = 

P (2.1 - PHP)-I P . The problem is apparently to evaluate the resolvent R =  (2.1 - PHP)-1 for 

the outer projection 8= PHP of the Hamiltonian. For a moment, we will let & be an 
arbitrary approximation to this inverse operator. We note that, if A is an arbitrary linear 
operator having an  inverse A-1 , and if I is a first- order approximation to this inverse, 
then the operator I# = 21 - IAI is a seond-order approximation. The proof follows from the 

fact that, if I = A-1 + 6 ,  then I # =  A 1  - 6 A 6 .  Hence if % is an  approximation to the 
resolvent correct to order n, then &,#= 2% -%A% is an approximation correct to order 
(2n+l). Multiplying this relation to the left and right by P and observing that P Ta = Ta P = 
Ta, one obtains for the associated approximations of the reduced resolvent: 

Ta#= 2Ta Ta (Z .I PHP)Ta = 2Ta - Ta (Z .I - H)Ta. (33) 

Introducing the approximate wave operator Wa = 1 + T, H , one obtains directly 

Wa t (H 2.1) Wa = (1 +H Ta ) (H - 2.1) (I + Ta H ) 
= (H - 2.1 ) + H Ta (H 
= ( H - z . l ) - z H T a  -ZTaH +H{2Ta -Ta ( z . l - H ) T a } H =  

2.1 ) + (H - Z. 1) Ta H + H Ta (H - 2.1) Ta H = 

= (H-z . l ) - zHTa  -zTaH + H T $  H=HWa'-z.l -z(HTa +Ta H), (34) 

and further, since P cp = 0 and Ta cp = 0: 

<q) Waf (H z.1) Wa (q> = <cplHWa#lq> Z. (351 

This means that, one has the following connection formula: 

which is a generalization of the Brillouin-Wigner theorem Iref.251. I t  is hence always 
possible, at least in principle, to go from transition values to expectation values, but one 
should observe that the good agreement provided by the transition formula may not 
necessarily hold for the expectation value. 

At the VAlAdalen symposium in 1958, the author pointed out Iref.261 that a characteristic 
feature of quantum chemistry was that even a fairly simple theory could sometimes give 
excellent agreement with experimental experience, but that this agreement may 
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disappear whenever one tries to improve the theory. The point of excellent agreement 
was coined the "Pauling point" in honour of one of the great pioneers in our field who is 
also present here in Dubrovnik, not only because he could construct simple theories built 
on physical and chemical insight, but also because of his mastership in predicting figures 
which had not yet been measured. In the beginning of the 1930% one had constructed 
theories of chemical reactivity based on the properties of the valence electrons only to 
find that the good agreement disappeared when one included the inner shells leading to 
the concept of the "nightmare of the inner shells". In the MO-LCAO treatment of large 
molecules , one could get very good results without including the atomic overlap 
integrals, whereas in solid-state theory the inclusion may lead to the famous "non- 
orthogonality catastrophe". In the treatment of metal complexes, the original crystal- 
field theory for some reason seemed to give better agreement than the improved ligand- 
field theories. In the treatment of magnetic phenomena, the Hartree method seemed to 
give better results than the Hartree-Fock method, simply because the errors in treating 
parallel and antiparallel spins were better balanced in the former. Let me quickly add 
that my own doctoral thesis in 1948 treating the properties of ionic crystals by means of 
the independent-particle model is a typical example of a "Pauling point", where the good 
agreement with the experiments would disappear when one tries to include e.g. 
correlation in an unbalanced way. It goes without saying that, if one improves the theory 
more and more, the good agreement is expected to come back, but the simplicity of the 
theory is usually lost in this connection. 

One should hence be somewhat suspicious, if a low-order perturbation theory seems to 
give excellent results - one may be at a "Pauling point". In current quantum chemistry, 
the exact wave function may be expressed in the form (12), i.e. as a finite sum of singly, 
doubly, triply, ... excited states, and - in many different approaches - various authors are 
surprised at what good results one can be obtained by including only the first few terms. 
Some estimates have indicated, that unfortunately there might be a "night-mare of higher 
excitations". 

Here at the Dubrovnik workshop and other conferences, we are accustomed to see how 
well low-order Maller-Plesset or many-body perturbation theory may work for particular 
systems. In the higher-order perturbation theories based on the use of Feynman 
diagrams, the linked-cluster theorem [ref.27] plays an important role in connection with 
the property of separability or "size extensiveness" . We note that, for this purpose, one is 
using an exponential form of the wave operator W = exp (T) in the coupled-cluster method 
[ref.28] and in the finite-order many-body perturbation theory approximations [ref.291. A 
crucial test of a good transition formula result may be obtained by comparing it with the 
corresponding expectation value, and Bartlett has recently devoted some efforts to this 
problem Iref.301. 

If a quantity cannot be evaluated exactly, a mathematician would try to calculate upper 
and lower bounds to it until the difference between the two bounds is smaller than the 
accuracy desired. If the problem is difficult, he may have to be satisfied by calculating 
"upper bounds to upper bounds" and "lower bounds to lower bounds". In the applications 
to molecular physics, many of us  are delighted to calculate "lower bounds to upper 
bounds" or "upper bounds to lower bounds", since the results are often in good agreement 
with experimental experience or bench-mark calculations. Sometimes the goodness of 
the results may be systematic, sometimes it may be fortuitous, and it is of importance for 
us to know when and why. One should always remember that good agreement with 
experiments is a necessary but by no means sufficient criterion for the goodness of a 
theory, and that the reliability of the results is ultimately going to determine the lifetime 
of a particular approach. 

CONCLUSIONS 

On behalf of all the participants in the Dubrovnik Workshop, the author would finally like 
to thank Professor Z.B. Maksic and his Organizing Committee for the excellent work they 
have done in organizing this conference and for all the warm hospitality extended to us. 
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